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Outline State Space Representation

State Space Representation

I Previously we learnt that for a LTI system with y(t): output signal, u(t):
input signal, and h(t) impulse response
y(t) = h(t) ∗ u(t) Y (s) = H(s)U(s)

I This representation of the system only express I/O relation

I It does not give us internal specification of the system.

I State space representation not only provide us information on I/O but
also gives us good view on internal specification of the system

I States of a system at time t0 includes min required information to express
the system situation at time t0

I They are first degree equations
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Outline State Space Representation

I State space representation of LTI system

Ẋ (t) = AX (t) + BU(t) state equations

Y (t) = CX (t) + DU(t) output equations
I X ∈ Rn: state vector
I U ∈ Rm: input vector
I Y ∈ Rp output vector
I An×n: System Matrix
I Bn×m: input matrix
I C p×n: output matrix
I Dp×m: coupling matrix

I Number of state usually equals to degree of the system
I It usually equals to number of active elements in the system (# of

capacitors and inductors in RLC circuits)
I However in some cases like having cut-set of inductors and loop of

capacitors degree of the system would be less than # of active elements
I One could choose number of the states greater than n in such case some

modes are not observable or controllable

I Set of states is not unique for a system
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Outline State Space Representation

Block Diagram of State Space Representation
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Outline State Space Representation

Solving State Equations by UL

I Assuming x is causal  we are using UL

I ẋ = Ax + Bu
UL⇔sX (s)− x(0) = AX (s) + BU(s)

I X (s) = (sI − A)−1x(0) + (sI − A)−1BU(s)

I Let us define φ(t) = L−1{(sI − A)−1}: Transition Matrix

I x(t) = φ(t)x(0)︸ ︷︷ ︸
ZIR

+

∫ t

0
φ(τ)Bu(t − τ)dτ︸ ︷︷ ︸

ZSR

I For LTI systems φ(t) = eAt

Farzaneh Abdollahi Signal and Systems Lecture 8 6/16



Outline State Space Representation

Methods to Find Transition Matrix

1. φ(t) = L−1(sI − A)−1

I Example: A =

[
0 1
−6 −5

]
I φ(t) = L−1(sI − A)−1 =

[
3e−2t − 2e−3t e−2t − e−3t

−6e−2t + 6e−3t −2e−2t + 3e−3t

]
I For large A, finding inverse matrix is time consuming and complicated
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Outline State Space Representation

Methods to Find Transition Matrix

2. Approximate by Infinite Power Series
I The transition matrix is system specification and input does not affect on it:

ẋ = Ax(t) (1)

x(t) = Φ(t)x(0) (2)

I Let us represent transition matrix by an infinite power series:

x(t) = (k0 + k1t + k2t
2 + . . .)x0 (3)

I ẋ(t) = (k1 + 2k2t + . . .)x0

I ∴(k1 + 2k2t + 3k3t
2 + . . .)x0 = A(k0 + k1t + . . .)x0

I k1 = Ak0, k2 = A k1

2 , k3 = A k2

3
I Substitute t = 0 in (3): k0 = I
I k0 = I , k1 = A, k2 = A2

2! , k3 = A3

3!

I φ(t) = eAt = I + At + A2 t2

2! + . . .
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Outline State Space Representation

Methods to Find Transition Matrix
3. By Cayley Hamilton Theorem

I Reminder: Eigne Value of Matrix A is a scalar value λ s.t.
I Av = λv
I where v is a vector named Eigne vector

I To find eigne values:
I |λI − A| = 0 λn + an−1λ

n−1 + . . .+ a1λ+ a0 = 0
I The above equation is named characteristic equation of matrix A

I Considering Cayley Hamilton Theorem result in [1]:
eAt = a0(t)I + a1(t)A + . . .+ an−1(t)An−1

I Eigne vector of matrix A is eigne vector ofeAt

Avi = λivi

A2vi = λ2
i vi

...
Anvi = λn

i vi

⇒ eλi tvi = (a0(t)I +a1(t)λi +a2(t)λ2
i +. . .+an−1(t)λn−1)vi

I By assuming n distinct eigne values and solving n equations all coefficients
ai (t) are obtained
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Outline State Space Representation

Example

I A =

[
0 1
−6 −5

]
I λ1 = −2, λ2 = −3

I e−2t = a0(t)− 2a1(t)

I e−3t = a0(t)− 3a1(t)

I a1(t) = e−2t − e−3t

I a0(t) = 3e−2t − 2e−3t

I φ(t) = eAt =

[
3e−2t − 2e−3t e−2t − e−3t

−6e−2t + 6e−3t −2e−2t + 3e−3t

]
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Outline State Space Representation

Defining Transfer Function from State Space Eq.

ẋ = Ax + Bu

y = Cx + Du

I Transfer fcn: H(s) = Y (s)
U(s)

I Transfer fcn is ZSR:
sX (s) = AX (s) + BU(s) X (s) = (sI − A)−1BU(s)

I Y (s) = [C (sI − A)−1B + D]U(s)

I H(s) = C (sI − A)−1B + D=C adj(sI−A)
det(sI−A)B + D

I Poles of a system are eigne values of matrix A
I BUT all eigne values of A are not poles of the system (due to zero-pole

cancelation)
I If an unstable poles is canceled by a zero the system is not internally stable

anymore
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Outline State Space Representation

State Space Realizations

I Several state space realization can be obtained from a transfer fcn. two
of them are introduced here.

1. Controllable Canonical Form
I Consider H(s) =

bmsm+bm−1sm−1+...+b0

sn+an−1sn−1+...+a0
= b(s)

a(s)
, n > m

I If n = m then we can define H(s) = bn +
b̄msm+b̄m−1sm−1+...+b̄0

sn+an−1sn−1+...+a0

I Let us define a axillary fcn M(s)
I Y (s)

U(s)
= Y (s)

M(s)
.M(s)

U(s)
= b(s). 1

a(s)

I M(s)a(s) = U(s) M(s)(sn + an−1s
n−1 + . . .+ a0) = U(s)

I mn(t) = −an−1m
n−1(t)− . . .− a0m(t) + u(t)

I Y (s) = b(s)M(s) y(t) = bmm(t)m + . . .+ b1ṁ(t) + b0m(t)
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Outline State Space Representation

Controllable Canonical Form
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Outline State Space Representation

I (assume m = n − 1) By defining output of integrators as states:
ẋ1 = x2

ẋ2 = x3

...

ẋn−1 = xn

ẋn = −a0x1 − a1x2 − . . .− an−1xn + u

y = b0x1 + b1x2 + . . .+ bn−1xn

I ∴A =


0 1 . . . . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 . . . . . . 1
−a0 −a1 . . . . . . −an−1

 , B =


0
...
...
0
1

,

C = [b0 b1 . . . . . . bn−1],D = 0

I Example: H(s) = s3+6s2+5s+2
s3+7s2+3s+1
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Outline State Space Representation

2. Diagonal Form and Jordan Form

I Consider characteristic equation has n separate
roots:H(s) = β1

s−P1
+ β2

s−P2
+ β3

s−P3
+ . . .+ βn

s−Pn

I ∴A =


P1 . . . . . . 0
0 P2 . . . 0
...

...
...

...
0 . . . . . . Pn

 , B =


1
1
...
1

,

C = [β1 β2 . . . βn],D = 0
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Outline State Space Representation

2. Diagonal Form and Jordan Form

I If there are frequent poles, for example if there are three similar poles
:H(s) = β1

s−P1
+ β2

(s−P2)3 + β3

(s−P2)2 + β4
s−P2

, matrices A,B, and C are

modified as follows:

A =


P1 0 0 0
0 P2 1 0
0 0 P2 1
0 0 0 P2

 , B =


1
0
0
1


C = [β1 β2 β3 β4],D = 0

I Example: H(s) = s2+3s+1
(s+1)2(s+3)
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Outline State Space Representation

W. L. Brogan, Modern Control Theory (3rd Edition).
Prentice Hall, 1991.
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