

1/22

Computational Intelligence Lecture 10:Fuzzy Relations

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

Classical Relation

Fuzzy Relation
Projection
Cylindrical Extension
Cartesian Product of Fuzzy Sets
Composition

Extension Principle

- ▶ Cartesian Product $(U_1 \times U_2 \times ... \times U_n)$:
 - U_i t = 1, ..., n: n arbitrary classical sets.
 - ▶ $U_1 \times U_2 \times ... \times U_n$ is the set of all ordered *n*-tuples $(u_1, ..., u_n)$: $U_1 \times U_2 \times ... \times U_n = \{(u_1, u_2, ..., u_n) | u_1 \in U_1, u_2 \in U_2, ..., u_n \in U_n\}$
- ▶ For binary relation (n = 2): $U_1 \times U_2 = \{(u_1, u_2) | u_1 \in U_1, u_2 \in U_2\}$
- $U_1 \neq U_2 \longrightarrow U_1 \times U_2 \neq U_2 \times U_1.$
- ► A relation among sets U_1, U_2, \ldots, U_n ($Q(U_1, U_2, \ldots, U_n)$):
 - ▶ a subset of the Cartesian product $U_1 \times U_2 \times ... \times U_n$: $Q(U_1, U_2, ..., U_n) \subset U_1 \times U_2 \times ... \times U_n$
- ▶ a relation is itself a set →, all of the basic set operations can be applied to it without modification.
- It can be represented by membership function: $\mu_Q(u_1,\ldots,u_n) = \begin{cases} 1 & \text{if } (u_1,\ldots,u_n) \in Q(U_1,U_2,\ldots,U_n) \\ 0 & \text{otherwise} \end{cases}$
- ▶ The values of the membership function μ_Q can be shown by a relational matrix.

arzaneh Abdollahi Computational Intelligence Lecture 10 3_{j}

Example:

- $V = \{1, 2, 3\}, V = \{a, b\}$
- $V \times V = (1, a), (1, b), (2, a), (2, b), (3, a), (3, b)$
- ▶ Let Q(U, V) be a relation named "the first element is not smaller than 2"

$$Q(U,V) = \{(2,a),(2,b),(3,a),(3,b)\}$$

	$U \setminus V$	a	b
ļ	1	0	0
J	2	1	1
	3	1	1

Fuzzy Relation

- ► A classical relation represents a crisp (zero-one) relationship among sets.
- ▶ But, for certain relationships, it is difficult to express the relation by a zero-one assessment
- ▶ In fuzzy relation the degree the strength of the relation is defined by different membership on the unit interval [0, 1].
- ▶ A fuzzy relation is a fuzzy set defined in the Cartesian product of crisp sets U_1, U_2, \dots, U_n

$$Q = \{((u_1, u_2, ..., u_n), \mu_Q(u_1, u_2, ..., u_n)) | (u_1, u_2, ..., u_n) \in U_1 \times U_2 \times ..., \times U_n\}, \quad \mu_Q : U_1 \times U_2 \times ..., \times U_n \to [0, 1]$$

- Example: Fuzzy relation: "x is approximately equal to y" (AE).
 - IJ = V = R
 - $\mu_{AE}(x,y) = e^{-(x-y)^2}$
 - ► This membership function is not unique

Fuzzy Relation

Computational Intelligence Lecture 10

Example: Dormitory based on Distance of cities.

- \lor $V = \{ Tehran, Tabriz, Karaj, Qom \}, U = \{ Tehran, Esfahan \}$
- ► Relation: "very far"
- use number between 0 and 1 for degree of relation

U/V	Tehran	Tabriz	Karaj	Qom
Tehran	0	0.9	0.1	0.3
Esfahan	0.7	0.95	0.8	0.5

Projection



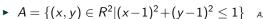
Farzaneh Abdollahi

Computational Intelligence

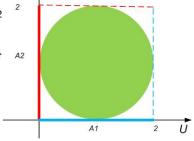
Lecture 10

Projection

Example: A crisp relation in $V \times U = R^2$



- ▶ A_1 the projection of A on U: $[0,2] \subset U$
- A_2 the projection of A on $V: [0,2] \subset V$



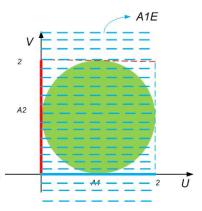
Projection of Fuzzy Sets

- \triangleright Q: a fuzzy relation in $U_1 \times \ldots \times U_n$
- \blacktriangleright $\{i_1,\ldots,i_k\}$ a subsequence of $\{1,2,\ldots,n\}$

- ▶ The projection of Q on $U_{i_1} \times ... \times U_{i_k}$ is a fuzzy relation Q_P in $U_{i_1} \times \ldots \times U_{i_L}$ s.t.: $\mu_{Q_p}(u_{i_1},\ldots,u_{i_k}) = \underline{\mathsf{max}}_{u_{i_1}\in U_{i_1},\ldots,u_{i(n-k)}\in U_{i(n-k)}}\mu_Q(u_1,\ldots,u_n)$
- $\blacktriangleright \{u_{i_1}, \ldots, u_{i(n-k)}\}$ is the complement of $\{u_{i_1}, \ldots, u_{i_k}\}$
- ▶ For binary fuzzy relation $U \times V$:
 - Q_1 projection in U: $\mu_{Q_1}(x) = \max_{y \in V} \mu_Q(x, y)$
- **Example:** Recall the "AE" example
 - ▶ Projection in *U*: $AE_1 = \int_U \max_{v \in V} e^{-(x-y)^2}/x = \int_U 1/x$
 - ▶ Projection in V: $AE_2 = \int_V \max_{x \in U} e^{-(x-y)^2}/y = \int_V 1/y$
- **Example:** Recall the "very far" example
 - ▶ Q_1 : projection on u: $Q_1 = 0.9/Tehran + 0.95/Esfahan$
 - \triangleright Q_2 : projection on V:

Cylindrical Extension

- ► Extending the projection of fuzzy cylindrically.
- ► Example: Recall the circle example
 - A_{1E} Cylindric extention of A_1 to $U \times V = R^2$
 - $A_{1E} = [0,1] \times (-\infty,\infty) \subset \mathbb{R}^2$
- ► The projection constrains a fuzzy relation to a subspace
- ► The cylindric extension extends a fuzzy relation (or fuzzy set) from a subspace to the whole space.



- (ロ) (団) (巨) (巨) (E) り(()

- ▶ Let Q_p be a fuzzy relation in $U_{i_1} \times ... \times U_{i_k}$ and $\{i_1, ..., i_k\}$ is a subsequence of $\{1, 2, ..., n\}$, then the cylindric extension of Q_p to $U_1 \times \ldots \times U_n$ is a fuzzy relation Q_{pE} in $U_1 \times \ldots \times U_n$ $\mu_{Q_{nF}}(u_1,\ldots,u_n)=\mu_{Q_n}(u_{i_1},\ldots,u_{i_k})$
- ► For binary set:
 - ► U × V.
 - \triangleright Q_1 a fuzzy set in U
 - Q_{1F} the cylindric extension to $U \times V$

- $\mu_{O_1 F}(x, y) = \mu_{O_1}(x)$
- **Example:** Recall the "AE" example
 - $\blacktriangleright A_{E_{1E}} = \int_{U \times V} 1/(x, y) = U \times V$
 - $\blacktriangleright A_{E_{2E}} = \int_{U \times V} 1/(x, y) = U \times V$

- ► Example: Recall the "very far" example
 - Q_{1E} : cylindrical ext. of Q_1 to $U \times V$: $Q_{1E} =$

$$\begin{array}{l} 0.9/(\textit{Tehran}, \textit{Tehran}) + 0.9(\textit{Tabriz}, \textit{Tehran}) + 0.9/(\textit{Karaj}, \textit{Tehran}) + \\ 0.9/(\textit{Qom}, \textit{Tehran}) + 0.95/(\textit{Tehran}, \textit{Esfahan}), 0.95/(\textit{Tabriz}, \textit{Esfahan}) + \\ 0.95/(\textit{Karaj}, \textit{Esfahan}) + 0.95/(\textit{Qom}, \textit{Esfahan}) \end{array}$$

• Q_{1E} : cylindrical ext. of Q_2 to $U \times V$:

$$Q_{2E} =$$

$$\begin{array}{l} 0.7/(\textit{Tehran}, \textit{Tehran}) + 0.7(\textit{Tehran}, \textit{Esfahn}) + 0.95/(\textit{Tabriz}, \textit{Tehran}) + \\ 0.95/(\textit{Tabriz}, \textit{Esfahan}) + 0.8/(\textit{Karaj}, \textit{Tehran}), 0.8/(\textit{Karaj}, \textit{Esfahan}) + \\ 0.5/(\textit{Qom}, \textit{Tehran}) + 0.5/(\textit{Qom}, \textit{Esfahan}) \end{array}$$

13/22

Cartesian Product of Fuzzy Sets

 \blacktriangleright Let $A_1, ..., A_n$ be fuzzy sets in $U_1, ..., U_n$ respectively. The Cartesian product of $A_1, ..., A_n$ denoted by $A_1 \times ... \times A_n$, is a fuzzy relation in $U_1 \times ... \times U_n$: $\mu_{A_1 \times ... \times A_n}(u_1, \ldots, u_n) =$

$$\mu_{A_1} \times \ldots \times A_n (u_1, \ldots, u_n) = \mu_{A_1} (u_1) * \ldots * \mu_{A_n} (u_n)$$

- where * represents any t-norm operator.
- ▶ Lemma: If Q is a fuzzy relation in $U_1 \times ... \times U_n$ and $Q_1, ..., Q_n$ are its projections on $U_1, ..., U_n$, respectively, then $Q \subset Q_1 \times \ldots \times Q_n$

where we use "min" for the t-norm

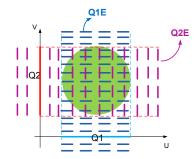
Cartesian Product of Fuzzy Sets

 \blacktriangleright Let $A_1, ..., A_n$ be fuzzy sets in $U_1, ..., U_n$ respectively. The Cartesian product of $A_1, ..., A_n$ denoted by $A_1 \times ... \times A_n$, is a fuzzy relation in $U_1 \times ... \times U_n$: $\mu_{A_1 \times \dots \times A_n}(u_1, \dots, u_n) =$

$$\mu_{A_1 \times ... \times A_n}(u_1, \ldots, u_n) = \mu_{A_1}(u_1) * \ldots * \mu_{A_n}(u_n)$$

- where * represents any t-norm operator.
- ▶ Lemma: If Q is a fuzzy relation in $U_1 \times ... \times U_n$ and $Q_1, ..., Q_n$ are its projections on $U_1, ..., U_n$, respectively, then

$$Q \subset Q_1 \times \ldots \times Q_n$$



where we use "min" for the t-norm

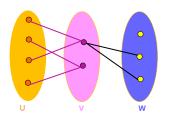
13/22

Composition

- ▶ P(U, V) and Q(V, W): two crisp binary relations that share a common set V.
- ▶ The composition of P and Q, (PoQ), is a relation in $U \times W$ s.t. $(x,z) \in Q$ iff there exists at least one $y \in V$ s.t. $(x,y) \in P$ and $(y,z) \in Q$.
- ▶ Lemma: PoQ is the composition of P(U, V) and Q(V, W) iff

$$\mu_{PoQ}(x,z) = \max t[\mu_P(x,y), \mu_Q(y,z)]$$
 (1)

for any $(x,z) \in U \times W$, where t is any t-norm.



► Proof:

- ▶ If *PoQ* is the composition:
 - \blacktriangleright $(x,z) \in PoQ \longrightarrow \exists y \in V \text{ s.t. } \mu_P(x,y) = 1 \& \mu_O(y,z) = 1$
 - $\mu_{PoO}(x,z) = 1 = \max_{y \in V} t[\mu_P(x,y), \mu_O(y,z)]$
 - ▶ If $(x,z) \notin PoQ \rightarrow for any y \in V, \mu_P(x,y) = 0 or \mu_Q(y,z) = 0$
 - $\mu_{P_0Q}(x,z) = 0 = \max_{y \in V} t[\mu_P(x,y), \mu_Q(y,z)].$
 - ► Ea. (1) is true.
- Conversely, if the Eq. (1) is true:

- \blacktriangleright $(x,z) \in PoQ \longrightarrow \max_{y \in V} t[\mu_P(x,y), \mu_Q(y,z)] = 1$
- ▶ ∴ there exists at least one $y \in V$ s.t. $\mu_P(x,y) = \mu_Q(Y,z) = 1$ (Axiom t1)
- For $(x, z) \notin PoQ \rightarrow \max_{y \in V} [\mu_P(x, y), \mu_Q(y, z)] = 0$
- \blacktriangleright $\therefore \nexists y \in V$ s.t. $\mu_P(x,y) = \mu_Q(y,z) = 1$.
- \triangleright : PoQ is the composition

Fuzzy Composition

- Composition for fuzzy relations is defined similar to crisp relations
- Based on different definition of t-norm different composition is obtained.
- ► The two most popular compositions:
 - ▶ Max-Min: of fuzzy relations P(U, V) and Q(V, W) is a fuzzy relation PoQ in $U \times W$ s.t. $\mu_{PoQ}(x,z) = \max_{y \in V} \min[\mu_P(x,y), \mu_O(y,z)]$
 - It uses the min for t-norm
 - where $(x, z) \in U \times W$.
 - \blacktriangleright Max-Product: of fuzzy relations P(U, V) and Q(V, W) is a fuzzy relation PoQ in $U \times W$ s.t. $\mu_{PoQ}(x,z) = \max_{y \in V} [\mu_P(x,y).\mu_Q(y,z)]$ where $(x, z) \in U \times W$.
 - ▶ It uses algebraic product for t-norm

Example: Recall Dormitory example

- $V = \{Tehran, Tabriz, Karaj, Qom\}, U = \{Tehran, Esfahan\}, W = \{Boomehen, Kashan, Ardebil\}$
- ightharpoonup P(U,V) "very far"

U/V	Tehran	Tabriz	Karaj	Qom
Tehran	0	0.9	0.1	0.3
Esfahan	0.7	0.95	8.0	0.5

Example: Recall Dormitory example

 \lor $V = \{Tehran, Tabriz, Karaj, Qom\}, U = \{Tehran, Esfahan\}, W = \{Tehran, Tabriz, Karaj, Qom\}, U = \{Tehran, Tabriz, Caraj, Qom\}, U = \{Tehran, Tabriz, Qom\}, U = \{Tehran, Tabriz, Caraj, Qom\}, U = \{Tehran, Tabriz, Qom\}, U = \{Tehran, Qom\}, U = \{Tehran$ {Boomehen, Kashan, Ardebil}

 \triangleright P(U, V) "very far"

U/V	Tehran	Tabriz	Karaj	Qom
Tehran	0	0.9	0.1	0.3
Esfahan	0.7	0.95	0.8	0.5

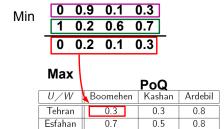
 \triangleright Q(V, W):"very near"

V/W	Boomehen	Kashan	Ardebil
Tehran	1	0.4	0.1
Tabriz	0.2	0	0.8
Karaj	0.6	0.3	0.1
Qom	0.7	0.95	0

ightharpoonup PoQ(U, W) using Max-min

Р							
U/V	Tehran	Tabriz	Karaj	Qom			
Tehran	0	0.9	0.1	0.3			
Esfahan	0.7	0.95	0.8	0.5			

	Q	!	
$V \setminus W$	Boomehen	Kashan	Ardebil
Tehran	1	0.4	0.1
Tabriz	0.2	0	0.8
Karaj	0.6	0.3	0.1
Qom	0.7	0.95	0



ightharpoonup PoQ(U, W) using Max-Product

Р							
U/V	Tehran	Tabriz	Karaj	Qom			
Tehran	0	0.9	0.1	0.3			
Esfahan	0.7	0.95	0.8	0.5			

	Q		
$V \setminus W$	Boomehen	Kashan	Ardebil
Tehran	1	0.4	0.1
Tabriz	0.2	0	0.8
Karaj	0.6	0.3	0.1
Qom	0.7	0.95	0

х	[0 0).9	0.1		0.3]	
^	[1 0).2	0.6	(0.7]	
	T	0 0.	18	0.06	0	.21		
		lov						
Max					Ро	Q		
	U	/W	Bo	oomehe	n	Kas	han	Ardebil
	Te	ehran		0.21		0.0	.285	0.72
	Es	fahan		0.7		0.4	175	0.76

- ▶ The relational matrix for the fuzzy composition *PoQ* can be computed according to the following method:
 - For max-min composition
 - ▶ write out each element in the matrix product *PQ*, But treat:
 - each multiplication as a min operation
 - each addition as a max operation
 - For max-product composition,
 - write out each element in the matrix product PQ, but treat
 - each addition as a max operation.

Extension Principle

- ▶ Objective: the domain of a function be extended from crisp points in U to fuzzy sets in U
- ightharpoonup f: U o V a function from crisp set U to crisp set V.
- ► A: a fuzzy set U
- ightharpoonup B = f(A) a fuzzy set in V
 - ▶ If f is an one-to-one mapping $\mu_B(y) = \mu_A[f^{-1}(y)], y \in V$
 - where $f[f^{-1}(y)] = y$
- ▶ If f is not one-by-one what should we do ?:(
- ► Example: $f(x_1) = f(x_2) = y$, $x_1 \neq x_2 \rightsquigarrow \mu_A(x_1) \neq \mu_A(x_2)$
 - ▶ Two different values is obtained for $\mu_B(y)$

Extension Principle

- ► Extension Principle: $\mu_B(y) = \max_{x \in f^{-1}(y)} \mu_A(x), y \in V$
 - $f^{-1}(y)$: set of all points $x \in U$ s.t. f(x) = y
- ► Example $U = \{1, ..., 10\}, x \in U, f(x) = x^2 \in V = \{1, ..., 100\}$
- ► Fuzzy set: " small" = 1/1 + 1/2 + 0.8/3 + 0.6/4 + 0.4/5
- ightharpoonup "small² = 1/1 + 1/4 + 0.8/9 + 0.6/16 + 0.4/25