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I Z transform (ZT) is extension of DTFT

I Like CTFT and DTFT, ZT and LT have similarities and differences.

I We had defined x [n] = zn as a basic function for DT LTI systems,s.t.
zn → H(z)zn

I In Fourier transform z = e jω, in other words, |z | = 1

I In Z transform z = re jω

I By ZT we can analyze wider range of systems comparing to Fourier
Transform

I The bilateral ZT is defined:

X (z) =
∞∑

n=−∞
x [n]z−n

⇒ X (re jω) =
∞∑

n=−∞
x [n](re jω)−n =

∞∑
n=−∞

{x [n]r−n}e−jωn

= F{x [n]r−n}
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Region of Convergence (ROC)

I Note that: X (z) exists only for a specific region of z which is called
Region of Convergence (ROC)

I ROC: is the z = re jω by which x [n]r−n converges:
ROC : {z = re jω s.t.

∑∞
n=−∞ |x [n]r−n| <∞}

I Roc does not depend on ω
I Roc is absolute summability condition of x [n]r−n

I If r = 1, i,e, z = e jω X (z) = F{x [n]}
I ROC is shown in z-plane
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Example

I Consider x [n] = anu[n]

I X (z) =
∑∞

n=−∞ anu[n]z−n =
∑∞

n=0(az−1)n

I If |z | > |a| X (z) is bounded

I ∴X (z) = z
z−a , ROC : |z | > |a|
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Example

I Consider x [n] = −anu[−n − 1]

I X (z) = −
∑∞

n=−∞ anu[−n − 1]z−n = 1−
∑∞

n=0(a−1z)−n

I If |a−1z | < 1 |z | < |a|,X (z) is bounded

I ∴X (z) = z
z−a , ROC : |z | < |a|
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I In the recent two examples two different signals had similar ZT but with
different ROC

I To obtain unique x [n] both X (z) and ROC are required

I If X (z) = N(z)
D(z)

I Roots of N(z) zeros of X(z); They make X(z) equal to zero.
I Roots of D(z) poles of X(z); They make X(z) to be unbounded.
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Relation Between LT and ZT
I In LT: x(t)

L↔X (s) =
∫∞
n=−∞ x(t)e−stdt = L{x(t)}

I Now define t = nT :
X (s) = limT→0

∑∞
n=−∞ x(nT )(esT )−n.T =

limT→0 T
∑∞

n=−∞ x [n](esT )−n

I In ZT: x [n]
Z↔X (z) =

∑∞
n=−∞ x [n]z−n = Z{x [n]}

I ∴ by taking z = esT ZT is obtained from LT.

I jω axis in s-plane is changed to unite circle in z-plane
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z-Plane s-Plane
|z | < 1 (insider the unit circle) Re{s} < 0 (LHP)

special case: |z | = 0 special case: Re{s} = −∞
|z | > 1 (outsider the unit circle) Re{s} > 0 (RHP)

special case: |z | =∞ special case: Re{s} =∞
|z | = cte (a circle) Re{s} = cte (a vertical line)
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ROC Properties
I ROC of X (z) is a ring in z-plane centered at origin

I ROC does not contain any pole
I If x [n] is of finite duration, then the ROC is the entire z-plane, except

possibly z = 0 and/or z =∞
I X (z) =

∑N2

n=N1
x [n]z−n

I If N1 < 0 x [n] has nonzero terms for n < 0, when |z | → ∞ positive power
of z will be unbounded

I If N2 > 0 x [n] has nonzero terms for n > 0, when |z | → 0 negative power
of z will be unbounded

I If N1 ≥ 0 only negative powers of z exist  z =∞ ∈ ROC
I If N2 ≤ 0 only positive powers of z exist  z = 0 ∈ ROC
I Example:

ZT LT
δ[n]↔1 ROC: all z δ(t)↔1 ROC: all s

δ[n − 1]↔z−1 ROC: z 6= 0 δ(t − T )↔e−sT ROC: Re{s} 6= −∞
δ[n + 1]↔z ROC: z 6=∞ δ(t + T )↔esT ROC: Re{s} 6=∞

Farzaneh Abdollahi Signal and Systems Lecture 9 10/29



Outline Introduction Relation Between LT and ZT Analyzing LTI Systems with ZT Geometric Evaluation Unilateral ZT

ROC Properties

I If x [n] is a right-sided sequence and if the circle |z | = r0 is in the ROC,
then all finite values of z for which |z | > r0 will also be in the ROC.

I If x [n] is a left-sided sequence and if the circle |z | = r0 is in the ROC,
then all finite values of z for which |z | < r0 will also be in the ROC.

I If x [n] is a two-sided sequence and if the circle |z | = r0 is in the ROC,
then ROC is a ring containing |z | = r0.

I If X (z) is rational
I The ROC is bounded between poles or extends to infinity,
I no poles of X (s) are contained in ROC
I If x [n] is right sided, then ROC is in the out of the outermost pole

I If x [n] is causal and right sided then z =∞ ∈ ROC

I If x [n] is left sided, then ROC is in the inside of the innermost pole
I If x [n] is anticausal and left sided then z = 0 ∈ ROC

I If ROC includes |z | = 1 axis then x [n] has FT
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The Inverse of Z Transform (ZT)

I By considering r fixed, inverse of ZT can be obtained from inverse of FT:

I x [n]r−n = 1
2π

∫
2π X (re jω︸︷︷︸

z

)e jωndω

I x [n] = 1
2π

∫
2π X (re jω)rne(jω)ndω

I assuming r is fixed  dz = jzdω

I ∴x [n] = 1
2πj

∮
X (z)zn−1dz

I Methods to obtain Inverse ZT:
1. If X (z) is rational , we can use expanding the rational algebraic into a

linear combination of lower order terms and then one may use
I X (z) = Ai

1−ai z
−1  x [n] = Aia

n
i u[n] if ROC is out of pole z = ai

I X (z) = Ai
1−ai z

−1  x [n] = −Aia
n
i u[−n − 1] if ROC is inside of z = ai

Do not forget to consider ROC in obtaining inverse of ZT!
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Methods to obtain Inverse ZT:
2. If X is nonrational, use Power series expansion of X(z), then apply
δ[n + n0]⇔zn0

I Example: X (z) = 5z2 − z + 3z−3

I x [n] = 5δ[n + 2]− δ[n + 1] + 3δ[n − 3]

3. If X is rational, power series can be obtained by long division
I Example: X (z) = 1

1−az−1 , |z | > |a|

1 x1−az−1

1+az−1+(az−1)2+...

−1 + az−1

az−1

−az−1 + a2z−2

...

I x [n] = anu[n]
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Methods to obtain Inverse ZT:

I Example: X (z) = 1
1−az−1 , |z | < |a|

I X (z) = −a−1z( 1
1−a−1z

)

1 x1−a−1z

1+a−1z+(a−1z)2+...

−1 + a−1z

a−1z

−a−1z + a−2z2

...

I x [n] = −anu[−n − 1]
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ZT Properties

I Linearity: ax1[n] + bx2[n]⇔aX1(z) + bX2(z)
I ROC contains: R1

⋂
R2

I If R1

⋂
R2 = ∅ it means that ZT does not exit

I By zeros and poles cancelation ROC can be lager than R1

⋂
R2

I Time Shifting:x [n − n0]⇔z−n0X (z) with ROC=R (maybe 0 or ∞ is
added/omited)

I If n0 > 0 z−n0 may provide poles at origin  0 ∈ ROC
I If n0 < 0 z−n0 may eliminate ∞ from ROC

I Time Reversal: x [−n]⇔X (1
z ) with ROC= 1

R
I Scaling in Z domain: zn

0 x [n]⇔X ( z
z0

) with ROC = |z0|R
I If X (z) has zero/poles at z = a X ( z

z0
) has zeros/poles at z = z0a

I Differentiation in the z-Domain: nx [n]⇔− z dX (z)
dz with ROC = R

I Convolution: x1[n] ∗ x2[n]⇔X1(z)X2(z) with ROC containing R1 ∩ R2
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ZT Properties

I Conjugation: x∗[n]⇔X ∗(z∗) with ROC = R
I If x [n] is real

I X (z) = X ∗(z∗)
I If X (z) has zeros/poles at z0 it should have zeros/poles at z∗0 as well

I Initial Value Theorem: If x [n] = 0 for n < 0 and x [0] is bounded, then
x [0] = limz→∞ X (z)

I limz→∞ X (z) = limz→∞
∑∞

n=0 x [n]z−n = x [0] + limz→∞
∑∞

n=1 x [n]z−n =
x [0]

I For a casual x [n], if x [0] is bounded it means # of zeros are less than or
equal to # of poles (This is true for CT as well)

I Final Value Theorem: If x [n] = 0 for n < 0 and x [n] is bounded when
n→∞ then x [∞] = limz→1(1− z−1)X (z)
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Analyzing LTI Systems with ZT

I ZT of impulse response is H(z) which is named transfer function or
system function.

I Transfer fcn can represent many properties of the system:
I Casuality: h[n] = 0 for n < 0 It is right sided

I ROC of a causal LTI system is out of a circle in z-plane, it includes ∞
I Note that the converse is not always correct
I For a system with rational transfer fcn, causality is equivalent to ROC being

outside of the outermost pole (degree of nominator should not be greater
than degree of denominator)

I Stability: h[n] should be absolute summable  its FT converges
I An LTI system is stable iff its ROC includes unit circle

I A causal system with rational H(z) is stable iff all the poles of H(z) are
inside the unit circle

I DC gain in DT is H(1) and in CT is H(0)
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Geometric Evaluation of FT by Zero/Poles Plot
I Consider X1(z) = z − a

I |X1|: length of X1

I ]X1: angel of X1

I Now consider X2(z) = 1
z−a = 1

X1(z)

I |X2| = 1
|X1(z)|

I ]X2 = −]X1
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I For higher order fcns:

X (z) = M
∏R

i=1(z−βi )∏P
j=1(z−αj )

I |X (z)| = |M|
∏R

i=1 |z−βi |∏P
j=1 |z−αj |

I ]X (z) =

]M +
∑R

i=1](z − βi )−
∑R

j=1 ](z −αj)

I Example:H(z) = 1
1−az−1 ,

|z | > |a|, |a| < 1, a real
I h(t) = anu[n]
I H(e jω) = v1

v2
, |H(e jω)| = 1

|v2|
I at ω = 0, |H(e jω)| = 1

1−a
is max

I 0 < ω < π: ω ↑ |H(e jω)| ↓
I at ω = π, |H(e jω)| = 1

1+a

I ]H(e jω) = ∠v1 − ∠v2 = ω − ∠v2

I at ω = 0,∠H(e jω) = 0
I 0 < ω < π, ω ↑ ∠H(e jω) ↓
I at ω = π,∠H(e jω) = 0
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First Order Systems

I a in DT first order systems plays a similar role of time constant τ in CT
I |a|↓

I |H(e jω)| ↓ at ω = 0
I Impulse response decays more rapidly
I Step response settles more quickly

I In case of having multiple poles, the poles closer to the origin, decay more
rapidly in the impulse response
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Second Order Systems

I Consider a second order system with poles at z1 = re jθ, z2 = re−jθ

I H(z) = z2

(z−z1)(z−z2)
= 1

1−2rcosθz−1+r2z−2 , 0 < r < 1, 0 < θ < π

I h[n] = rnsin(n+1)θ
sinθ u[n]

I ∠H = 2∠v1 − ∠v2 − ∠v3

I Starting from ω = 0 to ω = π:
I At first v2 is decreasing
I v2 is min at ω = θ max |H|
I Then v2 is increasing

I If r is closer to unit, then |H| is greater at poles and change of ∠H is
sharper

I If r is closer to the origin, impulse repose decays more rapidly and step
response settles more quickly.
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Bode Plot of H(jω)
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LTI Systems Description

I
∑N

k=0 aky [n − k] =
∑M

k=0 bkx [n − k]

I
∑N

k=0 akz−kY (z) =
∑M

k=0 bkz−kX (z)

I H(z) = Y (z)
X (z) =

∑M
k=0 bkz−k∑N
k=0 akz−k

I ROC depends on
I placement of poles
I boundary conditions (right sided, left sided, two sided,...)
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I Feedback Interconnection of two LTI systems:
I Y (z) = Y1(z) = X2(z)
I X1(z) = X (z)− Y2(z) = X (z)− H2(z)Y (z)
I Y (z) = H1(z)X1(z) = H1(z)[X (z)− H2(z)Y (z)]
I

Y (z)
X (z) = H(z) = H1(z)

1+H2(z)H1(z)
I ROC: is determined based on roots of 1 + H2(z)H1(z)

Farzaneh Abdollahi Signal and Systems Lecture 9 25/29



Outline Introduction Relation Between LT and ZT Analyzing LTI Systems with ZT Geometric Evaluation Unilateral ZT

Block Diagram Representation for Casual LTI Systems

I We can represent a transfer fcn by different methods:

I Example: H(z) = 1−2z−1

1− 1
4
z−1 = ( 1

1− 1
4
z−1 )(1− 2z−1)
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Unilateral ZT

I It is used to describe casual systems with nonzero initial conditions:
X (z) =

∑∞
0− x [n]z−n = UZ{x [n]}

I If x [n] = 0 for n < 0 then X (z) = X (z)

I Unilateral ZT of x [n] = Bilateral ZT of x [n]u[n]

I If h[n] is impulse response of a casual LTI system then H(z) = H(z)

I ROC is not necessary to be recognized for unilateral ZT since it is always
outside of a circle

I For rational X (z), ROC is outside of the outmost pole
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Similar Properties of Unilateral and Bilateral ZT
I Convolution: Note that for unilateral ZT, If both x1[n] and x2[n] are zero

for t < 0, then X (z) = X1(z)X2(z)

I Time Scaling

I Time Expansion

I Initial and Finite Theorems: they are indeed defined for causal signals

I Differentiating in z domain:
I The main difference between UL and ZT is in time differentiation:

I UZ{x [n − 1]} =
∑∞

0 x [n − 1]z−n = x [−1] +
∑∞

n=1 x [n − 1]z−n =
x [−1] +

∑∞
m=0 x [m]z−m−1

I UZ{x [n − 1]} = x [−1] + z−1X (z)
I UZ{x [n − 2]} = x [−2] + z−1x [−1] + z−2X (z)
I UZ{x [n + 1]} =

∑∞
n=0 x [n + 1]z−n =

∑∞
m=1 x [m]z−m+1±x [0]z

I UZ{x [n + 1]} = zX (z)− zx [0]
I UZ{x [n + 2]} = z2X (z)− z2x [0]− zx [1]
I Follow the same rule for higher orders
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Example

I Consider y [n] + 2y [n − 1] = x [n], where y [−1] = β, x [n] = αu[n]
I Take UZ:

I Y(z) + 2[β + z−1Y(z)] = X (z)

I Y(z) =
−2β

1 + 2z−1︸ ︷︷ ︸
ZIR

+
X (z)

1 + 2z−1︸ ︷︷ ︸
ZSR

I Zero State Response (ZSR): is a response in absence of initial values

I H(z) = Y(z)
X (z)

I Transfer fcn is ZSR
I ZSR: Y1(z) = α

(1+2z−1)(1−z−1)

I Zero Input Response (ZIR): is a response in absence of input (x [n] = 0)
I ZIR: Y2(z) = −2β

1+2z−1

I y2[n] = −2β(−2)nu[n]

I y [n] = y1[n] + y2[n]
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