

Neural Networks Lecture 9: Designing Controller Using Neural Networks

H.A. Talebi Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Open-Loop Inverse Dynamics

NN in Control Feedback Gradient Through Plant Gradient Through The Model of The Plant

Optimal Control Using Hopfield

Adaptive Control Using Neural Networks

Open-Loop Inverse Dynamics

- The Inverse model obtained from identification is directly applied.
- ► ∴ Considering reference signal r

$$y = f^{-1}fr = r$$

 This method can be considered as Indirect adaptive control

- - E - b

NN in Control Feedback

- ▶ Objective: Tacking reference signal *r*
- But: In this model, output of NN for training is not available ~>> BP can not be applied directly.

$$e = r - y, \quad E = \frac{1}{2}e^{2}$$

 $\triangle w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}}$

• Only output of the plant, y is available.

Amirkabi

Gradient Through Plant

The plant can be considered as output layer of NN with fixed weights

desired output of the NN is available and BP algorithm can be employed.

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial e} \cdot \frac{\partial e}{\partial y} \cdot \frac{\partial y}{\partial w_{ij}}$$
$$\frac{\partial E}{\partial e} = e, \quad \frac{\partial e}{\partial y} = -1$$
$$\frac{\partial y}{\partial w_{ii}} = \frac{\partial y}{\partial u} \cdot \frac{\partial u}{\partial w_{ii}}$$

► To train the NN, $\frac{\partial y}{\partial u}$ is required, therefore, this method is so-called Gradient through plant

H. A. Talebi, Farzaneh Abdollahi

NN in Control Feedback

- If the plant dynamics is not known $\frac{\partial y}{\partial u}$ is not available!!
- Solution
 - 1. Using a NN identifier to identify the system dynamics directly.
 - Then apply $\frac{\partial \hat{y}}{\partial u}$ instead of $\frac{\partial y}{\partial u}$.
 - This method is so-called Gradient Through The Model of The Plant
 - 2. Approximate $\frac{\partial y}{\partial u}$ with $sign\{\frac{\partial y}{\partial u}\}$ which is usually available without knowing the dynamics
 - If the direction of the gradient is true, the magnitude of ∂y/∂u can be compensated by η

H. A. Talebi, Farzaneh Abdollahi

Amirkabi

An Example of Optimal Control Using Hopfield [1]

- It can be shown that solution of the general nonlinear programming problem with inequality constraint: min_{v∈Rⁿ} φ(v) subject to f_i(v) ≥ 0 i = 1,..., q equivalents to solving the canonical nonlinear programming circuit.
- ► It is described by the following equation $C_i \frac{dv_i}{dt} = -\frac{\partial \phi}{\partial v_i} - \sum_{j=1}^{p} g(f(v)) \frac{\partial f_j}{\partial v_i}.$
- ▶ \(\phi(.)\) and f(.) and their 1st and 2nd order partial derivatives exist and are continuous.
- g(.) is passive monotone nondecreasing fcn, continuous, but not necessarily differentiable, imposes the constraints in the circuit realization.

・ 同 ト ・ ヨ ト ・ ヨ ト

Canonical nonlinear programming circuit-dynamic model

7/31

Lecture 9

Outline Open-Loop Inverse Dynamics NN in Control Feedback Optimal Control Using Hopfield Adaptive Control Using

Let us consider discrete time, linear quadratic regulator (LQR) with objective:

$$\min_{u_k, x_k} J = \frac{1}{2} x_N^T S x_N + \frac{1}{2} \sum_{k=0}^{N-1} \{ x_k^T Q x_k + u_k^T R u_k \}$$

subject to the plant dynamics $x_{k+1} = Ax_k + Bu_k$, k = 0, ..., N - 1 $\blacktriangleright x \in \mathbb{R}^n$, $u \in \mathbb{R}^p$

• Assume (A, B) is controllable

Amirkabin

Outline Open-Loop Inverse Dynamics NN in Control Feedback Optimal Control Using Hopfield Adaptive Control Using

- The following theorem help us to describe equality constraint by inequalities
- ► Theorem: *m* equality constraints ∑_{j=1}ⁿ a_{ij}x_j = c_i for i = 1, ..., *m* is equivalent to inequality constraints: ∑_{j=1}ⁿ a_{ij}x_j ≤ c_i and ∑_{j=1}ⁿ (∑_{i=1}^m a_{ij})x_j ≥ ∑_{i=1}^m c_i
- ▶ ... Our problem can be presented as $\min_{v} J$ subject to $f(v_i) = \sum_{j=1}^{(N+1)n+p} \bar{a}_{ij} v_j \ge 0$ for i = 1, ..., Nn + 1
- \bar{a}_{ij} are the elements of matrix \bar{A} :

▶ To implement the NN, we should find:

$$\begin{array}{l} \bullet \quad \frac{\partial f_i}{\partial v_i} = \bar{a}_{ij} \\ \bullet \quad \frac{\partial J}{\partial v_i} = \begin{cases} \begin{array}{c} \sum_{j=1}^n q_{i-ln,j} v_{ln+j} & i = ln+1, \dots, (l+1)n, \\ l = 0, \dots, N-1 \\ \\ \sum_{j=1}^n s_{i-Nn,j} v_{Nn+j} & i = Nn+1, \dots, (N+1)n \\ \\ \sum_{j=1}^n r_{i-(N+1)n,j} v_{(N+1)n+j} & i = (N+1)n+1, \dots, (N+1)n+p \\ \end{array} \end{cases}$$

(人間) システン イラン

3

Adaptive Control Using Neural Networks

1. Direct Control

 Parameters of the controller is directly adjusted to reduce the norm of output error

Adaptive Control Using Neural Networks

2. Indirect Control

The model of the plant is identified first and the parameters of the controller is defined based on identified model

▶ They can be controller y Neural networks

< 6 b

A E > A E >

э

Example [2]

- ► Consider the difference equation: y_p(k + 1) = f[y_p(k), y_p(k - 1)] + u(k)
- ► f(.) is unknown
- For the sake of simulation $f[y_p(k), y_p(k-1)] = \frac{y_p(k)y_p(k-1)[y_p(k)+2.5]}{1+y_p^2(k)+y_p^2(k-1)}$
- ► Reference model: $y_m(k+1) = 0.6y_m(k) + 0.2y_m(k-1) + r(k)$
- $r(k) = sin(\frac{2\pi k}{25})$: a bounded reference input
- ► Objective: Determine a bound control signal u(k) s.t. $\lim_{k\to\infty} e_c(k) = y_p(k) - y_m(k) = 0$

▲□ → ▲ 三 → ▲ 三 →

- ▶ If f(.) was known the proper control signal would be $u(k) = -f[y_p(k), y_p(k-1)] + 0.6y_p(k) + 0.2y_p(k-1) + r(k)$ yields $e_c(k+1) = 0.6e_c(k) + 0.2e_c(k-1)$
 - : the reference model is a.s. since $\lim_{k\to\infty} e_c(k) = 0$
- Since the plant is unknown, assuming the unforced system is stable, f(.) is estimated by series parallel NN identifier as f̂(.)
- Hence $u(k) = -\hat{f}[y_p(k), y_p(k-1)] + 0.6y_p(k) + 0.2y_p(k-1) + r(k)$

★聞▶ ★注▶ ★注▶

Amirkabii

Example Cont'd

- Identification will be off-line
- Once the plant is identified in desired level of accuracy, control is initiated to make the plant output follow the reference model.
- Note that using the estimated function in fb loop may result in unbounded solution
- Hence for on-line control, identification and control should proceed simultaneously.
- ► The time interval *T_i* and *T_c* for updating the identification and control parameters should be chosen wisely.

A E F A E F

- ▶ a) Identified signal \hat{y}_p (dashed) and output of the plant with no control action (solid)
- b) Response for r = sin(^{2πk}/₂₅) with control (dashed); reference signal (solid)
- $T_i = T_c = 1$

- Choose $T_i = T_c = 10$
- Response for $r = sin(\frac{2\pi k}{25})$ with control (dashed); reference signal (solid)
- To have stable on-line control, the identification should be accurate enough before the control action is initiated!

Example 2 [2]

- Consider the difference equation: y_p(k+1) = f[y_p(k), y_p(k-1), ..., y_p(k-n+1)] + ∑_{j=0}^{m-1} β_ju(k-j) m ≤ n
 f(.) and β_i are unknown; β₀ is nonzero with known sign
- ► For the sake of simulation $f[y_p(k), y_p(k-1)..., y_p(k-n+1)] = \frac{5y_p(k)y_p(k-1)}{1+y_p^2(k)+y_p^2(k-1)+y_p^2(k-2)};$ $\beta_0 = 1, \beta_1 = 0.8$
- ► Reference model: $y_m(k+1) = 0.32y_m(k) + 0.64y_m(k-1) - 0.5y_m(k-2) + r(k)$
- $r(k) = sin(\frac{2\pi k}{25})$: a bounded reference input
- ► Objective: Determine a bound control signal u(k) s.t. lim_{k→∞} e_c(k) = y_p(k) - y_m(k) = 0
- Assume $sgn(\beta_0) = +1; \beta_0 \ge 0.1$

・ロト ・ 一下・ ・ ヨト・ ・ 日・

- The control signal is: $u(k) = \frac{1}{\hat{\beta}_0} [-\hat{f}_k[y_p(k), y_p(k-1), y_p(k-2)] \hat{\beta}_1 u(k-1) + 0.32y_p(k) + 0.64y_p(k-1) 0.5y_p(k-2) + r(k)]$
- Choose $T_i = T_c = 10$
- ► Response for r = sin(^{2πk}/₂₅) with control (dashed); reference signal (solid) left): first 100 sec; right) after 9900sec

- ► Consider dynamics similar to Example 2 but replace 0.8u(k-1) with $\frac{1.1u(k-1)}{2}$
- Apply similar controller
- ▶ The system is nonminimum phase (it has zero out of unit circle)
- ▶ ∴ The output error is bounded but the control signal is unbounded

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ left) Response for $r = sin(\frac{2\pi k}{25})$ with control (dashed); reference signal (solid)
- right) control signal u(k)

Inverse Dynamics Model Learning (IDML) [3]

- Consider the system dynamics $\ddot{x} = f(x, \dot{x}) + u$, y = x
- ▶ To track reference signal y_a , control signal can be defined $u = u_n + u_c$
 - $u_c = (-\ddot{y}_a) + K_1(\dot{y}_r \dot{y}_a) + K_0(y_r y_a)$ is conventional FB controller • $u_n = -f(x, \dot{x})$
- f(.) is not known and is estimated by NN $\rightsquigarrow u_n = \hat{f}$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

- The error signal for training is $e_n = u u_n = u_c$
- The learning rule is $\dot{w} = \eta \frac{\partial \hat{f}}{\partial w} u_c$

(人間) トイヨト イヨト

3

Example 4 [3]

• Consider one-link flexible arm: $M(\delta) \begin{bmatrix} \ddot{\theta} \\ \ddot{\delta} \end{bmatrix} + \begin{bmatrix} h_1(\dot{\theta}, \delta, \dot{\delta}) + F_1 \dot{\theta} + f_c \\ h_2(\dot{\theta}, \delta) + K \delta + F_2 \dot{\delta} \end{bmatrix} = \begin{bmatrix} u \\ 0 \end{bmatrix}$

- θ : hub angle
- δ: deflection variable
- h_1 and h_2 are Coriolis and Centrifugal forces, respectively
- M(δ): P.D. inertia matrix
- ► *u*: torque
- ► F₁: viscus damping; F₂ damping matrix;
- *f_c* hub friction; *K* stiffness matrix

A E F A E F

- The nonlinear dynamics is assumed to be unknown
- ▶ For the sake of simulation, the numerical values are

$$M(\delta) = \begin{bmatrix} m(\delta) & 1.0703 & -0.0282 \\ 1.0703 & 1.6235 & -0.4241 \\ -0.0282 & -0.4241 & 2.592 \end{bmatrix}; \\ m(\delta) = 0.9929 + 0.12(\delta_1^2 + \delta_2^2) - 0.24\delta_1\delta_2 \\ \mathbf{k} = \begin{bmatrix} 17.4561 & 0 \\ 0 & 685.5706 \end{bmatrix} \\ \mathbf{h}_1(\dot{\theta}, \delta, \dot{\delta}) = 0.24\dot{\theta}[(\delta_1 - \delta_2)\dot{\delta}_1 - (\delta_1 - \delta_2)\dot{\delta}_2] \\ \mathbf{h}_2(\dot{\theta}, \delta) = \begin{bmatrix} -0.12\dot{\theta}^2(\delta_1 - \delta_2) \\ -0.12\dot{\theta}^2(\delta_2 - \delta_1) \end{bmatrix} \\ \mathbf{k} f_c = C_{coul}(\frac{2}{1 + e^{-10\theta}} - 1); \ C_{coul} = \begin{cases} 4.74 & \dot{\theta} > 0 \\ 4.77 & \dot{\theta} < 0 \end{cases}$$

▶ By output redefinition, the nonminimum phase problem is solved

- The NN structure:
 - Three layer: 4 input; 5 hidden,1 output
- $K_0 = 1; K_1 = 2$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Figure 4.7: Output responses for System II to *sin(t)* reference trajectory using the Neural Networks Lecture 9

28/31

æ

igure 4.8: Actual tip responses to step input for System II using the IDML neural etwork controller; (dashed line corresponds to model with Coulomb friction at the ub).

イロト イポト イヨト イヨト

э

Outline Open-Loop Inverse Dynamics NN in Control Feedback Optimal Control Using Hopfield Adaptive Control Using

Example 4 Cont'd

H. A. Talebi, Farzaneh Abdollahi

Neural Networks

Lecture 9

References

- M P. Kennedy and L. O. Chua, "Neural networks for nonlinear programming," *IEEE Transactions of Circuit and Systems*, vol. 35, no. 5, pp. 554–562, 1988.
- K.S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," *IEEE Trans. on Neural Networks*, vol. 1, no. 1, pp. 4–27, March 1990.
 - H.A. Talebi, .R.V Patel and K. Khorasani, Control of Flexible-link Manipulators Using Neural Networks.
 Springer, 2001.