

Computational Intelligence Lecture 10: Fuzzy Control II

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

イヨトイヨト

Fuzzy Control

Nonadaptive Fuzzy Control Trial-and-Error Approach

PID Controller Using Fuzzy Systems Fuzzy System for PID

Comparing Fuzzy Control with Conventional Control

► Similarities:

- They must address the same issues that are common to any control problem, e.g., stability and performance.
- ► The mathematical tools used to analyze the designed control systems are similar, because they are studying the same issues (stability, convergence, etc.) for the same kind of systems.

Difference

- In conventional control mathematical model of the process and controllers are available. In fuzzy control, the controllers are designed using rules based on heuristics and human expertise
 - Advanced fuzzy controllers may use both heuristics and mathematical models

(同) (ヨ) (ヨ)

Fuzzy Control

Fuzzy control is classified into

- Nonadaptive Fuzzy Control
 - ► the structure and parameters of the fuzzy controller are fixed
- Adaptive Fuzzy Control
 - The structure or/and parameters of the fuzzy controller change during realtime operation.
- ► Nonadaptive fuzzy control is simpler than adaptive fuzzy control
- Nonadaptive fuzzy control requires more knowledge of the process model or heuristic rules.
- Adaptive requires less information and may perform better at the cost of more complexity.

A E > A E >

Assumption is Fuzzy Control Design

- The plant is observable and controllable: state, input, and output variables are usually available for observation and measurement or computation.
- There exists a body of knowledge comprised of a set of linguistic rules, engineering common sense, intuition, or a set of inputoutput measurements data from which rules can be extracted
- A solution exists.
- The control engineer is looking for a good enough solution, not necessarily the optimum one.
- ► The controller will be designed within an acceptable range of precision.

A E > A E >

The Trial-and-Error Approach

- By using experience-based knowledge (e.g., an operating manual) and by asking the domain 'experts to answer a carefully organized questionnaire, IF-THEN rules are provided and fuzzy controllers are constructed
- Then the fuzzy controllers are tested in the real system and if the performance is not satisfactory, the rules are fine-tuned or redesigned in a number of trial-and-error cycles until the desired performance is achieved.

The Trial-and-Error Approach

- 1. Analyze the real system to choose state and control variables and outputs.
 - The state variables:
 - characterize the key features of the system
 - The control variables (inputs of the plant):
 - influence the states of the system.
 - are the outputs of the fuzzy controller.
- 2. Partition the universe of discourse or the interval spanned by each variable into a number of fuzzy subsets, assigning each a linguistic label
 - Assign or determine a membership function for each fuzzy subset.
 - ➤ You may require to choose appropriate scaling factors for the input and output variables in order to normalize the variables to the [0, 1] or the [-1, 1] interval.

A E > A E >

The Trial-and-Error Approach

- 3. Derive IF-THEN rules that relate the state variables with the control variables
 - The rules are defined using
 - > An introspective verbalization of human expertise like operating manual
 - ▶ the information obtained from a filled carefully organized questionnaire
- 4. Design the fuzzy system and test the closed-loop system with this fuzzy system as the controller
 - If the performance is not satisfactory, fine-tune or redesign the fuzzy controller by trial and error
 - repeat the procedure until achieving the desired performance

A E > A E >

Example: AIRCRAFT LANDING CONTROL

- The desired profile is shown in Fig.
- The downward velocity is proportional to the square of the height.
 - At higher altitudes, a large downward velocity is desired.
 - As the height (altitude) diminishes, the desired downward velocity gets smaller and smaller.
 - In the limit, as the height tends to be zero, the downward velocity also goes to zero.
- The states:
 - h:height above ground
 - v: vertical velocity of the aircraft
- The control signal
 - ► f: force

- Mass *m* moving with velocity *v* has momentum p = mv.
- If a force f is applied over a time interval $\Delta t \rightsquigarrow \Delta v = f \Delta t / m$
- $\Delta t = 1.0(s)$ and $m = 1.0lb \rightarrow \Delta v = f$
- $\blacktriangleright \therefore v_{i+1} = v_i + f_i, \quad h_{i+1} = h_i + v_i \Delta t$
 - ► *v*_{*i*+1}: new velocity, *v*_{*i*}: old velocity
 - h_{i+1} new height, h_i old height

・ 同 ト ・ ヨ ト ・ ヨ ト

<ロ> <同> <同> < 同> < 同>

Ξ.

Membership values for control force

	Output force												
	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
Up large (UL)	0	0	0	0	0	0	0	0	0	0.5	1	1	1
Up small (US)	0	0	0	0	0	0	0	0.5	1	0.5	0	0	0
Zero (Z)	0	0	0	0	0	0.5	1	0.5	0	0	0	0	0
Down small (DS)	0	0	0	0.5	1	0.5	0	0	0	0	0	0	0
Down large (DL)	1	1	1	0.5	0	0	0	0	0	0	0	0	0

<ロ> <同> <同> < 同> < 同>

2

The rules are summarized in the table

Height	Velocity								
	DL	DS	Zero	US	UL				
L	Z	DS	DL	DL	DL				
М	US	Ζ	DS	DL	DL				
S	UL	US	Z	DS	DL				
NZ	UL	UL	Z	DS	DS				

Let us use

- singleton fuzzifier,
- min inf. eng.
- centroid defuzzifier

3

∃ ► < ∃ ►</p>

- 4 A b

- ▶ Initial height, h_0 : 1000ft; Initial velocity, v_0 : -20ft/s
- h = 1 for L and 0.6 for M
- v = 1 for DL
- ► \therefore L(1.0) AND $DL(1.0) \Rightarrow Z$ M(0.6) AND $DL(1.0) \Rightarrow US$
- Using defuzzifier: $f_0 = 5.8 lb$

15/24

•
$$h_1 = h_0 + v_0 = 980 ft;$$

- $v_1 = v_0 + f_0 = -14.2 ft/s$
- ▶ h₁ = 0.96 for L and 0.64 for M
- $v_1 = 0.58$ for *DS* and 0.42 for *DL*

 $L(0.96) \text{ AND } DS(0.58) \Rightarrow DS$ $L(0.96) \text{ AND } DL(0.42) \Rightarrow Z$ $M(0.64) \text{ AND } DS(0.58) \Rightarrow Z$ $M(0.64) \text{ AND } DL(0.42) \Rightarrow US$

• Using defuzzifier: $f_1 = -0.5lb$

16/24

•
$$h_2 = h_1 + v_1 = 965.8 ft;$$

- $v_2 = v_1 + f_1 = -14.7 ft/s$
- ▶ h = 0.93 for L and 0.67 for M
- ▶ *v* = 0.57 for *DS* and 0.43 for *DL*

 $L(0.93) \text{ AND } DL(0.43) \Rightarrow Z$ $L(0.93) \text{ AND } DS(0.57) \Rightarrow DS$ $M(0.67) \text{ AND } DL(0.43) \Rightarrow US$ $M(0.67) \text{ AND } DS(0.57) \Rightarrow Z$

• Using defuzzifier: $f_2 = -0.4lb$

Summary of four-cycle simulation results

	Cycle 0	Cycle 1	Cycle 2	Cycle 3	Cycle 4
Height, ft	1000.0	980.0	965.8	951.1	936.0
Velocity, ft/s	-20	-14.2	-14.7	-15.1	-14.8
Control force	5.8	-0.5	-0.4	0.3	

イロン イロン イヨン イヨン

2

17/24

18/24

PID Controller

 The transfer function of a PID controller: G(s) = K_p + K_i/s + K_ds

 ∴u(t) = K_p[e(t) + ¹/_{T_i} ∫₀^t e(r)dr + T_d ė(t)]

$$\bullet \quad T_i = K_p/K_i, \ T_d = K_d/K_p$$

- The PID gains are usually turned by experienced human experts based on some "rule of thumb."
- By using fuzzy systems, we are trying to adjust the PID gains online

Fuzzy System for PID [1]

Assume the range of PID gains:

•
$$K_p \in [K_{pmax}, K_{pmin}] \subset R$$

- $K_d \in [K_{dmax}, K_{dmin}] \subset R$
- ► Normalize K_p and K_d to the range of [0, 1]

•
$$K_{p'} = \frac{K_p - K_{pmin}}{K_{pmax} - K_{pmin}}$$

• $K_{d'} = \frac{K_d - K_{dmin}}{K_{dmax} - K_{dmin}}$

- Assume $T_i = \alpha T_d \rightsquigarrow K_i = \frac{K_p}{\alpha T_d} = \frac{K_p^2}{\alpha K_d}$
- Inputs of fuzzy system: $e(t), \dot{e}(t)$
- Output of fuzzy system: $K_{p'}, K_{d'}, \alpha$

伺下 イヨト イヨト

- Domain of interest:
 - $e(t) \in [e_{M}^{-}, e_{M}^{+}]$ • $\dot{e}(t) \in [e_{Md}^{-}, e_{Md}^{+}]$
- Mem. fcn for e(t) and $\dot{e}(t)$

3

- T

Derive the rules experimentally based on the typical step response

- For e.g., Around b₁, a small control signal requires to avoid a large overshoot ∴:
 - ► Small K_{p'}
 - ► Large K_{d'}
 - small α
- ▶ IF e(t) is ZO and $\dot{e}(t)$ is NB, THEN $K_{p'}$ is Small, $K_{d'}$ is Big, α is B
- ▶ Find the rules for other points.

Outline Fuzzy Control Nonadaptive Fuzzy Control PID Controller Using Fuzzy Systems

		ė(t)								
		NB	NM	NS	zo	PS	PM	PB		
	NB	в	в	в	в	В	в	в		
	NM	s	в	в	в	в	в	s		
	NS	S	S	в	в	в	S	s		
e(t)	zo	s	S	S	в	S	S	S		
	PS	S	S	в	в	в	S	S		
	PM	S	В	в	В	в	В	s		
	PB	в	в	в	в	в	в	в		

▶ Rules for $K_{d'}$

			-		ė(t)			
		NB	NM	NS	zo	PS	PM	PB
	NB	S	S	s	S	S	s	S
	NM	в	в	S	S	S	в	В
	NS	в	в	в	S	в	В	В
e(t)	zo	в	в	в	в	в	В	в
	PS	в	в	в	S	в	В	В
	PM	в	в	s	S	S	в	в
	PB	S	S	S	S	S	S	S

Farzaneh Abdollahi

Computational Intelligence

< 由 > < 由 > < 由 > < 由 > <

2

 \blacktriangleright Rules for α

		ė(t)									
17		NB	NM	NS	zo	PS	PM	PB			
	NB	2	2	2	2	2	2	2			
	NM	3	3	2	2	2	3	3			
	NS	4	3	3	2	3	3	4			
e(t)	zo	5	4.	3	3	3	4	5			
e.	PS	4	3	3	2	3	3	4			
	PM	3	3	2	2	2	3	3			
	PB	2	2	2	2	2	2	2			

- ► There are 49 rules for each output
- Consider a fuzzy system with product inference engine, singleton fuzzifier, and center average defuzzifier

$$\begin{split} \kappa_{p'} &= \frac{\sum_{l=1}^{49} \bar{y}_{p}^{l} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))}{\sum_{l=1}^{49} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))} \ \kappa_{d'} &= \frac{\sum_{l=1}^{49} \bar{y}_{d}^{l} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))}{\sum_{l=1}^{49} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))} \\ \alpha(t) &= \frac{\sum_{l=1}^{49} \bar{y}_{\alpha}^{l} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))}{\sum_{l=1}^{49} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))} \end{split}$$

Outline Fuzzy Control Nonadaptive Fuzzy Control PID Controller Using Fuzzy Systems

Z.Y. Zhao, M. Tomizuka, and S. Isaka, "Fuzzy gain scheduling of pid controllers," *IEEE Trans. on Systems, Man, and Cybernetic* vol. 23, no 5, pp. 1392–1398, 1993.

