Signals and Systems Lecture 9: Z Transform

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Winter 2014

Introduction

Relation Between LT and ZT ROC Properties
 The Inverse of ZT
 ZT Properties

Analyzing LTI Systems with ZT

Geometric Evaluation
LTI Systems Description
Unilateral ZT

- Z transform (ZT) is extension of DTFT
- Like CTFT and DTFT, ZT and LT have similarities and differences.
- We had defined $x[n]=z^{n}$ as a basic function for DT LTI systems,s.t. $z^{n} \rightarrow H(z) z^{n}$
- In Fourier transform $z=e^{j \omega}$, in other words, $|z|=1$
- In Z transform $z=r e^{j \omega}$
- By ZT we can analyze wider range of systems comparing to Fourier Transform
- The bilateral ZT is defined:

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty} x[n] z^{-n} \\
\Rightarrow X\left(r e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n]\left(r e^{j \omega}\right)^{-n}=\sum_{n=-\infty}^{\infty}\left\{x[n] r^{-n}\right\} e^{-j \omega n} \\
& =\mathcal{F}\left\{x[n] r^{-n}\right\}
\end{aligned}
$$

Region of Convergence (ROC)

- Note that: $X(z)$ exists only for a specific region of z which is called Region of Convergence (ROC)
- ROC: is the $z=r e^{j \omega}$ by which $x[n] r^{-n}$ converges:
$R O C:\left\{z=r e^{j \omega}\right.$ s.t. $\left.\sum_{n=-\infty}^{\infty}\left|x[n] r^{-n}\right|<\infty\right\}$
- Roc does not depend on ω
- Roc is absolute summability condition of $x[n] r^{-n}$
- If $r=1$, i,e, $z=e^{j \omega} \rightsquigarrow(z)=\mathcal{F}\{x[n]\}$
- ROC is shown in z-plane

Example

- Consider $x[n]=a^{n} u[n]$
- $X(z)=\sum_{n=-\infty}^{\infty} a^{n} u[n] z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}$
- If $|z|>|a| \rightsquigarrow X(z)$ is bounded
$\therefore X(z)=\frac{z}{z-a}, R O C:|z|>|a|$

Example

- Consider $x[n]=-a^{n} u[-n-1]$
- $X(z)=-\sum_{n=-\infty}^{\infty} a^{n} u[-n-1] z^{-n}=1-\sum_{n=0}^{\infty}\left(a^{-1} z\right)^{-n}$
- If $\left|a^{-1} z\right|<1 \rightsquigarrow|z|<|a|, X(z)$ is bounded
$\therefore X(z)=\frac{z}{z-a}, R O C:|z|<|a|$

- In the recent two examples two different signals had similar ZT but with different ROC
- To obtain unique $x[n]$ both $X(z)$ and ROC are required
- If $X(z)=\frac{N(z)}{D(z)}$
- Roots of $N(z)$ zeros of $X(z)$; They make $X(z)$ equal to zero.
- Roots of $D(z)$ poles of $X(z)$; They make $X(z)$ to be unbounded.

Relation Between LT and ZT

- In LT: $x(t) \stackrel{\leftrightarrows}{\mathcal{L}} X(s)=\int_{n=-\infty}^{\infty} x(t) e^{-s t} d t=\mathcal{L}\{x(t)\}$
- Now define $t=n T$: $X(s)=\lim _{T \rightarrow 0} \sum_{n=-\infty}^{\infty} x(n T)\left(e^{s T}\right)^{-n} . T=$ $\lim _{T \rightarrow 0} T \sum_{n=-\infty}^{\infty} x[n]\left(e^{s T}\right)^{-n}$
- In ZT: $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\mathcal{Z}\{x[n]\}$
- \therefore by taking $z=e^{s T}$ ZT is obtained from LT.
- $j \omega$ axis in s-plane is changed to unite circle in z-plane

S-plane

z-Plane	s-Plane
$\|z\|<1$ (insider the unit circle)	$\mathcal{R e}\{s\}<0(\mathrm{LHP})$
special case: $\|z\|=0$	special case: $\mathcal{R e}\{s\}=-\infty$
$\|z\|>1$ (outsider the unit circle)	$\mathcal{R e}\{s\}>0(\mathrm{RHP})$
special case: $\|z\|=\infty$	special case: $\mathcal{R e}\{s\}=\infty$
$\|z\|=c t e$ (a circle)	$\mathcal{R e}\{s\}=c t e$ (a vertical line)

ROC Properties

- ROC of $X(z)$ is a ring in z-plane centered at origin
- ROC does not contain any pole
- If $x[n]$ is of finite duration, then the ROC is the entire z-plane, except possibly $z=0$ and/or $z=\infty$
- $X(z)=\sum_{n=N_{1}}^{N_{2}} x[n] z^{-n}$
- If $N_{1}<0 \rightsquigarrow x[n]$ has nonzero terms for $n<0$, when $|z| \rightarrow \infty$ positive power of z will be unbounded
- If $N_{2}>0 \rightsquigarrow x[n]$ has nonzero terms for $n>0$, when $|z| \rightarrow 0$ negative power of z will be unbounded
- If $N_{1} \geq 0 \rightsquigarrow$ only negative powers of z exist $\rightsquigarrow z=\infty \in$ ROC
- If $N_{2} \leq 0 \rightsquigarrow$ only positive powers of z exist $\rightsquigarrow z=0 \in$ ROC
- Example:

ZT	LT
$\delta[n] \leftrightarrow 1$ ROC: all z	$\delta(t) \leftrightarrow 1$ ROC: all s
$\delta[n-1] \leftrightarrow z^{-1}$ ROC: $z \neq 0$	$\delta(t-T) \leftrightarrow e^{-s T}$ ROC: $\mathcal{R e}\{s\} \neq-\infty$
$\delta[n+1] \leftrightarrow z$ ROC: $z \neq \infty$	$\delta(t+T) \leftrightarrow e^{s T}$ ROC: $\mathcal{R} e\{s\} \neq \infty$

ROC Properties

- If $x[n]$ is a right-sided sequence and if the circle $|z|=r_{0}$ is in the ROC, then all finite values of z for which $|z|>r_{0}$ will also be in the ROC.
- If $x[n]$ is a left-sided sequence and if the circle $|z|=r_{0}$ is in the ROC, then all finite values of z for which $|z|<r_{0}$ will also be in the ROC.
- If $x[n]$ is a two-sided sequence and if the circle $|z|=r_{0}$ is in the ROC, then ROC is a ring containing $|z|=r_{0}$.
- If $X(z)$ is rational
- The ROC is bounded between poles or extends to infinity,
- no poles of $X(s)$ are contained in ROC
- If $x[n]$ is right sided, then ROC is in the out of the outermost pole
- If $x[n]$ is causal and right sided then $z=\infty \in \operatorname{ROC}$
- If $x[n]$ is left sided, then ROC is in the inside of the innermost pole - If $x[n]$ is anticausal and left sided then $z=0 \in \operatorname{ROC}$
- If ROC includes $|z|=1$ axis then $x[n]$ has FT

The Inverse of Z Transform (ZT)

- By considering r fixed, inverse of ZT can be obtained from inverse of FT:
- $x[n] r^{-n}=\frac{1}{2 \pi} \int_{2 \pi} X(\underbrace{r e^{j \omega}}_{z}) e^{j \omega n} d \omega$
- $x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(r e^{j \omega}\right) r^{n} e^{(j \omega) n} d \omega$
- assuming r is fixed $\rightsquigarrow d z=j z d \omega$
$\therefore \quad \therefore[n]=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z$
- Methods to obtain Inverse ZT:

1. If $X(z)$ is rational, we can use expanding the rational algebraic into a linear combination of lower order terms and then one may use

- $X(z)=\frac{A_{i}}{1-a_{i} z^{-1}} \rightsquigarrow x[n]=A_{i} a_{i}^{n} u[n]$ if ROC is out of pole $z=a_{i}$
- $X(z)=\frac{A_{i}}{1-a_{i} z^{-1}} \rightsquigarrow x[n]=-A_{i} a_{i}^{n} u[-n-1]$ if ROC is inside of $z=a_{i}$

Do not forget to consider ROC in obtaining inverse of ZT!

Methods to obtain Inverse ZT:

2. If X is nonrational, use Power series expansion of $X(z)$, then apply $\delta\left[n+n_{0}\right] \Leftrightarrow z^{n_{0}}$

- Example: $X(z)=5 z^{2}-z+3 z^{-3}$
- $x[n]=5 \delta[n+2]-\delta[n+1]+3 \delta[n-3]$

3. If X is rational, power series can be obtained by long division

- Example: $X(z)=\frac{1}{1-a z^{-1}},|z|>|a|$

$$
\begin{array}{rr}
1 & \left\llcorner\frac{1-a z^{-1}}{1+a z^{-1}+\left(a z^{-1}\right)^{2}+\ldots}\right. \\
\frac{-1+a z^{-1}}{a z^{-1}} & \\
-a z^{-1}+a^{2} z^{-2} & \\
\hline
\end{array}
$$

- $x[n]=a^{n} u[n]$

Methods to obtain Inverse ZT:

- Example: $X(z)=\frac{1}{1-a z^{-1}},|z|<|a|$
- $X(z)=-a^{-1} z\left(\frac{1}{1-a^{-1} z}\right)$

$$
\begin{array}{rr}
1 & \left\llcorner\frac{1-a^{-1} z}{1+a^{-1} z+\left(a^{-1} z\right)^{2}+\ldots}\right. \\
\frac{-1+a^{-1} z}{a^{-1} z} & \\
-a^{-1} z+a^{-2} z^{2} &
\end{array}
$$

- $x[n]=-a^{n} u[-n-1]$

ZT Properties

- Linearity: $a x_{1}[n]+b x_{2}[n] \Leftrightarrow a X_{1}(z)+b X_{2}(z)$
- ROC contains: $R_{1} \cap R_{2}$
- If $R_{1} \bigcap R_{2}=\emptyset$ it means that ZT does not exit
- By zeros and poles cancelation ROC can be lager than $R_{1} \bigcap R_{2}$
- Time Shifting: $x\left[n-n_{0}\right] \Leftrightarrow z^{-n_{0}} X(z)$ with $\mathrm{ROC}=R$ (maybe 0 or ∞ is added/omited)
- If $n_{0}>0 \rightsquigarrow z^{-n_{0}}$ may provide poles at origin $\rightsquigarrow 0 \in$ ROC
- If $n_{0}<0 \rightsquigarrow z^{-n_{0}}$ may eliminate ∞ from ROC
- Time Reversal: $x[-n] \Leftrightarrow X\left(\frac{1}{z}\right)$ with $\mathrm{ROC}=\frac{1}{R}$
- Scaling in Z domain: $z_{0}^{n} \times[n] \Leftrightarrow X\left(\frac{z}{z_{0}}\right)$ with $\mathrm{ROC}=\left|z_{0}\right| R$
- If $X(z)$ has zero/poles at $z=a \rightsquigarrow X\left(\frac{z}{z_{0}}\right)$ has zeros/poles at $z=z_{0} a$
- Differentiation in the z-Domain: $n x[n] \Leftrightarrow-z \frac{d X(z)}{d z}$ with $\mathrm{ROC}=R$
- Convolution: $x_{1}[n] * x_{2}[n] \Leftrightarrow X_{1}(z) X_{2}(z)$ with ROC containing $R_{1} \cap R_{2}$

ZT Properties

- Conjugation: $x^{*}[n] \Leftrightarrow X^{*}\left(z^{*}\right)$ with $\mathrm{ROC}=R$
- If $x[n]$ is real
- $X(z)=X^{*}\left(z^{*}\right)$
- If $X(z)$ has zeros/poles at z_{0} it should have zeros/poles at z_{0}^{*} as well
- Initial Value Theorem: If $x[n]=0$ for $n<0$ and $x[0]$ is bounded, then $x[0]=\lim _{z \rightarrow \infty} X(z)$
- $\lim _{z \rightarrow \infty} X(z)=\lim _{z \rightarrow \infty} \sum_{n=0}^{\infty} x[n] z^{-n}=x[0]+\lim _{z \rightarrow \infty} \sum_{n=1}^{\infty} x[n] z^{-n}=$ $x[0]$
- For a casual $x[n]$, if $x[0]$ is bounded it means \# of zeros are less than or equal to \# of poles (This is true for CT as well)
- Final Value Theorem: If $x[n]=0$ for $n<0$ and $x[n]$ is bounded when $n \rightarrow \infty$ then $x[\infty]=\lim _{z \rightarrow 1}\left(1-z^{-1}\right) X(z)$

Analyzing LTI Systems with ZT

- ZT of impulse response is $H(z)$ which is named transfer function or system function.
- Transfer fcn can represent many properties of the system:
- Casuality: $h[n]=0$ for $n<0 \rightsquigarrow I t$ is right sided
- ROC of a causal LTI system is out of a circle in z-plane, it includes ∞
- Note that the converse is not always correct
- For a system with rational transfer fcn, causality is equivalent to ROC being outside of the outermost pole (degree of nominator should not be greater than degree of denominator)
- Stability: $h[n]$ should be absolute summable \rightsquigarrow its FT converges
- An LTI system is stable iff its ROC includes unit circle
- A causal system with rational $H(z)$ is stable iff all the poles of $H(z)$ are inside the unit circle
- DC gain in DT is $H(1)$ and in CT is $H(0)$

Geometric Evaluation of FT by Zero/Poles Plot

- Consider $X_{1}(z)=z-a$

- $\left|X_{1}\right|$: length of X_{1}
- $\measuredangle X_{1}$: angel of X_{1}
- Now consider $X_{2}(z)=\frac{1}{z-a}=\frac{1}{X_{1}(z)}$
- $\left|X_{2}\right|=\frac{1}{\left|X_{1}(z)\right|}$
- $\measuredangle X_{2}=-\measuredangle X_{1}$
- For higher order fcns:

$$
\begin{aligned}
& X(z)=M \frac{\prod_{i=1}^{R}\left(z-\beta_{i}\right)}{\prod_{j=1}^{P}\left(z-\alpha_{j}\right)} \\
&|X(z)|=|M| \frac{\prod_{i=1}^{R}\left|z-\beta_{i}\right|}{\prod_{j=1}^{p}\left|z-\alpha_{j}\right|} \\
& \measuredangle X(z)= \\
& \quad \measuredangle M+\sum_{i=1}^{R} \measuredangle\left(z-\beta_{i}\right)-\sum_{j=1}^{R} \measuredangle\left(z-\alpha_{j}\right)
\end{aligned}
$$

- Example: $H(z)=\frac{1}{1-a z^{-1}}$,

$$
\begin{aligned}
|z| & >|a|,|a|<1, a \text { real } \\
& \\
& h(t)=a^{n} u[n]
\end{aligned}
$$

$$
-H\left(e^{j \omega}\right)=\frac{v_{1}}{v_{2}},\left|H\left(e^{j \omega}\right)\right|=\frac{1}{\left|v_{2}\right|}
$$

- at $\omega=0,\left|H\left(e^{j \omega}\right)\right|=\frac{1}{1-a}$ is max
- $0<\omega<\pi: \omega \uparrow \rightsquigarrow\left|H\left(e^{j \omega}\right)\right| \downarrow$
- at $\omega=\pi,\left|H\left(e^{j \omega}\right)\right|=\frac{1}{1+a}$
- $\measuredangle H\left(e^{j \omega}\right)=\angle v_{1}-\angle v_{2}=\omega-\angle v_{2}$
- at $\omega=0, \angle H\left(e^{j \omega}\right)=0$
- $0<\omega<\pi, \omega \uparrow \rightsquigarrow \angle H\left(e^{j \omega}\right) \downarrow$
- at $\omega=\pi, \angle H\left(e^{j \omega}\right)=0$

First Order Systems

- a in DT first order systems plays a similar role of time constant τ in CT
- $|a| \downarrow$
- $\left|H\left(e^{j \omega}\right)\right| \downarrow$ at $\omega=0$
- Impulse response decays more rapidly
- Step response settles more quickly
- In case of having multiple poles, the poles closer to the origin, decay more rapidly in the impulse response

Second Order Systems

- Consider a second order system with poles at $z_{1}=r e^{j \theta}, z_{2}=r e^{-j \theta}$
- $H(z)=\frac{z^{2}}{\left(z-z_{1}\right)\left(z-z_{2}\right)}=\frac{1}{1-2 \operatorname{rcos} \theta z^{-1}+r^{2} z^{-2}}, 0<r<1,0<\theta<\pi$
- $h[n]=\frac{r^{n} \sin (n+1) \theta}{\sin \theta} u[n]$
- $\angle H=2 \angle v_{1}-\angle v_{2}-\angle v_{3}$
- Starting from $\omega=0$ to $\omega=\pi$:
- At first v_{2} is decreasing
- v_{2} is min at $\omega=\theta \rightsquigarrow \max |H|$
- Then v_{2} is increasing
- If r is closer to unit, then $|H|$ is greater at poles and change of $\angle H$ is sharper
- If r is closer to the origin, impulse repose decays more rapidly and step response settles more quickly.

Bode Plot of $H(j \omega)$

(a)

(c)

LTI Systems Description

- $\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]$
- $\sum_{k=0}^{N} a_{k} z^{-k} Y(z)=\sum_{k=0}^{M} b_{k} z^{-k} X(z)$
- $H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}$
- ROC depends on
- placement of poles
- boundary conditions (right sided, left sided, two sided,...)
- Feedback Interconnection of two LTI systems:
- $Y(z)=Y_{1}(z)=X_{2}(z)$
- $X_{1}(z)=X(z)-Y_{2}(z)=X(z)-H_{2}(z) Y(z)$
- $Y(z)=H_{1}(z) X_{1}(z)=H_{1}(z)\left[X(z)-H_{2}(z) Y(z)\right]$
- $\frac{Y(z)}{X(z)}=H(z)=\frac{H_{1}(z)}{1+H_{2}(z) H_{1}(z)}$
- ROC: is determined based on roots of $1+H_{2}(z) H_{1}(z)$

Block Diagram Representation for Casual LTI Systems

- We can represent a transfer fcn by different methods:
- Example: $H(z)=\frac{1-2 z^{-1}}{1-\frac{1}{4} z^{-1}}=\left(\frac{1}{1-\frac{1}{4} z^{-1}}\right)\left(1-2 z^{-1}\right)$

Unilateral ZT

- It is used to describe casual systems with nonzero initial conditions:
$\mathcal{X}(z)=\sum_{0^{-}}^{\infty} x[n] z^{-n}=\mathcal{U Z}\{x[n]\}$
- If $x[n]=0$ for $n<0$ then $\mathcal{X}(z)=X(z)$
- Unilateral ZT of $x[n]=$ Bilateral ZT of $x[n] u[n]$
- If $h[n]$ is impulse response of a casual LTI system then $H(z)=\mathcal{H}(z)$
- ROC is not necessary to be recognized for unilateral ZT since it is always outside of a circle
- For rational $\mathcal{X}(z)$, ROC is outside of the outmost pole

Similar Properties of Unilateral and Bilateral ZT

- Convolution: Note that for unilateral ZT, If both $x_{1}[n]$ and $x_{2}[n]$ are zero for $t<0$, then $\mathcal{X}(z)=\mathcal{X}_{1}(z) \mathcal{X}_{2}(z)$
- Time Scaling
- Time Expansion
- Initial and Finite Theorems: they are indeed defined for causal signals
- Differentiating in z domain:
- The main difference between $\mathcal{U L}$ and $Z T$ is in time differentiation:
- $\mathcal{U Z}\{x[n-1]\}=\sum_{0}^{\infty} x[n-1] z^{-n}=x[-1]+\sum_{n=1}^{\infty} x[n-1] z^{-n}=$ $x[-1]+\sum_{m=0}^{\infty} x[m] z^{-m-1}$
- $\mathcal{U Z}\{x[n-1]\}=x[-1]+z^{-1} \mathcal{X}(z)$
- $\mathcal{U Z}\{x[n-2]\}=x[-2]+z^{-1} x[-1]+z^{-2} \mathcal{X}(z)$
- $\mathcal{U Z}\{x[n+1]\}=\sum_{n=0}^{\infty} x[n+1] z^{-n}=\sum_{m=1}^{\infty} x[m] z^{-m+1} \pm x[0] z$
- $\mathcal{U Z}\{x[n+1]\}=z \mathcal{X}(z)-z x[0]$
- $\mathcal{U Z}\{x[n+2]\}=z^{2} \mathcal{X}(z)-z^{2} x[0]-z x[1]$
- Follow the same rule for higher orders

Example

- Consider $y[n]+2 y[n-1]=x[n]$, where $y[-1]=\beta, x[n]=\alpha u[n]$
- Take $\mathcal{U Z}$:
- $\mathcal{Y}(z)+2\left[\beta+z^{-1} \mathcal{Y}(z)\right]=\mathcal{X}(z)$
- $\mathcal{Y}(z)=\underbrace{\frac{-2 \beta}{1+2 z^{-1}}}_{\text {ZIR }}+\underbrace{\frac{\mathcal{X}(z)}{1+2 z^{-1}}}_{\text {ZSR }}$
- Zero State Response (ZSR): is a response in absence of initial values
- $\mathcal{H}(z)=\frac{\mathcal{Y}(z)}{\mathcal{X}(z)}$
- Transfer fcn is ZSR
- ZSR: $\mathcal{Y}_{1}(z)=\frac{\alpha}{\left(1+2 z^{-1}\right)\left(1-z^{-1}\right)}$
- Zero Input Response (ZIR): is a response in absence of input ($x[n]=0$)
- ZIR: $\mathcal{Y}_{2}(z)=\frac{-2 \beta}{1+2 z^{-1}}$
- $y_{2}[n]=-2 \beta(-2)^{n} u[n]$
- $y[n]=y_{1}[n]+y_{2}[n]$

