Nonlinear Control
Lecture 9: Feedback Linearization

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2009

Farzaneh Abdollahi Nonlinear Control Lecture 9 1/72



y Mathematics ut-State Linearization

ion

Input-State Linearization

Input-Output Linearization
Internal Dynamics of Linear Systems
Zero-Dynamics

Preliminary Mathematics
Diffeomorphism

Frobenius Theorem
Input-State Linearization
Control Design
Input-Output Linearization
Well Defined Relative Degree
Undefined Relative Degree
Normal Form
Zero-Dynamics
Local Asymptotic Stabilization
Global Asymptotic Stabilization
Tracking Control

Farzaneh Abdollahi Nonlinear Control Lecture 9 2/72



Outline Feedback Linearzation Prelim tics Input-State Lin on Input-Output Lir

Feedback Linearzation

» The main idea is: algebraically
transform a nonlinear system dynamics
into a (fully or partly) linear one, so that
linear control techniques can be applied.

U

» In its simplest form, feedback linearization
cancels the nonlinearities in a nonlinear
system so that the closed-loop dynamics
is in a linear form.

» Example: Controlling the fluid level in a
tank

> controlling of the level h of Fluid level control in a tank
fluid in a tank to a specified level hy,
using control input u

» the initial level is hg.
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Example Cont'd

» The dynamics:

A(h)h(t) = u — a\/2gh

where A(h) is the cross section of the tank and a is the cross section of
the outlet pipe.
» Choose u = a\/2gh+ A(h)v~h=v
» Choose the equivalent input v: v = —ah where h = h(t) — hyg is error
level, o a pos. const.
» . resulting closed-loop dynamics: h+ah=0=h— 0as t — o
» The actual input flow: v = 2./2gh + A(h)oz/~7
» First term provides output flow a\/2gh
» Second term raises the fluid level according to the desired linear dynamics
> If hy is time-varying: v = hg(t) — ah

> ,',71—>Oast—>oo
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» Canceling the nonlinearities and imposing a desired linear dynamics, can
be simply applied to a class of nonlinear systems, so-called companion
form, or controllability canonical form:

» A system in companion form:

x(t) = (x) = b(x)u (1)
> u is the scalar control input
» x is the scalar output;x = [x, X, ...,X("’l)] is the state vector.
» f(x) and b(x) are nonlinear functions of the states.
» no derivative of input u presents.
» (1) can be presented as controllability canonical form
X1 X2
d : _
dt -
Xn—1 Xn
Xn f(x)+ b(x)u

» for nonzero b, define control input: u = %[v — f]
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Feedback Linearzation
» . the control law:

v =—kox — kix — ... — kp_1x(" D)

» k; is chosen s.t. the roots of s” + k,_15" "L 4+ ... + ko are strictly in LHP.
» Thus: x(M + k,_1x(""D 4 ..+ kg =0is es.

» For tracking desired output xy, the control law is:
v = x((fn) — kox — kyX — ... — kp_1x(""1)

» . Exponentially convergent tracking, e = x — x4 — 0.

» This method is extendable when the scalar x was replaced by a vector
and the scalar b by an invertible square matrix.

» When u is replaced by an invertible function g(u)~u = g_l(%[v —f]),

Farzaneh Abdollahi Nonlinear Control Lecture 9 6/72



Outline > hematics Input-State Lin

Example: Feedback Linearization of a Two-link Robot

» A two-link robot: each joint equipped

with
» a motor for providing input torque h m
> an encoder for measuring joint position 122
» a tachometer for measuring joint velocity ‘ f

» objective: the joint positions g; and g»
follow desired position histories qq(t) and 1
qa2(t) ‘

» For example when a robot manipulator is ol ™
required to move along a specified path, q,.7,
e.g., to draw circles. 2

A two-link robot
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» Using the Lagrangian equations the robotic dynamics are:
Hi  Hi a1 + —hg> —hg> — hg: 4l e
Ha1  Hx 92 hg, 0 4 & T2

where g = [q1 q2]": the two joint angles, 7 = [r; 72]": the joint inputs, and

Hi = ml2 4+ h+mfl? + 1%+ 2h/pcosgo] + b

Hy = mal?% + hHia = Hy = myhle, cos o + mal, + b
g = mileicosqr + mag(leacos(qr + ga2) + h cos qi]
& = mlogcos(qr+ q2), h= mlhlsysing

» Control law for tracking, (computed torque):

| _ | Hi Ho vl —hGqx —hg2 — hin il L&
T Ha1  Ha V2 hay 0 G2 g2
where v = g — 2)Ag — A\2§, § = g — qq: position tracking error, A: pos. const.
> . 4+ 2Mg + \2G = 0 where § converge to zero exponentially.

» This method is applicable for arbitrary # of links
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Input-State Linearization

» When the nonlinear dynamics is not in a controllability canonical form,
use algebraic transformations

» Consider the SISO system
x = f(x,u)

» In input-state linearization technique:

1. finds a state transformation z = z(x) and an input transformation

u = u(x, v) s.t. the nonlinear system dynamics is transformed into
z=Az+ bv

2. Use standard linear techniques (such as pole placement) to design v.
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Example:
» Consider X1 = —2x1+ axo+sinxg
Xp = —xpcosxi+ ucos(2xy)
Equ. pt. (0,0)

The nonlinearity cannot be directly canceled by the control input u
Define a new set of variables:

zZ1 = X1

Zo = axp+ sin X1

21 = 271+

zy = —2z cosz + cosz sinz; + aucos(2z)

» The Equ. pt. is still (0,0).

» The control law: u = #(221)(‘/ — cos zy sin z; + 271 cos z;)

» The new dynamics is linear and controllable: z; = -2z + 2, zz=v

» By proper choice of feedback gains k; and ky in v = —kyzy — kozp, place

the poles properly.
» Both z; and z, converge to zero, ~~ the original state x converges to zero
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The result is not global.
> The result is not valid when x; = (7/4 + k7 /2), k=0,1,2,...
» The input-state linearization is achieved by a combination of a state

transformation and an input transformation with state feedback used in
both.

» To implement the control law, the new states (z;, z2) must be available.
» If they are not physically meaningful or measurable, they should be
computed by measurable original state x.
> If there is uncertainty in the model, e.g., on a~- error in the computation
of new state z as well as control input u.
» For tracking control, the desired motion needs to be expressed in terms of
the new state vector.

» Two questions arise for more generalizations which will be answered in
next lectures:

» What classes of nonlinear systems can be transformed into linear systems?
» How to find the proper transformations for those which can?
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Input-Output Linearization

» Consider
x = f(x,u)

y = h(x)

» Objective: tracking a desired trajectory y4(t), while keeping the whole
state bounded

> y4(t) and its time derivatives up to a sufficiently high order are known
and bounded.

» The difficulty: output y is only indirectly related to the input u

> . it is not easy to see how the input u can be designed to control the
tracking behavior of the output y.

» Input-output linearization approach:

1. Generating a linear input-output relation
2. Formulating a controller based on linear control
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Example:

» Consider x1 = sinxa+ (x+ 1)x3
Xy = X{’ + X3
X3 = X]? +u
y = X

» To generate a direct relationship between the output y and the input v,
differentiate the output y = X3 =sinxz + (x2 + 1)x3

» No direct relationship ~~ differentiate again: y = (x2 + 1)u + f(x), where
f(x) = (4 + x3)(x3 + cosx2) + (x2 + 1)x?

X2 +1 (V - f)

» Choose v = yg — kie — koé, where e = y — y, is tracking error, ki and ko
are pos. const.

» Control input law: v =

» The closed-loop system: €+ kpé + kje =0

> . e.s. of tracking error
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Example Cont'd

» The control law is defined everywhere except at singularity points s.t.
Xo = -1

» To implement the control law, full state measurement is necessary,
because the computations of both the derivative y and the input
transformation need the value of x.

» If the output of a system should be differentiated r times to generate an

explicit relation between y and u, the system is said to have relative
degree r.

» For linear systems this terminology expressed as # poles —# zeros.

» For any controllable system of order n, by taking at most n
differentiations, the control input will appear to any output, i.e., r < n.

» If the control input never appears after more than n differentiations, the
system would not be controllable.
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Feedback Linearzation
» Internal dynamics: a part of dynamics which is unobservable in the
input-output linearization.
> In the example it can be X3 = x7 + L7 (Ju(t) — kie — koé + f)
» The desired performance of the control based on the reduced-order model
depends on the stability of the internal dynamics.
» stability in BIBO sense

» Example: Consider [ X1 ] [ 3 +u ]
% |~

(2)

u
y=x1

» Control objective: y tracks yq.

» First differentiations of y~~ linear 1-O relation

» The control law u = —x3 — e(t) — y4(t)~ exp. convergence of e :
é+e=0

> Internal dynamics: s + x5 = yg — e

> Since e and yy are bounded (y4(t) — e < D) x is ultimately bounded.
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» |-O linearization can also be applied to stabilization (y,4(t) = 0):
» For previous example the objective will be y and y will be driven to zero
and stable internal dynamics guarantee stability of the whole system.
> No restriction to choose physically meaningful h(x) in y = h(x)
» Different choices of output function leads to different internal dynamics
which some of them may be unstable.

» When the relative degree of a system is the same as its order:

» There is no internal dynamics
» The problem will be input-state linearization
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Summary

>

>

>

Feedback linearization cancels the nonlinearities in a nonlinear system s.t.
the closed-loop dynamics is in a linear form.
Canceling the nonlinearities and imposing a desired linear dynamics, can
be applied to a class of nonlinear systems, named companion form, or
controllability canonical form.
When the nonlinear dynamics is not in a controllability canonical form,
input-state linearization technique is employed:

1. Transform input and state into companion canonical form

2. Use standard linear techniques to design controller
For tracking a desired traj, when y is not directly related to u, I-O
linearizaton is applied:

1. Generating a linear input-output relation (take derivative of y r < n times)

2. Formulating a controller based on linear control

# of differentiating y to find explicate relation to w.

If r % n, there are n — r internal dynamics that their, stability be checked.
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Internal Dynamics of Linear Systems

» In general, directly determining the stability of the internal dynamics is
not easy since it is nonlinear. nonautonomous, and coupled to the
“external” closed-loop dynamics.

» We are seeking to translate the concept of of internal dynamics to the
more familiar context of linear systems.

» Example: Consider the controllable, observable system

3] - []

» Control objective: y tracks yg.

First differentiations of y~~y = x> + u

The control law u = —x; — e(t) — yq(t)~ exp. convergenceof e: é+e =0
Internal dynamics: o +x = yqg — €

e and yy are bounded ~~ x; and therefore u are bounded.

v

vV vy
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> Now consider a little different dnamics

X1 . Xo + u
] =] “
y = xi
» using the same control law yields the following internal dynamics
Xo — Xp = e(t) — V4

» Although y4 and y are bounded, x» and u diverge to co as t — oo
» why the same tracking design method yields different results?

» Transfer function of (3) is: Wy(s) = <%

» Transfer function of (4) is: Wa(s) = 3.

» . Both have the same poles but different zeros

» The system W; which is minimum-phase tracks the desired trajectory
perfectly.

» The system W, which is nonminimum-phase requires infinite effort for
tracking.

Farzaneh Abdollahi Nonlinear Control Lecture 9 19/72



Outline ary € put-State Lin put-Output Lin

Internal Dynamics

» Consider a third-order linear system with one zero

x=Ax+bu, y=c'x (5)

bo+b1s u
ag+ais+taps?+azs3

» First transform it into the companion form:

» lts transfer function is: y =

7 0 1 0 7 0
n | = 0 0 1 | +]0|u (6)
23 —dp —4di1 —ao zZ3 1
21
y = [bob10]| 2
Z3
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» In second derivation of y, u appears:
y = boz3 + bi(—aoz1 — a1z0 — axz3 + u)
» .. Required number of differentiations (the relative degree) is indeed the
same as # of poles- # of zeros
» Note that: the I-O relation is independent of the choice of state variables
~~ two differentiations is required for u to appear if we use (5).
» The control law: u = (apz1 + a122 + apz3 — %23) + bil(—kle — ko — yq)
» . an exp. stable tracking is guaranteed
» The internal dynamics can be described by only one state equation

> z; can complete the state vector,( z1, y, and y are related to z;, z and z3
through a one-to-one transformation).

> A=2=4(y - bha)

» y is bounded ~~ stability of the internal dynamics depends on —%

» |If the system is minimum phase the internal dynamics is stable
(independent of initial conditions and magnitude of desired trajectory)
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Zero-Dynamics

» For linear systems the stability of the internal dynamics is determined by
the locations of the zeros.

» To extend the results for nonlinear systems the concept of zero should be
modified.
» Extending the notion of zeros to nonlinear systems is not trivial
» In linear systems I-O relation is described by transfer function which zeros
and poles are its fundamental components. But in nonlinear systems we
cannot define transfer function
» Zeros are intrinsic properties of a linear plant. But for nonlinear systems
the stability of the internal dynamics may depend on the specific control
input.
» Zero dynamics: is defined to be the internal dynamics of the system when
the system output is kept at zero by the input.(output and all of its
derivatives)
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» For dynamics (2), the zero dynamics is %, + x5 = 0 )
» we find input u to maintain the system output at zero uniquely (keep x;

zero in this example),
» By Layap. Fcn V = x2 it can be shown it is a.s

> For linear system (5), the zero dynamics is z; + (bo/b1)z1 = 0
» . The poles of the zero-dynamics are exactly the zeros of the system.

» In linear systems, if all zeros are in LHP ~~ g.a.s. of the zero-dynamics ~~ g.s. of
internal dynamics.

» In nonlinear systems, no results on the global stability
» only local stability is guaranteed for the internal dynamics even if the
zero-dynamics is g.e.s.

» Zero-dynamics is an intrinsic feature of a nonlinear system, which does not
depend on the choice of control law or the desired trajectories.

» Examining the stability of zero-dynamics is easier than examining the stability of
internal dynamics,But the result is local.
» Zero-dynamics only involves the internal states

» Internal dynamics is coupled to the external dynamics and desired trajs:
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Zero-Dynamics
» Similar to the linear case, a nonlinear system whose zero dynamics is
asymptotically stable is called an asymptotically minimum phase system,

> If the zero-dyiamics is unstable, different control strategies should be
sought
» As summary control design based on input-output linearization is in three
steps:
1. Differentiate the output y until the input u appears
2. Choose u to cancel the nonlinearities and guarantee tracking convergence
3. Study the stability of the internal dynamics
» If the relative degree associated with the input-output linearization is the
same as the order of the system ~- the nonlinear system is fully linearized
~~ satisfactory controller

» Otherwise, the nonlinear system is only partly linearized ~~ whether or
not the controller is applicable depends on the stability of the internal

dynamics.
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Preliminary Mathematics

» To formalize and generalize the previous intuitive concepts for a broad
class of nonlinear systems, let us introduce some mathematical tools.

» Vector function f: R" — R" is called a vector field in R".

» Smooth vector field: function f(x) has continuous partial derivatives of
any required order.

» Gradient of a smooth scalar function h(x) is denoted by

Vh= @, where (Vh); =

Oox 8XJ

» Jacobian of a vector field f(x) is Vf = %, where (Vf); = g—z

» Lie derivative of h with respect to f is a scalar function defined by
L¢h = V hf, where h: R" — R is a smooth scalar and f: R” — R" is a
smooth vector field.

» If g is another vector field: Lgl¢h = V(L¢h)g
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Oh .

y = —x= L¢h

y 8xx f

. O[L¢h] .

yo= o X=lih

» If V is a Lyap. fcn candidate, its derivative V can be written as LgV/.
» Lie bracket of f and g is a third vector field defined by
[f, g] = Vgf — Vf g, where f and g two vector field on R".
» The Lie bracket [f, g] is also written as adf g (where ad stands for
"adjoint™).
» Example: Consider x = f(x) + g(x)u where

—2x1 + axp + sin xg 0
f = s =
—Xp COS X1 cos(2x1)

» So the Lie bracket is:
—acos(2x1) ]

[f. & = [ cos x1 cos(2x1) — 2sin(2x1)(—2x1 + ax2 +-sin x1)

Farzaneh Abdollahi Nonlinear Control Lecture 9 26/72



Preliminary Mathematics

» Lemma: Lie brackets have the following properties:
1. bilinearity:

[aifi + aofa, 8] = aiffi, g] + as[f, g]

[f,a18; +a2gy] = aaff, g;] + alf, g

where f, f1, f2, g g, 8, are smooth vector fields and a; and oy are
constant scalars.
2. skew-commutativity:

fg] = —I[g.f]

3. Jacobi identity
Laggh = Lilgh— Lgl¢h

where h is a smooth fen.
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Diffeomorphism

» The concept of diffeomorphism can be applied to transform a nonlinear
system into another nonlinear system in terms of a new set of states.

» Definition: A function ¢ : R" — R" defined in a region Q is called a
diffeomorphism if it is smooth, and if its inverse ¢~ exists and is smooth.

» If the region Q is the whole space R"~~¢(x) is global diffeomorphism
» Global diffeomorphisms are rare,we are looking for local diffeomorphisms.

» Lemma: Let ¢(x) be a smooth function defined in a region Q in R". If
the Jacobian matrix V¢ is non-singular at a point x = xg of Q, then ¢(x)
defines a local diffeomorphism in a subregion of 2
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Diffeomorphism
» Consider the dynamic system described by

X =f(x)+g(x)u, y=h(x)

> Let the new set of states z = ¢(x)~ z = %X = g—f(f(x) + g(x)u)
» The new state-space representation
z=1"(z)+g"(z)u, y=h"(2)

where x = ¢71(z2).
» Example of a non-global diffeomorphism: Consider

[21 } ~o(x) = [ 2x1 4 5x1x3 ]

7 3sin xp
2
_ o ae _ | 2455  10xix
> Its Jacobian matrix: 5= = 0 3cosxy |

> rank is 2 at x = (0,0)~ local diffeomorphism around the origin where

Q= {(X17X2), |X2| < 7'('/2}

» outside the region, the inverse of ¢ does not uniquely exist.
Farzaneh Abdollahi Nonlinear Control Lecture 9
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Frobenius Theorem
» An important tool in feedback linearization

» Provide necess. and suff. conditions for solvability of PDEs.

» Consider a PDE with (n=3):

Oh oh Oh

P+ 2+ g = 0
8X1 1+8X2 2—+_8X3 3

oh oh oh
81+ 67X2g2 + 87X3g3 =0 (7)

where fi(x1,x2,x3), gi(x1,x2,x3) (i =1, 2, 3) are known scalar fcns and
h(x1, x2, x3) is an unknown function.

» This set of PDEs is uniquely determined by the two vectors
f=[Ahf]l", g=lae gl

» If the solution h(xi, x2, x3) exists, the set of vector fields {f, g} is
completely integrable.

» When the ei uations are solvable?
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Frobenius Theorem
» Frobenius theorem states that Equation (7) has a solution h(xi, x2, x3) iff
there exists scalar functions a;(x1, x2, x3) and aa(x1, x2, x3) such that

f, gl=a1 f+ag

i.e., if the Lie bracket of f and g can be expressed as a linear combination of f
and g

» This condition is called involutivity of the vector fields {f, g}.

> Geometrically, it means that the vector field [f, g] is in the plane formed by the
two vectors fand g

P The set of vector fields {f, g} is completely integrable iff it is involutive.

> Definition (Complete Integrability): A linearly independent set of vector
fields {f, fo,..., fn} on R" is said to be completely integrable, iff, there exist
n — m scalar fens hi(x), ha(x), ..., hp—m(x) satisfying the system of PDEs:

Vhi f; =0

wherel < | < n—m, 1 < j < m and Vh; are linearly.independent.
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» Number of vectors: m, dimension of the vectors: n, number of unknown
scalar fens h;: (n-m), number of PDEs: m(n-m)

» Definition (Involutivity): A linearly independent set of vector fields
{f, fo,..., Tm} on R" is said to be involutive iff, there exist scalar fcns
Qjjk - RN — R st

[fi, £1(x) = (%) fie(x) Vi,j

k=i

i.e., the Lie bracket of any two vector fields from the set {fi, f, ..., fm}
can be expressed as the linear combination of the vectors from the set.

» Constant vector fields are involutive since their Lie brackets are zero
» A set composed of a single vector is involutive:

[f, f] = (VF)f — (VF)f =0

» Involutivity means:

rank (f1(x) .... fn(x)) = rank (f(x) .... fu(x) [fi, fi](X))

for all x and for all i, j.
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Frobenius Theorem

» Theorem (Frobenius): Let fi, f, ...., fy, be a set of linearly
independent vector fields. The set is completely integrable iff it is
involutive.

» Example: Consider the set of PDEs:

dx3——— = 0
3 8X1 aXQ
Oh 5 Oh oh
3y 4 (—4x2 — 2 L O =
3x1 O + (—4x5 — 3x2) 0% +2x3 s 0
» The associated vector fields are {f;, f}
i = [0 —1 0] fr = [-3x1 (—4x3 — 3x2) 2x3]7

» We have [, f] =[-12x3 3 0]
» Since [f1, f] = —3fi + 0fy, the set {f1, f} is involutive and the set of

PDEs are solvable.
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Input-State Linearization
> Consider the following SISO nonlinear system
X = f(x) +g(x)u (8)
where f and g are smooth vector fields
» The above system is also called “linear in control” or “affine”

> If we deal with the following class of systems:
x = f(x) +g(x)w(u + ¢(x))

where w is an invertible scalar fcn and ¢ is an arbitrary fcn
» We can use v = w(u + ¢(x)) to get the form (8).
» Control design is based on v and u can be obtained by inverting w:

u=w(v) - o(x)

» Now we are looking for

» Conditions for system linearizability by an input-state transformation
» A technique to find such transformations

» A method to design a controller based on such linearization technique
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Input-State Linearization

> Definition: Input-State Linearization The nonlinear system (8) where f(x)
and g(x) are smooth vector fields in R" is input-state linearizable if there exist
region £ in R", a diffeomorphism mapping ¢ : Q2 — R", and a control law:

u=a(x)+ B(x)v

s.t. new state variable z = ¢(x) and new input variable v satisfy an LTI relation:

z = Az+ Bv
01 0 ... 0 0
0 0 1 0
A = B=: 9)
000 ... 1 0
0 00 0 1
» The new state ~ is called the and the control law u is called the

linearizing control law

» let z = z(x

Farzaneh Abdollahi Nonlinear Control Lecture 9
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(9) is the so-called controllability or companion form

» The companion form can be obtained from any form by a transformation
—> the above form is a general form

> This form is an special case of Input-Output linearization leading to
relative degree r = n.

» Hence, if the system I-O linearizable with r = n, it is also I-S linearizable.

» On the other hand, if the system is I-S linearizable, it is also I-O
linearizable with y =z, r = n.

» Lemma: An n'" order nonlinear system is I-S linearizable iff there exists
a scalar fcn z1(x) for which the system is I-O linearizable with r = n.

» Conditions for Input-State Linearization:

» Theorem: The nonlinear system (8) with f(x) and g(x) being smooth
vector field is input-state linearizable iff there exists a region Q2 s.t. the
following conditions hold:

The vector fields {g, adrg, ... ads "“1g} are linearly independent in Q
The set {g, adrg, ... ads "~2g} is involutive in
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» The first condition can be interpreted as a controllability condition
For linear system, the vector field above becomes {B, AB, ... A" 1B}

Linear independency is equivalent to invertibility of controllability matrix

vV vy

The second condition is always satisfied for linear systems since the vector
fields are constant, but for nonlinear system is not necessarily satisfied.

» It is necessary according to Ferobenius theorem for existence of z;(x).
» Lemma: /f z(x) is a smooth vector field in QQ, then the set of equations
Lgz=Lgliz= .. LgLs k2 =0

is equivalent to
Lez=Lag, gz= ... Lyg, kgz =0

» Proof:
» Let k =1, from Jacobi’'s identity, we have

Lad, g2 = Lilgz — Lgl;z=0—0=0
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» When k = 2, we have from Jacobi's identity:

Logy 252 = Lf *Lgz —2Llglsz+ Lyl ?z=0—-0+0=0

» Proof of the linearization theorem:
» Necessity:

» Suppose state transformation z = z(x) and input transformation
u = a(x)+ B(x)v s.t. z and v satisfy (9), i.e.

similarly:

—f+—gu = =z

Ox ax & T
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.., Zn are independent of u, but v is not, hence:

Lgzy = Lgzo= ... Lgz,_1 =0, Lgz, # 0
LfZ,' = Zj41, I = 1,2,...,”—1
> Use, z = [21 Lizy, ... Lf n—lzl]T to get
Zk = Zk+1, k= 1, ..n—1
zn = L "z + Lgls n=lyu

» The above equations can be expressed in terms of z; only

Vzade kg = 0, k=0,1,2, ..., n—2 (10)
Vzads "lg = (=1)"'L,Ls (11)
> First note that for above eqgs to hold, the vector field g, adf g, ..., ads "g

must be linearly independent.

> If for some i(i < n — 1) there exist scalar fcns oy (x), ... aji—1(x) s.t.

i—1
adr 'g = Zakadf “g
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» We, then have:

n—2
adf "lg = Z akads “g
k=n—i—1
n—2
.. Vziads n_lg = Z oV zyadr kg =0 (12)
k=n—i—1

.. Contradicts with (11).
» The second property is that 3 a scalar fcn z; that satisfy n — 1 PDEs
Vzladf kg =0
» . From the necessity part of Frobenius theorem, we conclude that the set
of vector field must be involutive.
» Sufficient condition
> Involutivity condition = Frobenius theorem, 3 a scalar fcn z(x):
Lgzi = Lag gz1 = ... Loy, xgz2 =0, implying
Lyzi = Lglszi= ... LyLs ¥z =0
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> Define the new sets of variable as z = [z; L¢z; ... Lf ""1z]7, to get
2/( = Zk41 k:]., cey n—1
Zy = Le "z + Lgls "tzu (13)
The question is whether L L "1z can be equal to zero.
» Since {g, adr g, ..., adr ""1g} are linearly independent in Q:
LgLf nilzl = (—1)"71Ladf n—1g21

» We must have L, n-1,21 # 0, otherwise the nonzero vector Vz
satisfies

VZ1 [ga adf gy - adf n—lg] =0

i.e. Vzi is normal to n linearly independent vector = impossible

» Now, we have:

Zn=Lf "z1 + Ll ziu = a(x) + b(x)u
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» Now, select u = ﬁ(—a(x) + v) to get:

Zn=1V

implying input-state linearization is obtained. [J

» Summary: how to perform input-state Linearization
1. Construct the vector fields g, adrg, ... adf ""g
2. Check the controllability and involutivity conditions
3. If the conditions hold, obtain the first state z; from:
Vzadsig = 0 i=0, .., n—2

Vzads "lg # 0

4. Compute the state transformation z(x) = [z; Lz ... Lf ""*z]T and the
input transformation u = a(x) + B(x)v:

Lf "21
)=,
1
X)=————
ﬂ( ) LgLf n—1z
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Example:A single-link flexible-joint manipulator:
> The link is connected to the motor shaft via a torsional spring

» Equations of motion: .
g1 + MglLsing: + K(q1 — q2) = 0

Jir —K(qr —q) =u
» nonlinearities appear in the first equation and torque is in the second equation
> Let:

q1 X2 0
Y a1 Cf= —@sinxl — K(xa — x3) Cg= 0
a2 Xa (1)
& K —x3) ¥
» Controllability and involutivity con iti(dns: 0 0 K
) 3 o o0 XK 0”
[ adrg adr g adr “g] = 0 _1 'd K
J Iz
-0 £ 0

Farzaneh Abdollahi Nonlinear Control Lecture 9 43/72



Input-State Linearization

Example: Cont'd

>

vV v v v Y

It's full rank for kK > 0 and /J < o0 = vector fields are linearly
independent

Vector fields are constant = involutive

The system is input-state linearizable

Computing z = z(x), u=a(x)+ [B(x)v

9z1 _ 9z1 _ dz1 _ oz
8X2_0 BX3_0 BX4_ 78x17é0

Hence, z; is the fcn of x; only. Let z; = x3, then

Zy = Vzlf = X2
) K
z3 = Vazf =— ; sinxy — T(Xl - x3)
Mgl K
zz = Vz3f = —Tngcosxl — T(XQ — Xg)
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Example: Cont'd

> The input transformation is given by: 1
u = (v=Vaf)/(Vag) = (v —a(x))

Mgl L K
a(x) = /g sinxy (x4 + Tgcosxl + 7)
K K K Mgl
+ T(Xl —x3)(—+ TR Tgcosxl)
» As a result, we get the foIIowmg set of linear equations
21 = 2, n=2n
3 =z, Zp=v

» The inverse of the state transformation is given by:

X1 =z, XX=22
/ Mgl .
X3 = z1+ R <23 + | smzl>
Mgl
Xqa = 2o+ ? zy + TZQCOSZ;[
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Input-State Linearization

» State and input transformations are defined globally

» In this example, transformed state have physical meaning, z; : link
position, zo : link velocity, z3 : link acceleration, z; : link jerk.

» It could be obtained by I-O linearization, i.e. by differentiating the output
qi-

» We can transform the inequality (11) to a normalized equation by setting
Vziads ""'g =1 resulting in:

0
821
o 0
Ox1
[adf Og adr 1g ... adr n—2g adr n—lg] =
o)
8—2 0
- 1 -
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Control Design
» Once, the linearized dynamics is obtained, either a tracking or
stabilization problem can be solved
» For instance, in flexible-joint manipulator case, we have
(4)

zZ; =V

» Then, a tracking controller can be obtained as

vV = Z((ﬂ) — 332( ) — 3221 — 3121 — 3021

where 21 = 2Z1 — Z41-
» The error dynamics is then given by:

(4) + a3Z( ) + 8251 + 3121 +apz1 =0

» The above dynamics is exponentially stable if a; are selected s.t.
Sy + a3s3 + —1—3252 + a1s + ap is Hurwitz
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» Consider the system:

= h(x) (14)

» Input-output linearization yields a linear relationship between the input
output y and the input v (similar to v in I-S Lin.)
» How to generate a linear I-O relation for such systems?
» What are the internal dynamics and zero-dynamics associated with this I-O
linearization
» How to design a stable controller based on this technique?
» Performing I-O Linearization
» The basic approach is to differentiate the output y until the input u
appears, then design u to cancel nonlinearities
» Sometime, cancelation might not be possible due to the undefined relative

degree.
Farzaneh Abdollahi Nonlinear Control Lecture 9 48/72



Outline Mathematics Input-State Linearization Inp
O O

Well Defined Relative Degree

» Differentiate y and express it in the form of Lie derivative:
y = Vh(f + gu) = L¢h(x) + Lgh(x)u

if Lgh(x) # 0 for some x = xp in €, then continuity implies that
Lgh(x) # 0 in some neighborhood € of xp. Then, the input

transformation
1

= ————(—L¢h
4= g L)+ )
results in a linear relationship between y and v, namely y = v.
> If Lgh(x) =0 for all x € €, differentiate y to obtain

¥ =L 2h(x) + LgLeh(x)u

> If LgLrh(x) =0 for all x € Q,, keep differentiating until for some
integer r, LgLs "1h(x) # 0 for some x =xg € €
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» Hence, we have
vy = L¢ "h(x) + LgLs " h(x)u (15)

and the control law

1 r
u= m(—/-f h(x) + v)

yields a linear mapping:

J0 —y

» The number r of differentiation required for u to appear is called the
relative degree of the system.

» r < n, if r = n, the input-state realization is obtained with z; = y.
» Definition: The SISO system is said to have a relative degree r in S if:
Lgls 'h(x) = 0 0<i<r-2
Lgls "h(x) # 0
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Undefined Relative Degree

» Sometimes, we are interested in the properties of a system about a
specific operating point xg.

» Then, we say the system has relative degree r at xp if
Lgls "th(xo) # O
» However, it might happen that LgLs "“1h(x) is zero at xo, but nonzero in
a close neighborhood of xg.
» The relative degree of the nonlinear system is then undefined at xp.
» Example:

X = p(x, %)+ u

where p is a smooth nonlinear fcn. Define x = [x x]” and let y = x =
the system is in companion form with r = 2.
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» However, if we define y = x2, then:

y o= 2xx
o= 2xx+2x% = 2xp(x, %) + 2xu + 2%°> —
Lgleh = 2x (16)

» The system has neither relative degree 1 nor 2 at xg.
» Sometime, change of output leads us to a solvable problem.
» We assume that the relative degree is well defined.

» Normal Forms

» When, the relative degree is defined as r < n, using y, v, ..., y'™D we
can transform the system into the so-called normal form.

» Norm form allows a formal treatment of the notion of internal dynamics
and zero dynamics.

> Let p="lm pp o pl]” = [y y o yIT

in a neighborhood 2 of a point xp.
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Normal Form

» The normal form of the system can be written as

K2
po= : (17)
fir
a(p, V) + b(p, V)u
Vo= w(ew) (18)

y = 1

> The pj and V; are called normal coordinate or normal states.

> The first part of the Normal form, (17) is another form of (15), however in (18)
the input u does not appear.

> The system can be transformed to this form if the state transformation ¢(x) is a
local diffeomorphism: ¢ (1 ... p, Wy ... V)7

» To show that ¢ is a diffeomorphism, we must show that the Jacobian is
invertible, i.e. Vu; and VW; are all linearly independent.
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Normal Form

» Vu; are linearly independent = i can be part of state variables, (u is
output and its r — 1 derivatives)

» There exist n — r other vector fields that complete the transformation
» Note that u does not appear in (17), hence:
VVig=0 1< j < n—r

WV can be obtained by solving n — r PDE above.

» Generally, internal dynamics can be obtained simpler by intuition.
» Zero Dynamics
» System dynamics into two parts:
1. external dynamics [
2. internal dynamics W
» For tracking problems (y — yq4), one can easily design v once the linear
relation is obtained.

» The question is whether the internal dynamics remain bounded
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Zero-Dynamics

» Stability of the zero dynamics (i.e. internal dynamics when y is kept 0)
gives an idea about the stability of internal dynamics

> u is selected s.t. y remains zero at all time.

yO(t) = L "h(x) + LgLs "Lh(x)up = 0 —
—L¢ "h(x)

R T

» .. In normal form:

up(V) = —20.¥) (19)
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Example

» Consider —X1 e>®
X = 2x1xp +sinxg | + | 1/2 | u
2x> 0

y = h(x)=x3

» We have y = 2x
y = 2x = 2(2X1X2 + SinXQ) +u

> The system has relative degree r = 2 and

L,c h(x) = 2x
h(x) = 0
L Lf h(x) = 1
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Example Cont'd

» To obtain the normal form

1 = h(x)=x3
H2 = Lf h(X) = 2X2
» The third function W(x) is obtained by
ov 10V
Y= ¥ Z 77 _
€ 8X1 € 2 8X2 0

» One solution is W(x) = 1 + x; — e

» Consider the jacobian of state transformation z = [u1 pp V]7. The
Jacobian matrix is

0 0 1
0 2 0
1 —2e*2 0

Farzaneh Abdollahi Nonlinear Control Lecture 9 57/72



Outline

inary Mathematics Input-State Linearization

Example Cont'd

» The Jacobian is non-singular for any x. In fact, inverse transformation is given

by:
x1 = —1+WV4 e
1
X2 = E,Uz
X3 =

> State transformation is valid globally and the normal form is given by:

1 = o
Lo = 2(=14+V +e*?)up + 2sin(p2/2) + u
Vo= (1-W—e)(1+2ume) — 2sin(uz/2)e"?) (20)

» Zero dynamics is obtained by setting p1 = o =0 —
V=_v (21)
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Zero-Dynamics

» In order to obtain the zero dynamics, it is not necessary to put the system
into normal form

> since u is known, we can intuitively find n — r vector to complete the
transformation.

» As mention before, zero dynamics is obtained by substituting ug for u in
internal dynamics.

» Definition: A nonlinear system with asymptotically stable zero dynamics
is called asymptotically minimum phase

» If the zero dynamics is stable for all x, the system is globally minimum
phase, otherwise the results are local.
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Local Asymptotic Stabilization

» Consider again the nonlinear system

x = f(x)+g(x)u
y = h(x) (22)
Assume that the system is I-O linearized, i.e.
Yy = L¢ "h(x) + LgLr "Th(x)u (23)
and the control law 1
= —Lf"h 24
u LgLf rflh( )( f (X)+V) ( )
yields a linear mapping: y=v
» Now let v be chosen as
vV = —krfl_y(r_l) — . — kly - koy (25)

where k; are selected s.t. K(s) =s"+ k,_15" 1+ ... + kis + ko is Hurwitz
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» Then, provided that the zero-dynamics is asymptotically stable, the control law
(24) and (25) locally stabilize the whole system:

» Theorem: Suppose the nonlinear system (22) has a well defined relative degree
r and its associated zero-dynamics is locally asymptotically stable. Now, if k; are
selected s.t. K(s) =s"+ k,_15""* + ... + kis + ko is Hurwitz, then the control
law (24) and (25) yields a locally asymptotically stable system.

» Proof: First, write the closed-loop system in a normal form:

0 1 0o ... 0
0 0 1
ljl - . . . DRI . - AM
0 0 0o ... 1
—ko —ki —ko ... —k,_1
\i/ = W(,M, \U) = Alﬂ + AQ\U + h.o.t.

The above Eq. can be written as:
dlpw | _ A 0 %
Sl =14 Al |e]+nee
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» Now, since the zero dynamics is asymptotically stable, its linearization W = A, W
is either asymptotically stable or marginally stable.

» If A, is asymptotically stable, then all eigenvalues of the above system
matrix are in LHP and the linearized system is stable and the nonlinear
system is locally asymptotically stable

» If Ay is marginally stable, asymptotic stability of the closed-loop system
was shown in (Byrnes and Isidori, 1988).

» For stabilization where state convergence is required, we can freely choose
y = h(x) to affect zero-dynamics.

» Example: Consider the nonlinear system:

X1 = XX

X = 3x+u
» System linearization at x = O:

x = 0

X = 3xo+4+u

thus has an uncontrollable mode
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» Example (cont’d)
> Definey = —2x; —xp =

y o= 2 —x=-2x2x—3x2—u
» Hence, the relative degree r = 1 and the associated zero-dynamics is
q o= —2x3
» The zero-dynamics is asymptotically stable, hence the control law
u = —2x2x, — 4xp — 2x; locally stabilizes the system

» Global Asymptotic Stabilization

> Stability of the zero-dynamics only guarantees local stability unless relative
degree is n in which case there is no internal dynamics

» Can the idea of I-O linearization be used for global stabilization problem?

> Can the idea of I-O linearization be used for systems with unstable zero
dynamics?
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Global Asymptotic Stabilization

» Global stabilization approach based on partial feedback linearization is to
simply regard the problem as a standard Lyapunov controller design
problem

» But simplified by the fact that in normal form part of the system
dynamics is now linear.
» The basic idea is to view p as the input to the internal dynamics and W
as its output.
> The first step: find the control law 1o = po(W) which stabilizes the internal
dynamics with the corresponding Lyapunov fcn V.
» Then: find a Lyapunov fcn candidate for the whole system (as a modified
version of V4) and choose the control input v s.t. V' be a Lyapunov fcn for
the whole closed-loop dynamics.
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Example:

» Consider a nonlinear system with the normal form:

y = v
3 + 24yz=0 (26)

where v is the control input and W = [z 2]

» Considering y as an input to internal dynamics (26), it would be
asymptotically stabilized by the choice of y = yg = z°
> Let V, be a Lyap. fecn:
1, 1,

VOZEZ +ZZ

» Differentiating Vj along the actual dynamics results in

4

Vo = —#*—zz(y-2%)
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Example Cont'd

» Consider the Lyap. fcn candidate, obtained by adding a quadratic “error”
term iny — yp to W

1
V = W+ E(y — 2%)?
Vo= =2 (y -2 (v —322)
» The following choice of control action will then make V n.s.d.

v=—y+2z°+3zz
" V:—24—(y—22)2

» Application of Invariant-set theorem shows all states converges to zero
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Example: A non-minimum phase system
» Consider the system dynamics
y = v
7 4+ B—24yz=0
where again ¥ = [z 2|7
» The system is non-minimum phase since its zero-dynamics is unstable
» The zero-dynamics would be stable if we select y = 2z*:

1 1 .
Vo 522 + 626w Vo = —2* — zz(y — 22%)

» Consider the Lyap. fcn candidate

1 .
v = V0+§(y—2z4)2wV:—24—(y—224)(v—8z32—22)

» suggesting the following choice of control law

V= —y 4274 48574 22 V = —2* — (y — 27%)?

» Application of Invariant-set theorem shows all states converges to zero
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Tracking Control

» |/O linearization can be used in tracking problem
> Let pg = [yqg Yd - y‘(f_l)]T and the tracking error fi(t) = u(t) — puq(t)
» Theorem: Assume the system (22) has a well defined relative degree r

and 4 is smooth an.d bounded and that the solution W y4:
\Ud = W(Hda Wd), \Ud(O) =0

exists and bounded and is uniformly asymptotically stable. Choose k; s.t
K(s) =s"+ k15" "1+ ... + kis+ ko is Hurwitz, then by using

u= ﬁ[_Lf r,ul + ygr) - kr—lﬂr — e T koﬂr] (27)

Lgls
the whole system remains bounded and the tracking error [i converge to
zero exponentially.
» Proof: Refer to Isidori (1989).
» For perfect tracking 1(0) = pq(0)
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Tracking Control for Non-minimum Phase Systems:

» The tracking control (27) cannot be applied to non-minimum phase
systems since they cannot be inverted

» Hence we cannot have perfect or asymptotic tracking and should seek
controllers that yields small tracking errors
» One approach is the so-called Output redefinition

» The new output y; is defined s.t. the associated zero-dynamics is stable

» vy is defined s.t. it is close to the original output y in the frequency range
of interest

» Then, tracking y; also implies good tracking the original output y

» Example: Consider a linear system
_ (1=3) Bols)
A(s)
» Perfect/asymptotic tracking is impossible due to the presence of zero ©
s=0b
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Example Cont'd

> Let us redefine the output as
Bo(s)
A(s)

yi= u

with the desired output for y; be simply yq4

» A controller can be found s.t. y; asymptotically tracks yy. What about
the actual tracking error?

o (- 3)n= (-2

» Thus, the tracking error is proportional to the desired velocity yg:

Y1)~ ya(t) = Y20

» .. Tracking error is bounded as long as y4 is bounded, it is small when
the frequency content of yy is well below b
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> An alternative output, motivated by (1 — ) ~ 1/(1 + ) for small |s|/b:

Bo(S)

2T AG) (1 5)

= (1) (3= (13

» Thus, the tracking error is proportional to the desired acceleration y:

u

ol

Vd(t)
b2

y(t) = ya(t) = —
» Small tracking error if the frequency content of y, is below b
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Tracking Control

» Another approximate tracking (Hauser, 1989) can be obtained by
» When performing |/O linearization, using successive differentiation, simply
neglect the terms containing the input
» Keep differentiating n timed (system order)
» Approximately, there is no zero dynamics
» |t is meaningful if the coefficients of u at the intermediate steps are “small”
or the system is “weakly non-minimum phase” system
» The approach is similar to neglecting fast RHP zeros in linear systems.
» Zero-dynamics is the property of the plant, choice of input and output
and cannot be changed by feedback:
» Modify the plant (distribution of control surface on an aircraft or the mass
and stiffness in a robot)
» Change the output (or the location of sensor)
» Change the input (or the location of actuator)
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