

Computational Intelligence Lecture 10: Fuzzy Control II

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

TSK Fuzzy System Dynamic TSK Fuzzy System

Closed-Loop Dynamics with Fuzzy Controller

Stability Analysis

Stable Fuzzy Controllers

PID Controller Using Fuzzy Systems Fuzzy System for PID

Takagi-Sugeno-Kang Fuzzy System (TSK)[1]

- ► A TSK fuzzy system is constructed from the following rules: IF x_1 is C'_1 and ... and x_n is C'_n THEN $y' = f(x_1, ..., x_n)$
- $y' = f(x_1, ..., x_n)$ is a crisp function, and can be any general fcn.
- Usually two types of TSK fuzzy system is applied
 - 1. Zero-Order Sugeno Model
 - ► y' is const.
 - ▶ It is a special case of the product inf. , singleton fuzzifier,
 - 2. First-Order Sugeno Model
 - y' is a linear fcn. of x_i
- The output of the TSK fuzzy system is computed as the weighted average of the y¹'s

 $y^{*} = \frac{\sum_{l=1}^{M} y^{l} w^{l}}{\sum_{l=1}^{M} w^{l}}$ where $w^{l} = \prod_{i=1}^{n} \mu_{C_{i}^{l}}(x_{i})$

(人間) トイヨト イヨト ニヨ

4/19

Dynamic TSK Fuzzy System

- Output of a TSK fuzzy system appears as one of its inputs: IF x(k) is A_1^p and ... and x(k - n + 1) is A_n^p and u(k) is B^p THEN $x^p(k+1) = a_1^p x(k) + \ldots + a_n^p x(k - n + 1) + b^p u(k)$
 - A^p and B^P are fuzzy sets
 - a^p and b^P are const., p = 1, 2, ..., N,
 - u(k):input to the system
 - ► $\mathbf{x}(k) = (x(k), x(k-1), ..., x(k-n+l))^T \in \mathbb{R}^n$: the state vector of the system.
- Output of the TSK is

 $\begin{aligned} x^*(k+1) &= \frac{\sum_{\rho=1}^{N} x^{\rho}(k+1)v^{\rho}}{\sum_{\rho=1}^{N} v^{\rho}} \\ \text{where } v^{\rho} &= \prod_{i=1}^{n} \mu_{A_i^{\rho}}[x(k-i+1)]\mu_{B^{\rho}}[u(k)] \end{aligned}$

 Dynamic TSK fuzzy system can be applied to model dynamics of a plant

Closed-Loop Dynamics of Fuzzy Model with Fuzzy Controller

通 ト イヨ ト イヨト

- ▶ The closed-loop fuzzy control system is equivalent to the dynamic TSK fuzzy system by the following rules: IF x(k) is $(C_1^l \text{ and } A_1^p)$ and and x(k - n + 1) is $(C_n^l \text{ and } A_n^p)$ THEN $x^{lp}(k+1) = \sum_{i=1}^{n} (a_i^p + b^p c_i^i) x(k - i + 1)$
 - u(k): the output of the controller,

•
$$I = 1, 2, ..., M, p = 1, 2, ..., N$$

- ► fuzzy sets $(C_i^l and A_i^p)$ are characterized by the mem. fcn. $\mu_{C_i^l}(x(k-i+l)), \mu_{A_i^p}(x(k-i+1)).$
- ► The output of this dynamic TSK fuzzy system: $x(k+1) = \frac{\sum_{l=1}^{M} \sum_{p=1}^{N} x^{lp}(k+1) w^{l} v^{p}}{\sum_{l=1}^{M} \sum_{p=1}^{N} w^{l} v^{p}}$

where

•
$$w^{l} = \prod_{i=1}^{n} \mu_{C_{i}^{l}}(x(k-i+1))$$

• $v^{p} = \prod_{i=1}^{n} \mu_{A_{i}^{p}}[x(k-i+1)]\mu_{B^{p}}[u(k)]$

通 ト イヨ ト イヨト

Stability Analysis of the Dynamic TSK Fuzzy System

- Consider System dynamics x(k+1) = Ax(k)
- Based on Lyapunov theorem, this system is globally asymptotically stable iff ∃P > 0 s.t. A^T PA − P < 0</p>

A E > A E >

Stability Analysis of the Dynamic TSK Fuzzy System

- Consider System dynamics x(k+1) = Ax(k)
- ► Based on Lyapunov theorem, this system is globally asymptotically stable iff $\exists P > 0$ s.t. $A^T P A P < 0$
- Now for the TSK dynamical model define:

★
$$\mathbf{x}(k) = [x(k)...x(k - n_1)]^T$$
• $A_p = \begin{bmatrix} a_1^p & a_2^p & \dots & a_n^p \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$
• $b^p = 0$ (consider no input $u(k)$ for the system)
• \therefore output of the systems: $x(k + 1) = \frac{\sum_{p=1}^N A_p x(k) v^p}{\sum_{p=1}^N v^p}$

• $x(k) = 0 \rightarrow \text{equilibrium point is the origin}$

向下 イヨト イヨト

7/19

Stability Analysis of the Dynamic TSK Fuzzy System

- Consider System dynamics x(k+1) = Ax(k)
- ► Based on Lyapunov theorem, this system is globally asymptotically stable iff ∃P > 0 s.t. A^T PA P < 0</p>
- ► Now for the TSK dynamical model define:

• $x(k) = 0 \rightarrow$ equilibrium point is the origin

► The TSK system modeled above is stable if \exists a common matrix P > 0 s.t. $A_p^T P A_p - P < 0$ for all p = 1, 2, ..., N = 0 and P = 1, 2, ..., N =

Design of Stable Fuzzy Controllers for the Fuzzy Model

- 1. Use The following closed-loop fuzzy control system as a dynamic TSK fuzzy system. IF x(k) is $(C_1^l \text{ and } A_1^p)$ and and x(k - n + 1) is $(C_n^l \text{ and } A_n^p)$ THEN $x^{lp}(k + 1) = \sum_{i=1}^n (a_i^p + b^p c_i^l)x(k - i + 1)$
 - ► The output:

$$\begin{aligned} x(k+1) &= \frac{\sum_{i=1}^{M} \sum_{p=1}^{N} x^{i_p}(k+1) w^i v^p}{\sum_{i=1}^{M} \sum_{p=1}^{N} w^i v^p} \\ \text{where } w^i &= \prod_{i=1}^{n} \mu_{C_i}(x(k-i+1)) \\ v^p &= \prod_{i=1}^{n} \mu_{A_{i_i}^p}[x(k-i+1)] \mu_{B^p}[u(k)] \end{aligned}$$

- a_i^p and b^p , and $\mu_{A_i^p}$ are known
- the controller parameters c_i^p, μ_{C_i} should be designed

・ 同 ト ・ ヨ ト ・ ヨ ト

2. Choose
$$c_i^{l}$$
 and $A_{lp} = \begin{bmatrix} a_1^{p} + b^{p}c_l^{l} & a_2^{p} + b^{p}c_2^{l} & \dots & a_n^{p} + b^{p}c_n^{l} \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$ where $l = 1, ..., M; p = 1, ..., N$

・ロト ・回ト ・ヨト ・ヨト

2

2. Choose
$$c_i^{l}$$
 and $A_{lp} = \begin{bmatrix} a_1^{p} + b^{p}c_l^{l} & a_2^{p} + b^{p}c_2^{l} & \dots & a_n^{p} + b^{p}c_n^{l} \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$ where $l = 1, ..., M; p = 1, ..., N$

3. Find a common matrix P > 0 s.t. $A_{lp}^T P A_{lp} - P < 0$ for all p = 1, 2, ..., N; l = 1, ..., M. If you could not find such P, fo back to step 2 and redefine a new set of c_i^{l} 's

Example

- Consider a TSK dynamical system:
 - ► IF x(k) is G_1 THEN $x^1(k+1) = 2.18x(k) - 0.59x(k-1) - 0.603u(k)$
 - ► IF x(k) is G_2 THEN $x^2(k+1) = 2.26x(k) - 0.36x(k-1) - 1.120u(k)$
- ▶ and TSK contoller:
 - ► IF x(k) is G_1 THEN $u^1(k) = c_1^1 x(k) + c_2^1 x(k-1)$
 - IF x(k) is G_2 THEN $u^2(k) = c_1^2 x(k) + c_2^2 x(k-1)$

Amirkabin

10/19

11/19

Example Cont'd

- Step 1: design a closed loop TSK system
 - ► IF x(k) is (G_1, G_1) THEN $x^{11}(k+1) = (2.18 - 0.603c_1^1)x(k) + (-0.59 - 0.603c_2^1)x(k-1)$
 - ► IF x(k) is (G_1, G_2) THEN $x^{12}(k+1) = (2.18 - 0.603c_1^2)x(k) + (-0.59 - 0.603c_2^2)x(k-1)$
 - ► IF x(k) is (G_2, G_1) THEN $x^{21}(k+1) = (2.26 - 1.120c_1^1)x(k) + (-0.63 - 1.120c_2^1)x(k-1)$
 - ► IF x(k) is (G_2, G_2) THEN $x^{22}(k+1) = (2.26 - 1.120c_1^2)x(k) + (-0.63 - 1.120c_2^2)x(k-1)$

(1日) (1日) (日)

► Step 2: define matrices
$$A_{lp}$$
:
 $A_{11} = \begin{bmatrix} 2.18 - 0.603c_1^1 & -0.59 - 0.603c_2^1 \\ 1 & 0 \end{bmatrix}$; $A_{12} = \begin{bmatrix} 2.18 - 0.603c_1^2 & -0.59 - 0.603c_2^2 \\ 1 & 0 \end{bmatrix}$; $A_{21} = \begin{bmatrix} 2.26 - 1.120c_1^1 & -0.63 - 1.120c_2^1 \\ 1 & 0 \end{bmatrix}$; $A_{22} = \begin{bmatrix} 2.26 - 1.120c_1^2 & -63 - 1.120c_2^2 \\ 1 & 0 \end{bmatrix}$; $A_{23} = \begin{bmatrix} 2.26 - 1.120c_1^2 & -63 - 1.120c_2^2 \\ 1 & 0 \end{bmatrix}$

Step 3: by trail and error proper c¹_i are: c¹₁ = 1.564; c¹₂ = 0.223; c²₁ = 0.912; c²₂ = 0.079

(4回) 4 回) 4 回)

э

PID Controller

 The transfer function of a PID controller: G(s) = K_p + K_i/s + K_ds

 ∴u(t) = K_p[e(t) + ¹/_{T_i} ∫₀^t e(r)dr + T_d e(t)]

•
$$T_i = K_p/K_i, \ T_d = K_d/K_p$$

- The PID gains are usually turned by experienced human experts based on some "rule of thumb."
- By using fuzzy systems, we are trying to adjust the PID gains online

Amirkah

Fuzzy System for PID [2]

Assume the range of PID gains:

•
$$K_p \in [K_{pmax}, K_{pmin}] \subset R$$

- $K_d \in [K_{dmax}, K_{dmin}] \subset R$
- ► Normalize K_p and K_d to the range of [0, 1]

•
$$K_{p'} = \frac{K_p - K_{pmin}}{K_{pmax} - K_{pmin}}$$

• $K_{d'} = \frac{K_d - K_{dmin}}{K_{dmax} - K_{dmin}}$

- Assume $T_i = \alpha T_d \rightsquigarrow K_i = \frac{K_p}{\alpha T_d} = \frac{K_p^2}{\alpha K_d}$
- Inputs of fuzzy system: $e(t), \dot{e}(t)$
- Output of fuzzy system: $K_{p'}, K_{d'}, \alpha$

.

- $e(t) \in [e_{M}^{-}, e_{M}^{+}]$ $\dot{e}(t) \in [e_{Md}^{-}, e_{Md}^{+}]$
- Mem. fcn for e(t) and $\dot{e}(t)$

э

∃ ► < ∃ ►</p>

Dutline TSK Fuzzy System Closed-Loop Dynamics with Fuzzy Controller Stability Analysis Stable Fuzzy Controllers

Derive the rules experimentally based on the typical step response

Amirkabi

17/19

- For e.g., Around b₁, a small control signal requires to avoid a large overshoot ∴:
 - ► Small K_{p'}
 - ► Large *K*_{d'}
 - ► Small *α*
- ▶ IF e(t) is ZO and $\dot{e}(t)$ is NB, THEN $K_{p'}$ is Small, $K_{d'}$ is Big, α is B
- ▶ Find the rules for other points.

Outline TSK Fuzzy System Closed-Loop Dynamics with Fuzzy Controller Stability Analysis Stable Fuzzy Controlle

		ė(t)							
		NB	NM	NS	zo	PS	PM	PB	
e(t)	NB	в	в	в	в	в	в	в	
	NM	S	в	в	в	в	в	s	
	NS	S	S	в	в	в	S	s	
	zo	S	S	S	в	S	S	S	
	PS	S	S	в	в	в	S	S	
	PM	S	в	в	В	в	в	S	
	PB	в	в	в	В	в	В	В	

▶ Rules for $K_{d'}$

		ė(t)							
		NB	NM	NS	zo	PS	PM	PB	
	NB	S	S	s	S	S	s	S	
	NM	в	в	s	S	S	в	В	
	NS	в	в	в	S	в	В	В	
e(t)	zo	в	в	в	в	в	в	в	
	PS	в	в	в	S	в	В	В	
	PM	в	в	s	S	S	в	в	
	PB	S	S	S	S	S	S	S	

メロト (四) (モン (モン

2

Outline TSK Fuzzy System Closed-Loop Dynamics with Fuzzy Controller Stability Analysis Stable Fuzzy Controllers

\blacktriangleright Rules for α

					ė(t)			
12		NB	NM	NS	zo	PS	PM	PB
	NB	2	2	2	2	2	2	2
e(t)	NM	3	3	2	2	2	3	3
	NS	4	3	3	2	3	3	4
	zo	5	4.	3	3	3	4	5
	PS	4	3	3	2	3	3	4
	PM	3	3	2	2	2	3	3
	PB	2	2	2	2	2	2	2

- There are 49 rules for each output
- Consider a fuzzy system with product inference engine, singleton fuzzifier, and center average defuzzifier

$$\begin{split} \kappa_{p'} &= \frac{\sum_{l=1}^{49} \bar{y}_{p}^{l} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))}{\sum_{l=1}^{49} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))} \ \kappa_{d'} &= \frac{\sum_{l=1}^{49} \bar{y}_{d}^{l} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))}{\sum_{l=1}^{49} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))} \\ \alpha(t) &= \frac{\sum_{l=1}^{49} \bar{y}_{\alpha}^{l} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))}{\sum_{l=1}^{49} \mu_{A'}(\mathbf{e}(t)) \mu_{B'}(\dot{\mathbf{e}}(t))} \end{split}$$

Dutline TSK Fuzzy System Closed-Loop Dynamics with Fuzzy Controller Stability Analysis Stable Fuzzy Controllers

- M. Sugeno, "An introductory survey of fuzzy control," *Inf. Sci* vol. 36, pp. 59–83, 1985.
- Z.Y. Zhao, M. Tomizuka, and S. Isaka, "Fuzzy gain scheduling of pid controllers," *IEEE Trans. on Systems, Man, and Cybernetic* vol. 23, no 5, pp. 1392–1398, 1993.

4 1 1 4 1 1 4