Neural Networks

Lecture 9: Designing Controller Using Neural Networks

H.A. Talebi
Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology
Open-Loop Inverse Dynamics

NN in Control Feedback
 Gradient Through Plant
 Gradient Through The Model of The Plant

Optimal Control Using Hopfield

Adaptive Control Using Neural Networks
Open-Loop Inverse Dynamics

- The Inverse model obtained from identification is directly applied.
- Considering reference signal \(r \)
 \[
 y = f^{-1} f r = r
 \]
- This method can be considered as Indirect adaptive control
Objective: Tacking reference signal r

But: In this model, output of NN for training is not available \implies BP cannot be applied directly.

\[e = r - y, \quad E = \frac{1}{2} e^2 \]

\[\triangle w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}} \]

Only output of the plant, y is available.
Gradient Through Plant

- The plant can be considered as output layer of NN with fixed weights.
- Therefore, desired output of the NN is available and BP algorithm can be employed.

\[
\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial e} \cdot \frac{\partial e}{\partial y} \cdot \frac{\partial y}{\partial w_{ij}}
\]

\[
\frac{\partial E}{\partial e} = e, \quad \frac{\partial e}{\partial y} = -1
\]

\[
\frac{\partial y}{\partial w_{ij}} = \frac{\partial y}{\partial u} \cdot \frac{\partial u}{\partial w_{ij}}
\]

- To train the NN, \(\frac{\partial y}{\partial u} \) is required, therefore, this method is so-called Gradient through plant.
NN in Control Feedback

- If the plant dynamics is not known, \(\frac{\partial y}{\partial u} \) is not available!!

- **Solution**
 1. Using a NN identifier to identify the system dynamics directly.
 - Then apply \(\frac{\partial \hat{y}}{\partial u} \) instead of \(\frac{\partial y}{\partial u} \).
 - This method is so-called *Gradient Through The Model of The Plant*
 2. Approximate \(\frac{\partial y}{\partial u} \) with \(\text{sign}\{\frac{\partial y}{\partial u}\} \) which is usually available without knowing the dynamics.
 - If the direction of the gradient is true, the magnitude of \(\frac{\partial y}{\partial u} \) can be compensated by \(\eta \).
An Example of Optimal Control Using Hopfield [1]

▶ It can be shown that solution of the general nonlinear programming problem with inequality constraint: \(\min_{v \in \mathbb{R}^n} \phi(v) \) subject to \(f_i(v) \geq 0 \quad i = 1, \ldots, q \) equivalents to solving the canonical nonlinear programming circuit.

▶ It is described by the following equation
\[
C_i \frac{dv_i}{dt} = -\frac{\partial \phi}{\partial v_i} - \sum_{j=1}^{p} g(f(v)) \frac{\partial f_j}{\partial v_i}.
\]

▶ \(\phi(.) \) and \(f(.) \) and their 1\(^{st}\) and 2\(^{nd}\) order partial derivatives exist and are continuous.

▶ \(g(.) \) is passive monotone nondecreasing fcn, continuous, but not necessarily differentiable, imposes the constraints in the circuit realization.
Let us consider discrete time, linear quadratic regulator (LQR) with objective:

$$\min_{u_k,x_k} J = \frac{1}{2} x_N^T S x_N + \frac{1}{2} \sum_{k=0}^{N-1} \{ x_k^T Q x_k + u_k^T R u_k \}$$

subject to the plant dynamics $x_{k+1} = Ax_k + Bu_k$, $k = 0, \ldots, N - 1$

$x \in \mathbb{R}^n$, $u \in \mathbb{R}^p$

Assume (A, B) is controllable

Define $\nu = (x_0, x_1, \ldots, x_N, u) \in \mathbb{R}^{(N+1)n+p}$,

$$\Gamma = \begin{bmatrix} -A & I & 0 & 0 & \cdots & 0 & 0 & -B & 0 & \cdots & 0 & 0 \\ 0 & -A & I & 0 & \cdots & 0 & 0 & 0 & -B & \cdots & 0 & 0 \\ 0 & 0 & -A & I & \cdots & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & I & 0 & 0 & 0 & \cdots & -B & 0 \\ 0 & 0 & 0 & 0 & \cdots & -A & I & 0 & 0 & \cdots & 0 & -B \end{bmatrix}$$

:. The problem can be defined as $\min_{\nu} J$ s.t. $\Gamma \nu = 0$
The following theorem help us to describe equality constraint by inequalities.

Theorem: m equality constraints \(\sum_{j=1}^{n} a_{ij}x_j = c_i \) for \(i = 1, \ldots, m \) is equivalent to inequality constraints: \(\sum_{j=1}^{n} a_{ij}x_j \leq c_i \) and \(\sum_{j=1}^{n}(\sum_{i=1}^{m} a_{ij})x_j \geq \sum_{i=1}^{m} c_i \).

∴ Our problem can be presented as

\[
\min_v J \quad \text{subject to} \quad f(v_i) = \sum_{j=1}^{(N+1)n+p} \bar{a}_{ij}v_j \geq 0 \quad \text{for} \quad i = 1, \ldots, Nn + 1
\]

\(\bar{a}_{ij} \) are the elements of matrix \(\bar{A} \):

\[
\begin{bmatrix}
-A & I & 0 & 0 & \ldots & 0 & 0 & -B & 0 & \ldots & 0 & 0 \\
0 & -A & I & 0 & \ldots & 0 & 0 & 0 & -B & \ldots & 0 & 0 \\
0 & 0 & -A & I & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & I & 0 & 0 & 0 & \ldots & -B & 0 \\
0 & 0 & 0 & 0 & \ldots & -A & I & 0 & 0 & \ldots & 0 & -B \\
\alpha^T & \gamma & \gamma & \ldots & \gamma & 1 & \beta^T & \beta^T & \ldots & \beta^T & \beta^T & \beta^T
\end{bmatrix}
\]

\(\gamma = (\alpha^T - 1) \), \(\alpha = (\sum_{i=1}^{n} a_{i1}, \sum_{i=1}^{n} a_{i2}, \ldots, \sum_{i=1}^{n} a_{in})^T \),

\(1 = (1, 1, \ldots, 1)^T \), \(\beta = (\sum_{i=1}^{n} b_{i1}, \sum_{i=1}^{n} b_{i2}, \ldots, \sum_{i=1}^{n} b_{in})^T \).
To implement the NN, we should find:

\[\frac{\partial f_i}{\partial v_i} = \bar{a}_{ij} \]

\[\frac{\partial J}{\partial v_i} = \begin{cases}
\sum_{j=1}^{n} q_{i-ln,j} v_{ln+j} & i = ln + 1, \ldots, (l + 1)n, \\
\sum_{j=1}^{n} s_{i-Nn,j} v_{Nn+j} & i = Nn + 1, \ldots, (N + 1)n \\
\sum_{j=1}^{n} r_{i-(N+1)n,j} v_{(N+1)n+j} & i = (N + 1)n + 1, \ldots, (N + 1)n + p
\end{cases} \]

- \(q_{ij}, s_{ij}, r_{ij} \) are elements of \(Q, S, R \) respectively
1. Direct Control
 ▶ Parameters of the controller is directly adjusted to reduce the norm of output error
2. **Indirect Control**

- The model of the plant is identified first and the parameters of the controller is defined based on identified model
They can be controller y Neural networks.
Example [2]

- Consider the difference equation:
 \[y_p(k + 1) = f[y_p(k), y_p(k - 1)] + u(k) \]
- \(f(.) \) is unknown
- For the sake of simulation \(f[y_p(k), y_p(k - 1)] = \frac{y_p(k)y_p(k-1)[y_p(k)+2.5]}{1+y_p^2(k)+y_p^2(k-1)} \)
- Reference model: \(y_m(k + 1) = 0.6y_m(k) + 0.2y_m(k - 1) + r(k) \)
- \(r(k) = \sin(\frac{2\pi k}{25}) \): a bounded reference input
- **Objective:** Determine a bound control signal \(u(k) \) s.t.
 \[\lim_{k \to \infty} e_c(k) = y_p(k) - y_m(k) = 0 \]
Example Cont’d

- If $f(.)$ was known the proper control signal would be

 $u(k) = -f[y_p(k), y_p(k - 1)] + 0.6y_p(k) + 0.2y_p(k - 1) + r(k)$ yields

 $e_c(k + 1) = 0.6e_c(k) + 0.2e_c(k - 1)$

 \therefore the reference model is a.s. since $\lim_{k \to \infty} e_c(k) = 0$

- Since the plant is unknown, assuming the unforced system is stable, $f(.)$ is estimated by series parallel NN identifier as $\hat{f}(.)$

- Hence $u(k) = -\hat{f}[y_p(k), y_p(k - 1)] + 0.6y_p(k) + 0.2y_p(k - 1) + r(k)$
Example Cont’d

- Identification will be off-line
- Once the plant is identified in desired level of accuracy, control is initiated to make the plant output follow the reference model.
- Note that using the estimated function in fb loop may result in unbounded solution
- Hence for on-line control, identification and control should proceed simultaneously.
- The time interval T_i and T_c for updating the identification and control parameters should be chosen wisely.
Example Cont’d

- a) Identified signal \(\hat{y}_p \) (dashed) and output of the plant with no control action (solid)

- b) Response for \(r = \sin(\frac{2\pi k}{25}) \) with control (dashed); reference signal (solid)

- \(T_i = T_c = 1 \)
Example Cont’d

- Choose $T_i = T_c = 10$
- Response for $r = \sin\left(\frac{2\pi k}{25}\right)$ with control (dashed); reference signal (solid)
- \therefore To have stable on-line control, the identification should be accurate enough before the control action is initiated!
Example 2 [2]

Consider the difference equation:
\[y_p(k+1) = f[y_p(k), y_p(k-1), \ldots, y_p(k-n+1)] + \sum_{j=0}^{m-1} \beta_j u(k-j) \]
\[m \leq n \]

- \(f(.) \) and \(\beta_j \) are unknown; \(\beta_0 \) is nonzero with known sign
- For the sake of simulation
\[f[y_p(k), y_p(k-1), \ldots, y_p(k-n+1)] = \frac{5y_p(k)y_p(k-1)}{1+y_p^2(k)+y_p^2(k-1)+y_p^2(k-2)} \]
\[\beta_0 = 1, \beta_1 = 0.8 \]
- Reference model:
\[y_m(k+1) = 0.32y_m(k) + 0.64y_m(k-1) - 0.5y_m(k-2) + r(k) \]
- \(r(k) = \sin\left(\frac{2\pi k}{25}\right) \): a bounded reference input
- Objective: Determine a bound control signal \(u(k) \) s.t.
\[\lim_{k \to \infty} e_c(k) = y_p(k) - y_m(k) = 0 \]
- Assume \(sgn(\beta_0) = +1; \beta_0 \geq 0.1 \)
Example 2 Cont’d

- The control signal is: \(u(k) = \frac{1}{\beta_0} \left[-\hat{f}_k [y_p(k), y_p(k - 1), y_p(k - 2)] - \hat{\beta}_1 u(k - 1) + 0.32y_p(k) + 0.64y_p(k - 1) - 0.5y_p(k - 2) + r(k) \right] \)
- Choose \(T_i = T_c = 10 \)
- Response for \(r = \sin\left(\frac{2\pi k}{25}\right) \) with control (dashed); reference signal (solid) left): first 100 sec; right) after 9900 sec
Example 3 [2]

- Consider dynamics similar to Example 2 but replace $0.8u(k-1)$ with $1.1u(k-1)$
- Apply similar controller
- The system is nonminimum phase (it has zero out of unit circle)
- \[\therefore\] The output error is bounded but the control signal is unbounded
Example 3 Cont’d

- left) Response for \(r = \sin\left(\frac{2\pi k}{25}\right) \) with control (dashed); reference signal (solid)
- right) control signal \(u(k) \)
Consider the system dynamics $\ddot{x} = f(x, \dot{x}) + u, \ y = x$

To track reference signal y_a, control signal can be defined $u = u_n + u_c$

- $u_c = (-\ddot{y}_a) + K_1(\dot{y}_r - \dot{y}_a) + K_0(y_r - y_a)$ is conventional FB controller
- $u_n = -f(x, \dot{x})$

$f(.)$ is not known and is estimated by NN $\implies u_n = \hat{f}$
The error signal for training is $e_n = u - u_n = u_c$.

The learning rule is $\dot{w} = \eta \frac{\partial \hat{f}}{\partial w} u_c$.
Example 4 [3]

Consider one-link flexible arm:

\[
M(\delta) \begin{bmatrix} \ddot{\theta} \\ \ddot{\delta} \end{bmatrix} + \begin{bmatrix} h_1(\dot{\theta}, \delta, \dot{\delta}) + F_1 \dot{\theta} + f_c \\ h_2(\dot{\theta}, \delta) + K \delta + F_2 \dot{\delta} \end{bmatrix} = \begin{bmatrix} u \\ 0 \end{bmatrix}
\]

- \(\theta\): hub angle
- \(\delta\): deflection variable
- \(h_1\) and \(h_2\) are Coriolis and Centrifugal forces, respectively
- \(M(\delta)\): P.D. inertia matrix
- \(u\): torque
- \(F_1\): viscous damping; \(F_2\) damping matrix;
- \(f_c\) hub friction; \(K\) stiffness matrix
Example 4 Cont’d

- The nonlinear dynamics is assumed to be unknown.
- For the sake of simulation, the numerical values are

 \[M(\delta) = \begin{bmatrix}
 m(\delta) & 1.0703 & -0.0282 \\
 1.0703 & 1.6235 & -0.4241 \\
 -0.0282 & -0.4241 & 2.592 \\
 \end{bmatrix}; \]

 \[m(\delta) = 0.9929 + 0.12(\delta_1^2 + \delta_2^2) - 0.24\delta_1\delta_2 \]

- \[K = \begin{bmatrix}
 17.4561 & 0 \\
 0 & 685.5706 \\
 \end{bmatrix} \]

- \[h_1(\dot{\theta}, \delta, \dot{\delta}) = 0.24\dot{\theta}[(\delta_1 - \delta_2)\dot{\delta}_1 - (\delta_1 - \delta_2)\dot{\delta}_2] \]

- \[h_2(\dot{\theta}, \delta) = \begin{bmatrix}
 -0.12\dot{\theta}^2(\delta_1 - \delta_2) \\
 -0.12\dot{\theta}^2(\delta_2 - \delta_1) \\
 \end{bmatrix} \]

- \[f_c = C_{coul}\left(\frac{2}{1+e^{-10\theta}} - 1\right); \quad C_{coul} = \begin{cases}
 4.74 & \dot{\theta} > 0 \\
 4.77 & \dot{\theta} < 0
\end{cases} \]

- By output redefinition, the nonminimum phase problem is solved.
Example 4 Cont’d

- The NN structure:
 - Three layer: 4 input; 5 hidden, 1 output
- $K_0 = 1; K_1 = 2$
Example 4 Cont’d

Figure 4.7: Output responses for System II to $sin(t)$ reference trajectory using the...
Figure 4.8: Actual tip responses to step input for System II using the IDML neural network controller; (dashed line corresponds to model with Coulomb friction at the Hub).
Example 4 Cont’d

Graphs showing the functions and variables described in the context of neural networks and control systems.
References

