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1- Following the steps given in the lecture note, the state transformation z will be

L 2

ZL=X, Zy =Xy Z3=g— o x, ——228
1 1 2 2, “3 g m 2 2 m(a+xq)?
L 2 X 2
. . k. oax 1| —m(a+xq) Loaxyx
Applying control signal u=[(v+—= x, — 2 L+ Rx; ——2=2
PRIyINg g I( m 2 m(a+x1)3 Lo ax3 ] 3 (a+x,)?

yields z; =z, Z, =23 Z3=v

where v=-k, %, — k,%; — k3(x; — 0.05)

k; are found s.t make the above dynamics stable.

b) after taking time derivative of y for three times, u appears > r=n =3
There is no internal dynamics and the system is I/O linearizable

c) uis defined similar to a) but v is modified as follows:

v=r® — k6 —kyé — kse, where e=y-r

and k; are found s.t make the above dynamics stable.

22y=x 2V =%+ 2x} 5> = x3 +u+ 2x,(x, + x3)
Relative degree: 2,

=Xy, Hp = Xy +2x7

The third function Y(X) is obtained by

Let us define i) = %3 = x; — x3

Consider the Jacobean of state transformation z=[u,, u,, Y]
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1 4x; 1
0 1 0 |, itis full rank so the transformation is diffeomorphism.
0 0 -1
Zero dynamics: x3 = — x3, SO the system is minimum phase.

Using Theorem of Lecture 8, page 71.:
U=-x3 — 2 x; (xp + x2) —sint — ky i — ki

k,, k, are positive const. which make K(s)=s? + k,s + k; Hirwitz

3-

It is already in controllable canonical form:

aly ol B =[] e@ = pe = -

bcosx;’ bcosxy

Itis 1/0 linearizable when cosx; # 0

1

bcosxy

b) Take u== —

(-asinx; +v)

to stabilize the system at x; = 6, take
v=-ki(x; — 0) —kyx,,k; >0,k, >0
So the closed loop system is

X; =X,

X, = —=-ki(x; — 0) — kpx,

Itis a.s at equ. Point (8,0) in domain of |x;| < w/2.Soitis notg.a.s.
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f(x)=

_xl + x2 - x3 0
—X1X3 — Xy |, g(x)=|1
_Xl 1

a) check the controllability and involutivity

0
adrg = |1+ x,
0
_l_xl
adfzg= 1+x, —x;

0

0 0 -1-

d;g ad’g] = " f 1is linear independ h
g adsg,ad;"g] = |1 1+x; 1+x,—x;| forx, # Lislinear independent so the
1 0 0

system is controllable

0 0

g, ad;g] = [1 1+x;
1 0

is inovlutive so the system is feedback linearizable
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b) To find the transformation:

dz
Vz,ad;g =0 :a—x:{1+xl} =0

dz, dz,
Vzad; g =1= —E{1+xj_} +ﬂ_x2(1 +x,—x)=1

n*xl
Therefore,
X1
Z=T(x)= —X; Xz — iy
2x, — 2x, +x; —x, %,
And

2T &
Za = I
=V

And u=al(x) + flx)v

12 4 42 — 3y — XoXs — 3%, + 2% — 23,
2 1

alx) = - 1+x,

1
1+x,

Blx)=-

5-Let us start with xX; = x, + 6x?

And x, asits input. Let e=x; — a sint. Therefore,

é=1x,+0x}{ —acost

Take x, = —kje + acost = ¢, (e, t), where k; > 0. Consider V; = %ez

Hence, V; = —k; e?+ 0 ex? < —ky e?+2| e|| x; |> < =k, e? +2e|(le] + a)? < —k, e? +

2le|® + 4le|? + 2)e|

Choosing k; sufficiently large make e ultimately bounded.
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Let us proceed the second step of back stepping: z; = e,z, = x, — @,(e, t):

Zl = _k1 Al + fo +Zz

Zy = x3 +u+ky(—ky z; + 0x% + z5)+asint
Let V=%212 + gzzz - V=2z(=kyzy + 0x? + 2z,) + b?z,[x3 + u + ky(—k; 2, + 0x2 + z,)+ asint]
Therefore take u=- [x3 + ki(—k; z; + zy)+asint] — %(kz Zy + zq)

- V=—kiz? + 0x?z, + 0x2b%z, ky — k,z2
< —kyz% —kyz2 + 2|z0|(|1z1] + @)? + 2b?| 25| ky(121| + @)? < —ky22 — kpz2 + 2|z, |3 + 4|z, )% +
2|z1| + 2b?|z,| ky (|21 | + 1)2

Due to the cubic terms on the right hand side, we should limit our analysis to compact set. Let
Q= (V<o)

Choose c>0s.t. z(0) € Q. Using the fact that x|l <1 = |2z;(0)| £ 1, [2,(0)| = |x,(0) + k,e(0) —
as<2+xl

The initial state x,(0) depends on k;. To choose c independent of k;, take b=1/(2+k;).

1

Then V(z(0))=1/2 2(0) + ;o

z2(0) <1

Therefore we take c=1andset Q= (V < 1) - |z]| <2
2|z, + 412112 + 2|z1| < (2V2 + D)z |? + 2]z,
2b2|z,| ky (121 + 1)? < (2 + \/E)|Z1||ZZ| + |z,
Take k;=2v/2 + 4 + 2a and k, = 2a where a > 0.
Hence, V < —a |IzII3 + V5lizll, + [-allzll} + (2 + V2)I|z]|2,]

Choosing a large enough, one can achieve

V< —allzlZ+V5lzll, < —A-Ballzllz, valzl, = 0<p<1

5
ap’

Zis uniformly ultimately bounded and its bound is proportional to 1/ a.
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Notice that in x3, the boundedness of x; implies the boundedness of x5

0

6- a) Take u=-2x; + x3-x, = ¢(x), Therefore x = Ax, where A:[_1

_11] that is Hurwitz. Hence the

Orionis g.e.s.

b)Leté =z — ¢p(x)
x = Ax + B¢

¢
f=v—a(Ax+Bf)
Where [(1)] LetV = xTPx + %fz -V =—xTx+2xTPBE +¢& [v —%(Ax + BE)]

Therefore, take v=3—‘£ (Ax + BE) — 2xTPB — &, this makes the system g.a.s.

7- Divide both side of the system dynamics by b:
hx™ =hf(x) +u
The disturbance is additive so |h — h| < H
s=x""1 + p(&"2, ..., %) - h$ = hf +u — hx,* — hq,
where g=p
i = —hf + hx] + hq

u=ti — ksgn(s)

hs = hf — hf + hx] — hx] + hq — ksgn(s)-hq
To satisfy the mentioned condition hss < —n h|s|

k should satisfy: k > |hf —hf + Hx + Hq|+n h

Considering the known upper bound F and H the above condition is guaranteed if
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k> ||h|F + H(f + F) + Hx] + Hq| + n(|h|+H)

Boundary layer interpolations and time-variation of ¢ can be derived similarly to the standard case.
Therefore, the accuracy of the approximate "bandwidth" analysis 10 the boundary layer

increases with A.

8- Define e=0 — g — & = 0, é = 0, therefore

é = —asin(e + o) —bé + cu
s=¢ + le
letd=5]a—al<A=10, b=0,|b—b| <B=02¢é=V6%x12, =\/1;2
Following the steps mentioned in the lecture note leads to:
@i = @ sin(e + o) — be
u = ¢ — k sgn(s)]
After following some manipulations, one can easily get to the following condition for k

k=B (m—Asin(e+ac)—B6)+ (1—p)|i|

Type equation here.



