# **1** MAGLEV: Magnetic Levitation Plant

## 1.1 System Description

The typical Magnetic Levitation plant, i.e. MAGLEV, is depicted in Figure 1, below, while levitating in air a steel ball within its magnetic field. The MAGLEV can be described by three distinct sections encased in a rectangular enclosure. First, upper section contains the an electromagnet, made of a solenoid coil with a steel core. Second, the middle section consists of an inside chamber where the magnetic ball suspension actually takes place. One of the electromagnet poles faces the top of a black post upon which a one-inch steel ball rests. The ball elevation from the post top is measured using a photo-sensitive sensor embedded in the post. The post is designed in such a way that when the ball rests on top of it, the air gap between the ball's top hemisphere and the electromagnet pole face is 14 mm. The post also provides repeatable initial conditions for control system performance evaluation. Finally, the bottom section of the MAGLEV apparatus houses the system's conditioning circuitry needed, for example, by the light intensity position sensor. As detailed later in this manual, both offset and gain potentiometers of the ball position sensor are readily available for proper calibration. A current sense resistor is also included in the design in order to provide for coil current measurement if necessary.



Figure 1 MAGLEV Specialty Plant

### **1.2** Maglev System Representation

A schematic of the MAGLEV plant is represented in Fig. below. The MA-GLEV systems's nomenclature is provided in Section 1.3. The positive direction of vertical displacement is downwards, with the origin of the global Cartesian frame of coordinates on the electromagnet core flat face. Although the ball does have six degrees of freedom, in free space, only the vertical(x) axis is controlled. It can also seen that the MAGLEV consists of two main systems: an Electrical and an electro-mechanical.



#### 1.2.1 Electrical System Modeling

Derive the mathematical model of MAGLEV electrical system. The resulting model will provide you the open-loop transfer of coil voltage to coil curent unction  $G_c(s) = \frac{I_c(s)}{V_c(s)}$ 

### 1.2.2 Electro-Mechanical System: Non-Linear Equation of Motion (EOM)

Using the notations and conventions described in Fig. and hints below, derive the Equation of motion (EOM) of MAGLEV electro-mechanical system. **Hint 1:** The attractive force,  $F_c$  generated by the electromagnet and acting on the steel ball is assumed to be expressed as

$$F_{c} = \frac{1}{2} \frac{K_{m} I_{c}^{2}}{x_{b}^{2}} \quad for 0 < x_{b}$$
<sup>(1)</sup>

Equation (1) shows that the pull of the electromagnet is proportional to the square of the current and inversely proportional to the air gap (a.k.a ball position) squared.

Hint 2: The Newton's second law of motion can be applied to the steel ball Hint 3: Express the resulting EOM under the following format:

$$\frac{\partial^2}{\partial t^2} x_b = f(x_b, I_c) \tag{2}$$

where f denotes a function.

# 1.3 Maglev Model Parameters

Table below, lists and characterizes the main parameters (e.g. mechanical and electrical specifications, convertion factors, constants) associated with the MAGLEV specialty plant. Some of these parameters can be used for mathematical modelling of the MAGLEV system as well as to obtain the steel ball's Equation Of Motion (EOM).

| Symbol                    | Description                                                                                                   | Value       | Unit        |
|---------------------------|---------------------------------------------------------------------------------------------------------------|-------------|-------------|
| I <sub>c_max</sub>        | Maximum Continuous Coil Current                                                                               | 3           | А           |
| L <sub>c</sub>            | Coil Inductance                                                                                               | 412.5       | mH          |
| R <sub>c</sub>            | Coil Resistance                                                                                               | 10          | Ω           |
| Nc                        | Number Of Turns in the Coil Wire                                                                              | 2450        |             |
| $l_c$                     | Coil Length                                                                                                   | 0.0825      | m           |
| r <sub>c</sub>            | Coil Steel Core Radius                                                                                        | 0.008       | m           |
| $K_{m}$                   | Electromagnet Force Constant                                                                                  | 6.5308E-005 | $N.m^2/A^2$ |
| Rs                        | Current Sense Resistance                                                                                      | 1           | Ω           |
| $\mathbf{r}_{\mathbf{b}}$ | Steel Ball Radius                                                                                             | 1.27E-002   | m           |
| $M_{b}$                   | Steel Ball Mass                                                                                               | 0.068       | kg          |
| Ть                        | Steel Ball Travel                                                                                             | 0.014       | m           |
| g                         | Gravitational Constant on Earth                                                                               | 9.81        | $m/s^2$     |
| $\mu_0$                   | Magnetic Permeability Constant                                                                                | 4π E-007    | H/m         |
| Κ <sub>B</sub>            | Ball Position Sensor Sensitivity<br>(Assuming a User-Calibrated Sensor Measurement<br>Range from 0 to 4.95 V) | 2.83E-003   | m/V         |

| Symbol                            | Description                                                                                | Units       | Matlab<br>Notations |
|-----------------------------------|--------------------------------------------------------------------------------------------|-------------|---------------------|
| L                                 | Coil Inductance                                                                            | mH          | Lc                  |
| R <sub>c</sub>                    | Coil Resistance                                                                            | Ω           | Rc                  |
| $N_{\text{c}}$                    | Number Of Turns in the Coil Wire                                                           |             | Nc                  |
| ſ                                 | Coil Core Radius                                                                           | m           | rc                  |
| R.                                | Current Sense Resistance                                                                   | Ω           | Rs                  |
| fb                                | Steel Ball Radius                                                                          | m           | rb                  |
| $M_{b}$                           | Steel Ball Mass                                                                            | kg          | Mb                  |
| Tb                                | Steel Ball Travel                                                                          | m           | Tb                  |
| g                                 | Gravitational Constant on Earth                                                            | $m/s^2$     | g                   |
| μo                                | Magnetic Permeability Constant                                                             | H/m         | mu0                 |
| Кв                                | Ball Position Sensor Sensitivity                                                           | m/V         | K_B                 |
| Fc                                | Electromagnet Force                                                                        | Ν           | Fc                  |
| Fg                                | Gravity Force                                                                              | Ν           | Fg                  |
| Km                                | Electromagnet Force Constant                                                               | $N.m^2/A^2$ | Km                  |
| I.                                | Actual Coil Current                                                                        | А           | Ic                  |
| V,                                | Actual Coil Input Voltage                                                                  | v           | Vc                  |
| V.                                | Current Sense Voltage                                                                      | v           | Vs                  |
| $V_{\mathfrak{b}}$                | Ball Position Sensor Voltage                                                               | v           | Vb                  |
| Xb                                | Actual Air Gap Between Core Face and Ball Surface<br>(a.k.a. Steel Ball Vertical Position) | m           | xb                  |
| $\frac{\partial}{\partial t} x_b$ | Steel Ball Vertical Velocity                                                               | m/s         | xb_dot              |
| X <sub>b0</sub>                   | Steady-State Air Gap                                                                       | m           | xb0                 |
| $\mathbf{I}_{c0}$                 | Steady-State Coil Current                                                                  | А           | Ic0                 |
| Xbl                               | Small Variation Around the Steady-State Air Gap                                            | m           | xb1                 |
| $I_{c1}$                          | Small Variation Around the Steady-State Coil Current                                       | Α           | Ic1                 |
| $L_{\rm c\_des}$                  | Desired Coil Current                                                                       | Α           | IC_des              |
| $X_{b\_des}$                      | Desired Air Gap                                                                            | m           | xb_des              |
| L ff                              | Feedforward Coil Current                                                                   | A           | Ic_ff               |