

Signals and Systems Lecture 8: State Space Representation

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Winter 2014

Farzaneh	

ヨトィヨト

State Space Representation

Block Diagram of State Space Representation Solving State Equations by UL Method to Find Transition Matrix Defining Transfer Function from State Space Eq. State Space Realizations

State Space Representation

- Previously we learnt that for a LTI system with y(t): output signal, u(t): input signal, and h(t) impulse response y(t) = h(t) ∗ u(t) → Y(s) = H(s)U(s)
- ► This representation of the system only express I/O relation
- It does not give us internal specification of the system.
- State space representation not only provide us information on I/O but also gives us good view on internal specification of the system
- States of a system at time t₀ includes min required information to express the system situation at time t₀
- They are first degree equations

伺下 イヨト イヨト

State space representation of LTI system

 $\dot{X}(t) = AX(t) + BU(t)$ state equations Y(t) = CX(t) + DU(t) output equations $X \in R^n$: state vector

- $U \in R^m$: input vector
- $Y \in R^p$ output vector
- ► A^{n×n}: System Matrix
- $B^{n \times m}$: input matrix
- $C^{p \times n}$: output matrix
- ► D^{p×m}: coupling matrix
- Number of state usually equals to degree of the system
 - It usually equals to number of active elements in the system (# of capacitors and inductors in RLC circuits)
 - However in some cases like having cut-set of inductors and loop of capacitors degree of the system would be less than # of active elements
 - One could choose number of the states greater than n in such case some modes are not observable or controllable

et of states is <u>not unique for a system</u> Farzaneh Abdollahi Signal and Systems Lecture 8 < ⊒ >

Block Diagram of State Space Representation

Solving State Equations by UL

- ► Assuming x is causal ~ we are using UL
- $\dot{x} = Ax + Bu \stackrel{UL}{\Leftrightarrow} sX(s) x(0) = AX(s) + BU(s)$
- $X(s) = (sI A)^{-1}x(0) + (sI A)^{-1}BU(s)$
- Let us define $\phi(t) = L^{-1}\{(sI A)^{-1}\}$: Transition Matrix

$$\bullet x(t) = \underbrace{\phi(t)x(0)}_{ZIR} + \underbrace{\int_{0}^{\tau} \phi(\tau)Bu(t-\tau)d\tau}_{ZSR}$$

• For LTI systems $\phi(t) = e^{At}$

Methods to Find Transition Matrix

- 1. $\phi(t) = L^{-1}(sI A)^{-1}$ • Example: $A = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}$ • $\phi(t) = L^{-1}(sI - A)^{-1} = \begin{bmatrix} 3e^{-2t} - 2e^{-3t} & e^{-2t} - e^{-3t} \\ -6e^{-2t} + 6e^{-3t} & -2e^{-2t} + 3e^{-3t} \end{bmatrix}$
 - ► For large A, finding inverse matrix is time consuming and complicated

- 4 同 ト 4 ヨ ト - 4 ヨ ト - -

Methods to Find Transition Matrix

- 2. Approximate by Infinite Power Series
 - ► The transition matrix is system specification and input does not affect on it:

$$\dot{x} = Ax(t) \tag{1}$$

$$x(t) = \Phi(t)x(0) \tag{2}$$

• Let us represent transition matrix by an infinite power series:

$$x(t) = (k_0 + k_1 t + k_2 t^2 + ...) x_0$$
(3)

•
$$\dot{x}(t) = (k_1 + 2k_2t + ...)x_0$$

• $\therefore (k_1 + 2k_2t + 3k_3t^2 + ...)x_0 = A(k_0 + k_1t + ...)x_0$
• $k_1 = Ak_0, \ k_2 = A\frac{k_1}{2}, \ k_3 = A\frac{k_2}{3}$
• Substitute $t = 0$ in (3): $k_0 = I$
• $k_0 = I, \ k_1 = A, \ k_2 = \frac{A^2}{2!}, \ k_3 = \frac{A^3}{3!}$
• $\phi(t) = e^{At} = I + At + A^2\frac{t^2}{2!} + ...$

프 문 문 프 문

Methods to Find Transition Matrix

- 3. By Cayley Hamilton Theorem
 - Reminder: Eigne Value of Matrix A is a scalar value λ s.t.
 - $Av = \lambda v$
 - where v is a vector named Eigne vector
 - To find eigne values:
 - $\blacktriangleright |\lambda I A| = 0 \rightsquigarrow \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0 = 0$
 - The above equation is named characteristic equation of matrix A
 - Considering Cayley Hamilton Theorem result in [1]: $e^{At} = a_0(t)I + a_1(t)A + \ldots + a_{n-1}(t)A^{n-1}$
 - Eigne vector of matrix A is eigne vector of e^{At}

$$\left. \begin{array}{l} A v_i = \lambda_i v_i \\ A^2 v_i = \lambda_i^2 v_i \\ \vdots \\ A^n v_i = \lambda_i^n v_i \end{array} \right\} \Rightarrow e^{\lambda_i t} v_i = (a_0(t)I + a_1(t)\lambda_i + a_2(t)\lambda_i^2 + \ldots + a_{n-1}(t)\lambda^{n-1})v_i$$

• By assuming *n* distinct eigne values and solving *n* equations all coefficients $a_i(t)$ are obtained

Example

・ロト ・回ト ・ヨト ・ヨト

3

Defining Transfer Function from State Space Eq.

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

• Transfer fcn:
$$H(s) = \frac{Y(s)}{U(s)}$$

► Transfer fcn is ZSR: $sX(s) = AX(s) + BU(s) \rightarrow X(s) = (sI - A)^{-1}BU(s)$

•
$$Y(s) = [C(sI - A)^{-1}B + D]U(s)$$

- $\blacktriangleright H(s) = C(sI A)^{-1}B + D = C\frac{adj(sI A)}{det(sI A)}B + D$
- Poles of a system are eigne values of matrix A
- BUT all eigne values of A are not poles of the system (due to zero-pole cancelation)
 - ► If an unstable poles is canceled by a zero the system is not internally stable anymore

State Space Realizations

- Several state space realization can be obtained from a transfer fcn. two of them are introduced here.
 - 1. Controllable Canonical Form

• Consider
$$H(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0} = \frac{b(s)}{a(s)}, n > m$$

• If n = m then we can define $H(s) = b_n + \frac{\overline{b}_m s^m + \overline{b}_{m-1} s^{m-1} + \dots + \overline{b}_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$

Let us define a axillary fcn M(s)

•
$$\frac{Y(s)}{U(s)} = \frac{Y(s)}{M(s)} \cdot \frac{M(s)}{U(s)} = b(s) \cdot \frac{1}{a(s)}$$

- $M(s)a(s) = U(s) \longrightarrow M(s)(s^{n} + a_{n-1}s^{n-1} + \ldots + a_{0}) = U(s)$
- $m^{n}(t) = -a_{n-1}m^{n-1}(t) \ldots a_{0}m(t) + u(t)$
- $Y(s) = b(s)M(s) \rightarrow y(t) = b_m m(t)^m + \ldots + b_1 \dot{m}(t) + b_0 m(t)$

イロト イポト イヨト イヨト

Controllable Canonical Form

Outline

State Space Representation

2. Diagonal Form and Jordan Form

• Consider characteristic equation has *n* separate roots: $H(s) = \frac{\beta_1}{s-P_1} + \frac{\beta_2}{s-P_2} + \frac{\beta_3}{s-P_3} + \dots + \frac{\beta_n}{s-P_n}$ • $\therefore A = \begin{bmatrix} P_1 & \dots & 0 \\ 0 & P_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & P_n \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, C = [\beta_1 \ \beta_2 \ \dots \ \beta_n], D = 0$

2. Diagonal Form and Jordan Form

If there are frequent poles, for example if there are three similar poles :H(s) = ^{β₁}/_{s-P₁} + ^{β₂}/_{(s-P₂)³} + ^{β₃}/_{(s-P₂)²} + ^{β₄}/_{s-P₂}, matrices A, B, and C are modified as follows:

$$A = \begin{bmatrix} P_1 & 0 & 0 & 0 \\ 0 & P_2 & 1 & 0 \\ 0 & 0 & P_2 & 1 \\ 0 & 0 & 0 & P_2 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$
$$C = [\beta_1 \ \beta_2 \ \beta_3 \ \beta_4], D = 0$$

• Example: $H(s) = \frac{s^2+3s+1}{(s+1)^2(s+3)}$

A B M A B M

W. L. Brogan, *Modern Control Theory (3rd Edition)*. Prentice Hall, 1991.

3

- ∢ 🗇 ト