
Perceptron Preliminary Training Network Use Functions Solve Problem

Multi-Layer Perceptron in MATLAB NN Toolbox
[Part 1]

Yousof Koohmaskan, Behzad Bahrami,
Seyyed Mahdi Akrami, Mahyar AbdeEtedal

Department of Electrical Engineering
Amirkabir University of Technology (Tehran Polytechnic)

Advisor: Dr. F. Abdollahi

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 1 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Introduction

n Rosenblatt in 1961 created many variations of the perceptron
n One of the simplest was a single-layer network whose weights

and biases could be trained to produce a correct target vector
when presented with the corresponding input vector

Neuron Model

3-3

Neuron Model
A perceptron neuron, which uses the hard-limit transfer function hardlim, is
shown below.

Each external input is weighted with an appropriate weight w1j, and the sum
of the weighted inputs is sent to the hard-limit transfer function, which also
has an input of 1 transmitted to it through the bias. The hard-limit transfer
function, which returns a 0 or a 1, is shown below.

The perceptron neuron produces a 1 if the net input into the transfer function
is equal to or greater than 0; otherwise it produces a 0.

The hard-limit transfer function gives a perceptron the ability to classify input
vectors by dividing the input space into two regions. Specifically, outputs will
be 0 if the net input n is less than 0, or 1 if the net input n is 0 or greater. The
following figure show the input space of a two-input hard limit neuron with the
weights and a bias .

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

�
� f

 a = hardlim (Wp + b)

b

1

Where

R = number of
elements in
input vector

Perceptron Neuron

��
��
�
�

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

w1 1, 1, w1 2,– 1= = b 1=

Figure: Perceptron Representation-[1]

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 2 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Introduction

n There are many transfer function that can be used in the
perceptron structure, e.g.

Neuron Model

3-3

Neuron Model
A perceptron neuron, which uses the hard-limit transfer function hardlim, is
shown below.

Each external input is weighted with an appropriate weight w1j, and the sum
of the weighted inputs is sent to the hard-limit transfer function, which also
has an input of 1 transmitted to it through the bias. The hard-limit transfer
function, which returns a 0 or a 1, is shown below.

The perceptron neuron produces a 1 if the net input into the transfer function
is equal to or greater than 0; otherwise it produces a 0.

The hard-limit transfer function gives a perceptron the ability to classify input
vectors by dividing the input space into two regions. Specifically, outputs will
be 0 if the net input n is less than 0, or 1 if the net input n is 0 or greater. The
following figure show the input space of a two-input hard limit neuron with the
weights and a bias .

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

�
� f

 a = hardlim (Wp + b)

b

1

Where

R = number of
elements in
input vector

Perceptron Neuron

��
��
�
�

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a

w1 1, 1, w1 2,– 1= = b 1=

Neuron Model

4-3

Neuron Model
A linear neuron with R inputs is shown below.

This network has the same basic structure as the perceptron. The only
difference is that the linear neuron uses a linear transfer function purelin.

The linear transfer function calculates the neuron’s output by simply returning
the value passed to it.

This neuron can be trained to learn an affine function of its inputs, or to find a
linear approximation to a nonlinear function. A linear network cannot, of
course, be made to perform a nonlinear computation.

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

��
�� f

b

1

Where...

R = number of
elements in
input vector

Linear Neuron with
 Vector Input

��
��
��
��

a = purelin (Wp + b)

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

a purelin n() purelin Wp b+() Wp b += = =

5 Backpropagation

5-8

Architecture
This section presents the architecture of the network that is most commonly
used with the backpropagation algorithm—the multilayer feedforward
network.

Neuron Model (logsig, tansig, purelin)
An elementary neuron with R inputs is shown below. Each input is weighted
with an appropriate w. The sum of the weighted inputs and the bias forms the
input to the transfer function f. Neurons can use any differentiable transfer
function f to generate their output.

Multilayer networks often use the log-sigmoid transfer function logsig.

The function logsig generates outputs between 0 and 1 as the neuron’s net
input goes from negative to positive infinity.

Input

p
1

an
p

2p
3

p
R

w
1,

R

w
1,1

��
�� f

b

1

Where

R = number of
elements in
input vector

General Neuron

��
��

a = f(Wp +b)

-1

n
0

+1

��
��

a

Log-Sigmoid Transfer Function

a = logsig(n)

Figure: hardlim, purelin, logsig

n Usually hardlim is selected as default

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 3 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Perceptron Architecture

n The perceptron network consists of a
single layer

n R input vector
n S output scaler

Here, we consider just one-layer percep-
tron

Perceptron Architecture

3-5

Perceptron Architecture
The perceptron network consists of a single layer of S perceptron neurons
connected to R inputs through a set of weights wi,j, as shown below in two
forms. As before, the network indices i and j indicate that wi,j is the strength of
the connection from the jth input to the ith neuron.

The perceptron learning rule described shortly is capable of training only a
single layer. Thus only one-layer networks are considered here. This restriction
places limitations on the computation a perceptron can perform. The types of
problems that perceptrons are capable of solving are discussed in “Limitations
and Cautions” on page 3-21.

w1,1

wS R,

S

S

S

n1

p1

p2

p3

pR

n2

nS

b1

b2

bS

a1

a2

aS

1

1

1

Input Perceptron Layer

S x 1

S x 1

S x 1

R x 1

S x R

S

n

p a
W

b1

R

Input Perceptron Layer

Where

= number of elements in input

= number of neurons in layer

R

S

a = hardlim(Wp + b)

a = hardlim(Wp + b)

Figure: Perceptron
Architecture

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 4 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Mathematical Notation

n A single superscript is used to identify elements of a layer, e.g.
n3 expresses input to layer 3

n Input weight matrix from layer k to layer l can be shown as IW l,k ,
also for layer weight matrix, i.e.LW l,k

Mathematical Notation for Equations and Figures

A-3

Layer Notation
A single superscript is used to identify elements of a layer. For instance, the
net input of layer 3 would be shown as n3.

Superscripts k, l are used to identify the source (l) connection and the
destination (k) connection of layer weight matrices and input weight matrices.
For instance, the layer weight matrix from layer 2 to layer 4 would be shown
as LW4,2.

Figure and Equation Examples
The following figure, taken from Chapter 12, “Advanced Topics,” illustrates
notation used in such advanced figures.

Input weight matrix IWk, l

Layer weight matrix LWk, l

p1(k)

a1(k)1

n1(k) 2 x 1
4 x 2

 4 x 1

 4 x 1

4 x 1

Inputs

��IW1,1

��
��b1

2 4

Layers 1 and 2 Layer 3

a1(k) = tansig (IW1,1p1(k) +b1)
��
��
��

5

3 x (2*2)��
��IW2,1

3 x (1*5)��
��

IW2,2

n2(k)

3 x 1

3��
��
��

��
��TDL

p2(k)

 5 x 1��
��

TDL

1 x 4���
���LW3,1

1 x 3

���
���

1 x (1*1)

���
���

1
1 x 1���

���
b3

��
��TDL

3 x 1

a2(k)

a3(k)n3(k)
1 x 1 1 x 1

1
��
��
��

a2(k) = logsig (IW2,1 [p1(k);p1(k-1)]+ IW2,2p2(k-1))

0,1

1

1

a3(k)=purelin(LW3,3a3(k-1)+LW3,1 a1 (k)+b3+LW3,2a2 (k))

LW3,2

LW3,3

y2(k)
1 x 1

y1(k)

3 x 1

Outputs

Figure: Example of a perceptron
Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 5 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Matlab Notation Considerations

n superscripts⇔ cell array indices, e.g. p1 → p{1}
n subscripts⇔ indices within parentheses, e.g. p2 → p(2)

n ⇒ superscripts + subscripts ,e.g. p1
2 → p{1}(2)

n indices within parentheses⇔ a second cell array index1 e.g.
p1(k − 1)→ p{1, k − 1}

1also in the Matlab help, it should be corrected; p{1, k − 1]→ p{1, k − 1}
Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 6 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Learning Rules

n It breaks into two parts, supervised and unsupervised learning,
we consider the first topic

n The objective is to reduce the error e, which is the difference t-a
between the neuron response a and the target vector t

n There are many algorithms that do this and we will introduce
them

n All the algorithms compute ∆w utilizing some methods

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 7 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Learning Alghorithms

n Hebb weight learning rule2

∆wk = cakpk

MATLAB command learnh

n Perceptron weight and bias learning function

∆wk = ek (pk)T

MATLAB command learnp

n Normalized perceptron weight and bias learning function

pn =
p√

1 + ‖p‖2
, ∆wk = ek (pnk)T

MATLAB command learnpn
2in all, e: error, p: input and a: output

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 8 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Learning Alghorithms

n Widrow-Hoff weight/bias learning function

∆wk = cek (pnk)T

learning rate c,
MATLAB command learnwh

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 9 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Training

n Training is using the learning rule to update the weights of
network repeatedly

wk
new = wk

old + ∆wk

MATLAB command train

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 10 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Utility Functions

n MATLAB command init, Initialize neural network
n MATLAB command sim, Simulate neural networks
n MATLAB command adapt

Allow neural network to change weights and biases on inputs
n MATLAB command newp, create perceptron

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 11 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Perceptron problem, step by step

n Creating a Perceptron, >> net=newp(P,T);

n Assigning initial weight and bias,
>> net.IW{1,1}=

[
w1 w2

]
;

>> net.b{1} = [b];

n Determining number of pass,
>> net.trainParam.epochs = pass;

n Training Network, >> net = train(net,p,t);

n Test and Verifying, >> a = sim(net,p);

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 12 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Perceptron problem, step by step

Example 1:
Classifying displayed data

-5 0 5 10
-5

0

5

10

Vectors to be Classified

P(1)

P(
2)

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 13 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Perceptron problem, step by step

Example 1; Solution
% number of samples of each class
N = 20;
% define inputs and outputs
offset = 5; % offset for second class
x = [randn(2,N) randn(2,N)+offset]; % inputs
y = [zeros(1,N) ones(1,N)]; % outputs
% Plot input samples with PLOTPV (Plot perceptron
input/target vectors)
plotpv(x,y);
net=newp(x,y);
net = train(net,x,y); % train network
figure(1)

plotpc(net.IW{1},net.b{1});

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 14 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Perceptron problem, step by step

Example 1; Solution

-5 0 5 10
-6

-4

-2

0

2

4

6

8

10

Vectors to be Classified

P(1)

P(
2)

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 15 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Note

n net.trainParam.epochs

n net.trainParam.goal

n Random Weights Initialization
net.inputweights{1,1}.initFcn = ’rands’;
net.biases{1}.initFcn = ’rands’;
net = init(net);

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 16 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Perceptron problem

Example 2:
Classifying displayed data

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Class A Class B

Class CClass D

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 17 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Perceptron problem

Example 2; Solution
K = 30;
% define classes
q = .6; % offset of classes
A = [rand(1,K)-q; rand(1,K)+q]; B = [rand(1,K)+q;
rand(1,K)+q];
C = [rand(1,K)+q; rand(1,K)-q]; D = [rand(1,K)-q;
rand(1,K)-q];
% plot classes
plot(A(1,:),A(2,:),’bs’)
hold on; grid on
plot(B(1,:),B(2,:),’r+’); plot(C(1,:),C(2,:),’go’);
plot(D(1,:),D(2,:),’m*’);
% text labels for classes
text(.5-q,.5+2*q,’Class A’); text(.5+q,.5+2*q,’Class B’)

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 18 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Perceptron problem

Example 2; Solution-Cont’d
text(.5+q,.5-2*q,’Class C’); text(.5-q,.5-2*q,’Class D’)
a = [0 1]’; b = [1 1]’;
c = [1 0]’; d = [0 0]’;
P = [A B C D];
% define targets
T = [repmat(a,1,length(A)) repmat(b,1,length(B)) ...
repmat(c,1,length(C)) repmat(d,1,length(D))];
net=newp(P,T);
E = 1;
net.adaptParam.passes = 1;
linehandle = plotpc(net.IW{1},net.b{1}); n = 0;
while (sse(E) & n<1000)
n = n+1;
[net,Y,E] = adapt(net,P,T);
linehandle = plotpc(net.IW{1},net.b{1},linehandle);
drawnow;
end

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 19 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Perceptron problem

Example 2; Solution- Cont’d

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

Class A Class B

Class CClass D

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 20 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

N
N
N
N
N
N
N
N
N
N

Thank You

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 21 / 21

Perceptron Preliminary Training Network Use Functions Solve Problem

Matlab 7.9, Neural Network Toolbox Help MathWorks Inc. R2009b

Click: LASIN - Laboratory of Synergetics Website, Slovenia

Dr. F. Abdollahi, Lecture Notes on Neural Networks Winter 2011

Koohmaskan, Bahrami, Akrami, AbdeEtedal (AUT) Multi-Layer Perceptron - part 1 February 2011 21 / 21

http://lab.fs.uni-lj.si/lasin/www/teaching/neural/nn03_perceptron

	Perceptron Preliminary
	Training
	Network Use Functions
	Solve Problem

