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Feedback Linearzation

» The main idea is: algebraically
transform a nonlinear system dynamics
into a (fully or partly) linear one, so that
linear control techniques can be applied.

U

» In its simplest form, feedback linearization
cancels the nonlinearities in a nonlinear
system so that the closed-loop dynamics
is in a linear form.

» Example: Controlling the fluid level in a
tank

> controlling of the level h of Fluid level control in a tank
fluid in a tank to a specified level hy,
using control input u

» the initial level is hg.

Farzaneh Abdollahi Nonlinear Control Lecture 9 3/75



Outline

inary Mathematics Input-State Linearization

Example Cont'd

» The dynamics:

A(h)h(t) = u — a\/2gh

where A(h) is the cross section of the tank and a is the cross section of
the outlet pipe.
» Choose u = a\/2gh+ A(h)v~h=v
» Choose the equivalent input v: v = —ah where h = h(t) — hy is error
level, o a pos. const.
» . resulting closed-loop dynamics: h+ah=0=h— 0as t — o
» The actual input flow: v = 2./2gh + A(h)oz/~7
» First term provides output flow a\/2gh
» Second term raises the fluid level according to the desired linear dynamics
> If hy is time-varying: v = hg(t) — ah

> ,',71—>Oast—>oo
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» Canceling the nonlinearities and imposing a desired linear dynamics, can
be simply applied to a class of nonlinear systems, so-called companion
form, or controllability canonical form:

» A system in companion form:

x((t) = f(x) + b(x)u (1)
> u is the scalar control input
» x is the scalar output;x = [x, X, ...,X("’l)] is the state vector.
» f(x) and b(x) are nonlinear functions of the states.
» no derivative of input u presents.
» (1) can be presented as controllability canonical form
X1 X2
d : _
dt -
Xn—1 Xn
Xn f(x)+ b(x)u

» for nonzero b, define control input: u = %[v — f]
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Feedback Linearzation
» . the control law:

v =—kox — kix — ... — kp_1x(" D)

» k; is chosen s.t. the roots of s” + k,_15" "L 4+ ... + ko are strictly in LHP.
» Thus: x(M + k,_1x(""D 4 ..+ kg =0is es.

» For tracking desired output xy, the control law is:
v=x" — kpe — kné — ... — ky_1e("D

» . Exponentially convergent tracking, e = x — x4 — 0.

» This method is extendable when the scalar x was replaced by a vector
and the scalar b by an invertible square matrix.

» When u is replaced by an invertible function g(u)~u = g_l(%[v —f]),
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Example: Feedback Linearization of a Two-link Robot

» A two-link robot: each joint equipped

with
» a motor for providing input torque h m
> an encoder for measuring joint position 122
» a tachometer for measuring joint velocity ‘ f

» objective: the joint positions g; and g»
follow desired position histories qq(t) and 1
qa2(t) ‘

» For example when a robot manipulator is ol ™
required to move along a specified path, q,.7,
e.g., to draw circles. 2

A two-link robot
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» Using the Lagrangian equations the robotic dynamics are:
Hi  Hi a1 + —hg> —hg> — hg: 4l e
Ha1  Hx 92 hg, 0 4 & T2

where g = [q1 q2]": the two joint angles, 7 = [r; 72]": the joint inputs, and

Hi = ml2 4+ h+mfl? + 1%+ 2h/pcosgo] + b

Hy = mal?% + hHia = Hy = myhle, cos o + mal, + b
g = mileicosqr + mag(leacos(qr + ga2) + h cos qi]
& = mlogcos(qr+ q2), h= mlhlsysing

» Control law for tracking, (computed torque):

| _ | Hi Ho vl —hGqx —hg2 — hin il L&
T Ha1  Ha V2 hay 0 G2 g2
where v = g — 20§ — A\2§, § = g — qq: position tracking error, A: pos. const.
> . 4+ 20§+ A2G = 0 where § converge to zero exponentially.

» This method is applicable for arbitrary # of links
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Input-State Linearization

» When the nonlinear dynamics is not in a controllability canonical form,
use algebraic transformations

» Consider the SISO system
x = f(x,u)

» In input-state linearization technique:

1. finds a state transformation z = z(x) and an input transformation

u = u(x, v) s.t. the nonlinear system dynamics is transformed into
z=Az+ bv

2. Use standard linear techniques (such as pole placement) to design v.
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Example:
» Consider X1 = —2x1+ axo+sinxg
Xp = —xpcosxi+ ucos(2xy)
Equ. pt. (0,0)

The nonlinearity cannot be directly canceled by the control input u
Define a new set of variables:

zZ1 = X1

Zo = axo+ sin X1

21 = 271+

zy = —2z cosz + cosz sinz; + aucos(2z)

» The Equ. pt. is still (0,0).

» The control law: u = #(221)(‘/ — cos zy sin z; + 271 cos z;)

» The new dynamics is linear and controllable: z; = -2z + 2, zz=v

» By proper choice of feedback gains k; and ky in v = —kyzy — kozp, place

the poles properly.
» Both z; and z, converge to zero, ~~ the original state x converges to zero
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The result is not global.
> The result is not valid when x; = (7/4 + k7 /2), k=0,1,2,...
» The input-state linearization is achieved by a combination of a state

transformation and an input transformation with state feedback used in
both.

» To implement the control law, the new states (z;, z2) must be available.
» If they are not physically meaningful or measurable, they should be
computed by measurable original state x.
> If there is uncertainty in the model, e.g., on a~- error in the computation
of new state z as well as control input u.
» For tracking control, the desired motion needs to be expressed in terms of
the new state vector.

» Two questions arise for more generalizations which will be answered in
next lectures:

» What classes of nonlinear systems can be transformed into linear systems?
» How to find the proper transformations for those which can?
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Input-Output Linearization

» Consider
x = f(x,u)

y = h(x)

» Objective: tracking a desired trajectory y4(t), while keeping the whole
state bounded

> y4(t) and its time derivatives up to a sufficiently high order are known
and bounded.

» The difficulty: output y is only indirectly related to the input u

> . it is not easy to see how the input u can be designed to control the
tracking behavior of the output y.

» Input-output linearization approach:

1. Generating a linear input-output relation
2. Formulating a controller based on linear control
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Example:

» Consider x1 = sinxa+ (x+ 1)x3
Xy = X{’ + X3
X3 = X]? +u
y = X

» To generate a direct relationship between the output y and the input v,
differentiate the output y = X3 =sinxz + (x2 + 1)x3

» No direct relationship ~~ differentiate again: y = (x2 + 1)u + f(x), where
f(x) = (4 + x3)(x3 + cosx2) + (x2 + 1)x?

X2 +1 (V - f)

» Choose v = yg — kie — koé, where e = y — y, is tracking error, ki and ko
are pos. const.

» Control input law: v =

» The closed-loop system: €+ kpé + kje =0

> . e.s. of tracking error
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Example Cont'd

» The control law is defined everywhere except at singularity points s.t.
Xo = -1

» To implement the control law, full state measurement is necessary,
because the computations of both the derivative y and the input
transformation need the value of x.

» If the output of a system should be differentiated r times to generate an

explicit relation between y and u, the system is said to have relative
degree r.

» For linear systems this terminology expressed as # poles —# zeros.

» For any controllable system of order n, by taking at most n
differentiations, the control input will appear to any output, i.e., r < n.

» If the control input never appears after more than n differentiations, the
system would not be controllable.
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Feedback Linearzation
» Internal dynamics: a part of dynamics which is unobservable in the
input-output linearization.
> In the example it can be X3 = x7 + L7 (Ju(t) — kie — koé + f)
» The desired performance of the control based on the reduced-order model
depends on the stability of the internal dynamics.
» stability in BIBO sense

» Example: Consider [ X1 ] [ 3 +u ]
% |~

(2)

u
y=x1

» Control objective: y tracks yq.

» First differentiations of y~~ linear /O relation

» The control law u = —x3 — e(t) + y4(t)~ exp. convergence of e :
é+e=0

» Internal dynamics: s + x5 = yg — e

> Since e and yy are bounded (y4(t) — e < D) x is ultimately bounded.
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» 1/0 linearization can also be applied to stabilization (y4(t) = 0):
» For previous example the objective will be y and y will be driven to zero
and stable internal dynamics guarantee stability of the whole system.
> No restriction to choose physically meaningful h(x) in y = h(x)
» Different choices of output function leads to different internal dynamics
which some of them may be unstable.

» When the relative degree of a system is the same as its order:

» There is no internal dynamics
» The problem will be input-state linearization
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Summary

>

>

>

Feedback linearization cancels the nonlinearities in a nonlinear system s.t.
the closed-loop dynamics is in a linear form.
Canceling the nonlinearities and imposing a desired linear dynamics, can
be applied to a class of nonlinear systems, named companion form, or
controllability canonical form.
When the nonlinear dynamics is not in a controllability canonical form,
input-state linearization technique is employed:

1. Transform input and state into companion canonical form

2. Use standard linear techniques to design controller
For tracking a desired traj, when y is not directly related to u, 1/0O
linearizaton is applied:

1. Generating a linear input-output relation (take derivative of y r < n times)

2. Formulating a controller based on linear control

# of differentiating y to find explicate relation to w.

If r % n, there are n — r internal dynamics that their, stability be checked.
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Internal Dynamics of Linear Systems
» In general, directly determining the stability of the internal dynamics is
not easy since it is nonlinear. nonautonomous, and coupled to the
“external” closed-loop dynamics.
» We are seeking to translate the concept of internal dynamics to the more
familiar context of linear systems.
» Example: Consider the controllable, observable system
X1 _ Xo +u (3)
)'(2 u
y = X

» Control objective: y tracks yg.

First differentiations of y~~y = x> + u

The control law u = —x; — e(t) + yq(t)~ exp. convergenceof e: é4+e =0
Internal dynamics: s +x = yqg — €

e and yy are bounded ~~ x; and therefore u are bounded.

v

vV vy
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> Now consider a little different dnamics

X1 . Xo + u
] =] “
y = xi
» using the same control law yields the following internal dynamics
Xo — Xp = e(t) — V4

» Although y4 and y are bounded, x» and u diverge to co as t — oo
» why the same tracking design method yields different results?

» Transfer function of (3) is: Wy(s) = <%

» Transfer function of (4) is: Wa(s) = 3.

» . Both have the same poles but different zeros

» The system W; which is minimum-phase tracks the desired trajectory
perfectly.

» The system W, which is nonminimum-phase requires infinite effort for
tracking.
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Internal Dynamics

» Consider a third-order linear system with one zero

x=Ax+bu, y=c'x (5)

bo+bis u
ag+ais+taps?+s3

» First transform it into the companion form:

» lts transfer function is: y =

7 0 1 0 7 0
n | = 0 0 1 | +]0|u (6)
23 —dp —di1 —ao zZ3 1
21
y = [bob10]| 2
Z3
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» In second derivation of y, u appears:
y = boz3 + bi(—aoz1 — a1z0 — axz3 + u)
» .. Required number of differentiations (the relative degree) is indeed the
same as # of poles- # of zeros
> Note that: the |/O relation is independent of the choice of state variables
~~ two differentiations is required for u to appear if we use (5).
» The control law: u = (apz1 + a122 + apz3 — %23) + bil(—kle — koé + yq)
» . an exp. stable tracking is guaranteed
» The internal dynamics can be described by only one state equation

> z; can complete the state vector,( z1, y, and y are related to z;, z and z3
through a one-to-one transformation).

> A=2=4(y - bha)

» y is bounded ~~ stability of the internal dynamics depends on —%

» |If the system is minimum phase the internal dynamics is stable
(independent of initial conditions and magnitude of desired trajectory)
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Zero-Dynamics

» For linear systems the stability of the internal dynamics is determined by
the locations of the zeros.

» To extend the results for nonlinear systems the concept of zero should be
modified.
» Extending the notion of zeros to nonlinear systems is not trivial
> In linear systems 1/0O relation is described by transfer function which zeros
and poles are its fundamental components. But in nonlinear systems we
cannot define transfer function
» Zeros are intrinsic properties of a linear plant. But for nonlinear systems
the stability of the internal dynamics may depend on the specific control
input.
» Zero dynamics: is defined to be the internal dynamics of the system when
the system output is kept at zero by the input.(output and all of its
derivatives)
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» For dynamics (2), the zero dynamics is %, + x5 = 0 )
» we find input u to maintain the system output at zero uniquely (keep x;

zero in this example),
» By Layap. Fcn V = x2 it can be shown it is a.s

> For linear system (5), the zero dynamics is z; + (bo/b1)z1 = 0
» . The poles of the zero-dynamics are exactly the zeros of the system.

» In linear systems, if all zeros are in LHP ~~ g.a.s. of the zero-dynamics ~~ g.s. of
internal dynamics.

» In nonlinear systems, no results on the global stability
» only local stability is guaranteed for the internal dynamics even if the
zero-dynamics is g.e.s.

» Zero-dynamics is an intrinsic feature of a nonlinear system, which does not
depend on the choice of control law or the desired trajectories.

» Examining the stability of zero-dynamics is easier than examining the stability of
internal dynamics,But the result is local.
» Zero-dynamics only involves the internal states

» Internal dynamics is coupled to the external dynamics and desired trajs:
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Zero-Dynamics
» Similar to the linear case, a nonlinear system whose zero dynamics is
asymptotically stable is called an asymptotically minimum phase system,

> If the zero-dyiamics is unstable, different control strategies should be
sought
» As summary control design based on input-output linearization is in three
steps:
1. Differentiate the output y until the input u appears
2. Choose u to cancel the nonlinearities and guarantee tracking convergence
3. Study the stability of the internal dynamics
» If the relative degree associated with the input-output linearization is the
same as the order of the system ~- the nonlinear system is fully linearized
~~ satisfactory controller

» Otherwise, the nonlinear system is only partly linearized ~~ whether or
not the controller is applicable depends on the stability of the internal

dynamics.
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Preliminary Mathematics

» Vector function f: R" — R" is called a vector field in R".

» Smooth vector field: function f(x) has continuous partial derivatives of
any required order.

» Gradient of a smooth scalar function h(x) is denoted by a row vector
Vh= G2, where (Vh); = gt

» Jacobian of a vector field f(x):an n x n matrix Vf = ET where
(vf)’l 8x_,

» Lie derivative of h with respect to f is a scalar function defined by
L¢h = V hf, where h: R" — R: a smooth scalar, f: R" — R": a smooth
vector field.

» If g is another vector field: Lgl¢h = V(Leh)g
> L%h = h;Lih = Le(L;7 h) = V(LI h)f
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Oh .

y = —x= L¢h

y 8xx f

. O[L¢h] .

yo= o x=lih

» If V is a Lyap. fcn candidate, its derivative V can be written as LgV/.
» Lie bracket of f and g is a third vector field defined by

f, g| = Vgf — Vf g, where f and g two vector field on R".
» The Lie bracket [f, g] is also written as adf g (ad stands for "adjoint").
» adlg = g; adig = [f, ad;_lg], i=1,..
» Example: Consider x = f(x) + g(x)u where

—2x1 + axp + sin x1 0
f = s =
—Xp COS X1 cos(2x1)

» So the Lie bracket is:

If, g] = —acos(2x)

cos x3c0s(2x1) — 2sin(2x1)(—2x1 + axp +-sinx1)
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» Lemma: Lie brackets have the following properties:
1. bilinearity:

[aifi + aofa, 8] = aiffi, g] + as[f, g]

[f,a18; +a2gy] = aaff, g;] + alf, g

where f, f1, f2, g g, 8, are smooth vector fields and a; and oy are
constant scalars.
2. skew-commutativity:

fg] = —I[g.f]

3. Jacobi identity
Laggh = Lilgh— Lgl¢h

where h is a smooth fen.
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Diffeomorphism

» The concept of diffeomorphism can be applied to transform a nonlinear
system into another nonlinear system in terms of a new set of states.

» Definition: A function ¢ : R" — R" defined in a region Q is called a
diffeomorphism if it is smooth, and if its inverse ¢~ exists and is smooth.

» If the region Q is the whole space R"~~¢(x) is global diffeomorphism
» Global diffeomorphisms are rare,we are looking for local diffeomorphisms.

» Lemma: Let ¢(x) be a smooth function defined in a region Q in R". If
the Jacobian matrix V¢ is non-singular at a point x = xg of Q, then ¢(x)
defines a local diffeomorphism in a subregion of 2
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Diffeomorphism
» Consider the dynamic system described by

X =f(x)+g(x)u, y=h(x)

> Let the new set of states z = ¢(x)~ z = %X = g—f(f(x) + g(x)u)
» The new state-space representation
z=1"(z)+g"(z)u, y=h"(2)

where x = ¢71(z2).
» Example of a non-global diffeomorphism: Consider

[21 } ~o(x) = [ 2x1 4 5x1x3 ]

7 3sin xp
2
_ o ae _ | 2455  10xix
> Its Jacobian matrix: 5= = 0 3cosxy |

> rank is 2 at x = (0,0)~ local diffeomorphism around the origin where

Q= {(X17X2), |X2| < 7'('/2}

» outside the region, the inverse of ¢ does not uniquely exist.
Farzaneh Abdollahi Nonlinear Control Lecture 9
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Frobenius Theorem
» An important tool in feedback linearization

» Provide necess. and suff. conditions for solvability of PDEs.

» Consider a PDE with (n=3):

Oh oh Oh

P+ 2+ 2 = 0
8X1 1+8X2 2—+_8X3 3

oh oh oh
81+ 67X2g2 + 87X3g3 =0 (7)

where fi(x1,x2,x3), gi(x1,x2,x3) (i =1, 2, 3) are known scalar fcns and
h(x1, x2, x3) is an unknown function.

» This set of PDEs is uniquely determined by the two vectors
f=[Ahf]l", g=lae gl

» If the solution h(xi, x2, x3) exists, the set of vector fields {f, g} is
completely integrable.

» When the ei uations are solvable?
Farzaneh Abdollahi Nonlinear Control Lecture 9 30/75



Outline in liminary Mathematics Input-State Linearization
o0

Frobenius Theorem
» Frobenius theorem states that Equation (7) has a solution h(xi, x2, x3) iff
there exists scalar functions a;(x1, x2, x3) and aa(x1, x2, x3) such that

f, gl=a1 f+ag

i.e., if the Lie bracket of f and g can be expressed as a linear combination of f
and g

» This condition is called involutivity of the vector fields {f, g}.

> Geometrically, it means that the vector field [f, g] is in the plane formed by the
two vectors fand g

P The set of vector fields {f, g} is completely integrable iff it is involutive.

> Definition (Complete Integrability): A linearly independent set of vector
fields {f, fo,..., fn} on R" is said to be completely integrable, iff, there exist
n — m scalar fens hi(x), ha(x), ..., hp—m(x) satisfying the system of PDEs:

Vhi f; =0

wherel < | < n—m, 1 < j < m and Vh; are linearly.independent.
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» Number of vectors: m, dimension of the vectors: n, number of unknown
scalar fens h;: (n-m), number of PDEs: m(n-m)

» Definition (Involutivity): A linearly independent set of vector fields
{f, fo,..., Tm} on R" is said to be involutive iff, there exist scalar fcns
Qjjk - RN — R st

[fi, £1(x) = (%) fie(x) Vi,j

k=i

i.e., the Lie bracket of any two vector fields from the set {fi, f, ..., fm}
can be expressed as the linear combination of the vectors from the set.

» Constant vector fields are involutive since their Lie brackets are zero
» A set composed of a single vector is involutive:

[f, f] = (VF)f — (VF)f =0

» Involutivity means:

rank (f1(x) .... fn(x)) = rank (f(x) .... fu(x) [fi, fi](X))

for all x and for all i, j.
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Frobenius Theorem

» Theorem (Frobenius): Let fi, f, ...., fy, be a set of linearly
independent vector fields. The set is completely integrable iff it is
involutive.

» Example: Consider the set of PDEs:

Oh Oh 0
X —_—— — pr—
36X1 8X2
oh 5 oh Oh
g 2 _ L — =
X 8X1 + (X3 3X2)8X2 + 3 (9X3 0
» The associated vector fields are {f;, f}
i = s —10"  hHh=[x(d—-3x) 24

» We have [, f] =[-12x3 3 0]

» Since [fi, f] = —3fi + 0fy, the set {f1, £} is involutive and the set of

PDEs are solvable.
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Input-State Linearization
> Consider the following SISO nonlinear system
X = f(x) +g(x)u (8)
where f and g are smooth vector fields
» The above system is also called “linear in control” or “affine”

> If we deal with the following class of systems:
x = f(x) +g(x)w(u + ¢(x))

where w is an invertible scalar fcn and ¢ is an arbitrary fcn
» We can use v = w(u + ¢(x)) to get the form (8).
» Control design is based on v and u can be obtained by inverting w:

u=w(v) - o(x)

» Now we are looking for

» Conditions for system linearizability by an input-state transformation
» A technique to find such transformations

» A method to design a controller based on such linearization technique
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Input-State Linearization

> Definition: Input-State Linearization The nonlinear system (8) where f(x)
and g(x) are smooth vector fields in R" is input-state linearizable if there exist
region £ in R", a diffeomorphism mapping ¢ : Q2 — R", and a control law:

u=a(x)+ B(x)v

s.t. new state variable z = ¢(x) and new input variable v satisfy an LTI relation:

z = Az+ Bv
01 0 ... 0 0
0 0 1 0
A = B=: 9)
000 ... 1 0
0 00 0 1
» The new state ~ is called the and the control law u is called the

linearizing control law

» let z = z(x

Farzaneh Abdollahi Nonlinear Control Lecture 9
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Input-State Linearization

v

(9) is the so-called linear controllability or companion form

» This linear companion form can be obtained from any linear controllable
system by a transformation ~~ if u leads to a linear system, (9) can be
obtained by another transformation easily.

» This form is an special case of Input-Output linearization leading to
relative degree r = n.

» Hence, if the system |/O linearizable with r = n, it is also I/S linearizable.

» On the other hand, if the system is I/S linearizable, it is also I/O
linearizable with y =z, r = n.
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Input-State Linearization

» Lemma: An n'" order nonlinear system is 1/S linearizable iff there exists
a scalar fcn z1(x) for which the system is 1/O linearizable with r = n.

» Still no guidance on how to find the z;(x).
» Conditions for Input-State Linearization:

» Theorem: The nonlinear system (8) with f(x) and g(x) being smooth
vector field is input-state linearizable iff there exists a region € s.t. the
following conditions hold.:

» The vector fields {g, adrg, ... adf "“1g} are linearly independent in Q

» The set {g, adrg, ... adr "~2g} is involutive in

> The first condition:

» can be interpreted as a controllability condition

> For linear system, the vector field above becomes {B, AB, ... A""1B}

» Linear independency = invertibility of controllability matrix
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» The second condition

» is always satisfied for linear systems since the vector fields are constant, but
for nonlinear system is not necessarily satisfied.
> It is necessary according to Ferobenius theorem for existence of z (x).

» Lemma: If z(x) is a smooth vector field in 2, then the set of equations
Legz=Lglsz= ... =LgLl¢¥z=0

is equivalent to

Loz = Lag gz= ... =Lyg 1gz=0

v

Proof:
» Let k =1, from Jacobi's identity, we have

Lag, gz=Lflgz — Lglsgz=0—-0=0
» When k =2, we have from Jacobi's identity:

Lag, 202 = L¢ *Lgz — 2L¢lgliz + Lgls °z=0—-0+0=0
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» Proof of the linearization theorem:
» Necessity:

» Suppose state transformation z = z(x) and input transformation
u=a(x)+ B(x)v s.t. z and v satisfy (9), i.e.

similarly:

—f+—gu = =
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.., Zp_1 are independent of u,

Lgzi = Lgzo= ... Lgz,_1 =0, Lgz, # 0
LfZ,' = Zjt1, I = 1,2,...,”—1
> Use, z = [21 Lizy, ... Lf n—lzl]T to get
Zk = Zk+1, k= 1, ..n—1
Zn = Lz + LgLf ”7121u

» The above equations can be expressed in terms of z; only

Vzads g = 0, k=0,1,2, .., n—2 (10)
Vzads g = (-1)"Lgz, (11)
> First note that for above eqs to hold, the vector field g, adf g, ..., adf ""g
must be linearly independent.
> If for some i(i < n— 1) there exist scalar fens aq(x), ... aj—1(x) s.t.
i-1
ads 'g = Zakadf “g
k=0
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» We, then have:

n—2
adf "lg = Z akads “g
k=n—i—1
n—2
.. Vziads n_lg = Z oV zyadr kg =0 (12)
k=n—i—1

.. Contradicts with (11).
» The second property is that 3 a scalar fcn z; that satisfy n — 1 PDEs
Vzladf kg =0
» . From the necessity part of Frobenius theorem, we conclude that the set
of vector field must be involutive.
» Sufficient condition
> Involutivity condition = Frobenius theorem, 3 a scalar fcn z(x):
Lgzi = Lag gz1 = ... Loy, xgz2 =0, implying
Lyzi = Lglszi= ... LyLs ¥z =0
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> Define the new sets of variable as z = [z; L¢z; ... Lf ""1z]7, to get
2/( = Zk41 k:]., cey n—1
Zy = Le "z + Ly "tzu (13)
The question is whether L L "1z can be equal to zero.
» Since {g, adr g, ..., adr ""1g} are linearly independent in Q:
LgLf nilzl = (—1)"71Ladf n—1g21

» We must have L, n-1,21 # 0, otherwise the nonzero vector Vz
satisfies

VZ1 [ga adf gy - adf n—lg] =0

i.e. Vzi is normal to n linearly independent vector = impossible

» Now, we have:

Zn=Lf "z1 + Ll ziu = a(x) + b(x)u
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» Now, select u = ﬁ(—a(x) + v) to get:

Zn=1V

implying input-state linearization is obtained. [J

» Summary: how to perform input-state Linearization
1. Construct the vector fields g, adrg, ... adf ""g
2. Check the controllability and involutivity conditions
3. If the conditions hold, obtain the first state z; from:
Vzadsig = 0 i=0, .., n—2

Vzads "lg # 0

4. Compute the state transformation z(x) = [z; Lz ... Lf ""*z]T and the
input transformation u = a(x) + B(x)v:

Lf "21
)=,
1
X)=————
ﬂ( ) LgLf n—1z
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Example:A single-link flexible-joint manipulator:

» The link is connected to the motor shaft via a torsional spring

» Equations of motion: _
1§, + MgLsing: + K(q1 — q2) = 0

Jgp —K(gi—q) =u
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Example:A single-link flexible-joint manipulator:

» Equations of motion: .
141 + MgLsing1 + K(q1 — g2) = 0

Joo —K(gn —q2) = u
» nonlinearities appear in the first equation and torque is in the second equation
> Let:

q1 X2 0
X = C.h : f— —@sinxl — %(Xl — X3) g = 0
az Xa4 ?
q2 %(Xl —x3) J
> Controllability and involutivity condi i%ns: 0 0 P
) 3 0 0 X o“
lg adrg adr “g adr g] = 19 K
0 -5 0 7
i 0 K o0
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Example: Cont'd

>

vV v v v Y

It's full rank for kK > 0 and /J < o0 = vector fields are linearly
independent

Vector fields are constant = involutive

The system is input-state linearizable

Computing z = z(x), u=a(x)+ [B(x)v

9z1 _ 9z1 _ dz1 _ oz
8X2_0 BX3_0 BX4_ 78x17é0

Hence, z; is the fcn of x; only. Let z; = x3, then

Zy = Vzlf = X2
) K
z3 = Vazf =— ; sinxy — T(Xl - x3)
Mgl K
zz = Vz3f = —Tngcosxl — T(XQ — Xg)
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Example: Cont'd

> The input transformation is given by: 1
u = (v=Vaf)/(Vag) = (v —a(x))

Mgl L K
a(x) = /g sinxy (x4 + Tgcosxl + 7)
K K K Mgl
+ T(Xl —x3)(—+ TR Tgcosxl)
» As a result, we get the foIIowmg set of linear equations
21 = 2, n=2n
3 =z, Zp=v

» The inverse of the state transformation is given by:

X1 =z, XX=22
/ Mgl .
X3 = z1+ R <23 + | smzl>
Mgl
Xqa = 2o+ ? zy + TZQCOSZ;[
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Example Cont'd

» State and input transformations are defined globally

» In this example, transformed state have physical meaning, z; : link
position, zo : link velocity, z3 : link acceleration, z; : link jerk.

» It could be obtained by |/O linearization, i.e. by differentiating the output
gi. (4 times)

» We can transform the inequality (11) to a normalized equation by setting
Vziads ""'g =1 resulting in:

0
821
o 0
Ox1
[adf Og adr 1g ... adr n—2g adr n—lg] =
o)
8—2 0
- 1 -
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Control Design
» Once, the linearized dynamics is obtained, either a tracking or
stabilization problem can be solved
» For instance, in flexible-joint manipulator case, we have
(4)

zZ; =V

» Then, a tracking controller can be obtained as

vV = Z((ﬂ) — 332( ) — 3221 — 3121 — 3021

where 21 = 2Z1 — Z41-
» The error dynamics is then given by:

(4) + a3Z( ) + 8251 + 3121 +apz1 =0

» The above dynamics is exponentially stable if a; are selected s.t.
Sy + 3353 + 3252 + a1s + ag is Hurwitz
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Input-Output Linearization

» Consider the system:

f(x) +g(x)u
= h(x) (14)

» Input-output linearization yields a linear relationship between the output
y and the input v (similar to v in I/S Lin.)
» How to generate a linear 1/0O relation for such systems?
» What are the internal dynamics and zero-dynamics associated with this 1/0
linearization
» How to design a stable controller based on this technique?
» Performing /0O Linearization
» The basic approach is to differentiate the output y until the input u
appears, then design u to cancel nonlinearities
» Sometime, cancelation might not be possible due to the undefined relative

degree.
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Well Defined Relative Degree

» Differentiate y and express it in the form of Lie derivative:
y = Vh(f + gu) = L¢h(x) + Lgh(x)u

if Lgh(x) # 0 for some x = xp in €, then continuity implies that
Lgh(x) # 0 in some neighborhood € of xp. Then, the input

transformation
1

= ————(—L¢h
4= g L)+ )
results in a linear relationship between y and v, namely y = v.
> If Lgh(x) =0 for all x € €, differentiate y to obtain

¥ =L 2h(x) + LgLeh(x)u

> If LgLrh(x) =0 for all x € Q,, keep differentiating until for some
integer r, LgLs "1h(x) # 0 for some x =xg € €
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» Hence, we have
vy = L¢ "h(x) + LgLs " h(x)u (15)

and the control law
1

=— =  (—=Lf"h
yields a linear mapping:

J0 —y

» The number r of differentiation required for u to appear is called the
relative degree of the system.

» r < n, if r = n, the input-state realization is obtained with z; = y.
» Definition: The SISO system is said to have a relative degree r in S if:
Lgls 'h(x) = 0 0<i<r-2
Lgls "h(x) # 0
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Undefined Relative Degree

» Sometimes, we are interested in the properties of a system about a
specific operating point xg.

» Then, we say the system has relative degree r at xp if
Lgls "th(xo) # O
» However, it might happen that LgLs "“1h(x) is zero at xo, but nonzero in
a close neighborhood of xg.
» The relative degree of the nonlinear system is then undefined at xp.
» Example:

X = p(x, %)+ u

where p is a smooth nonlinear fcn. Define x = [x x]” and let y = x =
the system is in companion form with r = 2.

Farzaneh Abdollahi Nonlinear Control Lecture 9 53/75



» However, if we define y = x2, then:

y o= 2xx
o= 2xx+2x% = 2xp(x, %) + 2xu + 2%°> —
Lgleh = 2x (16)

» The system has neither relative degree 1 nor 2 at xg = 0.
» Sometime, change of output leads us to a solvable problem.
» We assume that the relative degree is well defined.

» Normal Forms

» When, the relative degree is defined as r < n, using y, v, ..., y'™D we
can transform the system into the so-called normal form.

» Normal form allows a formal treatment of the notion of internal dynamics
and zero dynamics.

> Let p="lm pp o pl]” = [y y o yIT

in a neighborhood 2 of a point xp.
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Normal Form

» The normal form of the system can be written as

K2
po= : (17)
fir
a(p, V) + b(p, V)u
Vo= w(ew) (18)

y = 1

> The pj and V; are called normal coordinate or normal states.

> The first part of the Normal form, (17) is another form of (15), however in (18)
the input u does not appear.

> The system can be transformed to this form if the state transformation ¢(x) is a
local diffeomorphism: ¢ (1 ... p, Wy ... V)7

» To show that ¢ is a diffeomorphism, we must show that the Jacobian is
invertible, i.e. Vu; and VW; are all linearly independent.
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Normal Form

» Vu; are linearly independent = i can be part of state variables, (u is
output and its r — 1 derivatives)

» There exist n — r other vector fields that complete the transformation
» Note that u does not appear in (18), hence:
VVig=0 1< j < n—r

WV can be obtained by solving n — r PDE above.

» Generally, internal dynamics can be obtained simpler by intuition.
» Zero Dynamics
» System dynamics have two parts:
1. external dynamics [
2. internal dynamics W
» For tracking problems (y — yq4), one can easily design v once the linear
relation is obtained.

» The question is whether the internal dynamics remain bounded
Farzaneh Abdollahi Nonlinear Control Lecture 9 56/75



Zero-Dynamics

» Stability of the zero dynamics (i.e. internal dynamics when y is kept 0)
gives an idea about the stability of internal dynamics

> u is selected s.t. y remains zero at all time.

yO(t) = L "h(x) + LgLs "Lh(x)up = 0 —
—L¢ "h(x)

R T

» .. In normal form:

up(V) = —20.¥) (19)
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Example

» Consider —X1 e>®
X = 2x1xp +sinxg | + | 1/2 | u
2x> 0

y = h(x)=x3

» We have y = 2x
y = 2x = 2(2X1X2 + SinXQ) +u

> The system has relative degree r = 2 and

L,c h(x) = 2x
h(x) = 0
L Lf h(x) = 1
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Example Cont'd

» To obtain the normal form

p1 = h(x)=x3
H2 = Lf h(X) = 2X2
» The third function W(x) is obtained by
ov 10V
Y= ¥ 77 _
€ 8X1 € 2 8X2 0

» One solution is W(x) = 1 + x; — e

» Consider the jacobian of state transformation z = [u1 pp V]7. The
Jacobian matrix is

0 0 1
0 2 0
1 —2e*2 0
Farzaneh Abdollahi Nonlinear Control Lecture 9
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Example Cont'd

» The Jacobian is non-singular for any x. In fact, inverse transformation is given

by:
x1 = —1+WV4 e
1
X2 = E,Uz
X3 =

> State transformation is valid globally and the normal form is given by:

= pe2
2 = 2(=1+V+ ey + 2sin(uz/2) + u
Vo= (1-W—e)(1+2ume) — 2sin(uz/2)e" (20)

» Zero dynamics is obtained by setting p1 = o =0 —

V=_v (21)

Farzaneh Abdollahi Nonlinear Control Lecture 9 60/75



Outline k Lin ary € put-State Lin

Zero-Dynamics

» In order to obtain the zero dynamics, it is not necessary to put the system
into normal form

> since u is known, we can intuitively find n — r vector to complete the
transformation.

» As mention before, zero dynamics is obtained by substituting ug for u in
internal dynamics.

» Definition: A nonlinear system with asymptotically stable zero dynamics
is called asymptotically minimum phase

» If the zero dynamics is stable for all x, the system is globally minimum
phase, otherwise the results are local.

Farzaneh Abdollahi Nonlinear Control Lecture 9 61/75



inearization
8000000

Local Asymptotic Stabilization

» Consider again the nonlinear system

x = f(x)+g(x)u
y = h(x) (22)
Assume that the system is 1/O linearized, i.e.
Yy = L¢ "h(x) + LgLr "Th(x)u (23)
and the control law 1
= —Ls"h 24
u LgLf rflh( )( f (X)+V) ( )
yields a linear mapping: y=v
» Now let v be chosen as
vV = —krfl_y(r_l) — . — kly - koy (25)

where k; are selected s.t. K(s) =s"+ k,_15" 1+ ... + kis + ko is Hurwitz
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> Then, provided that the zero-dynamics Is asymptotlca y stable, the control law
(24) and (25) locally stabilize the whole system:

» Theorem: Suppose the nonlinear system (22) has a well defined relative degree
r and its associated zero-dynamics is locally asymptotically stable. Now, if k; are
selected s.t. K(s) =s"+ k,_15"" 1+ ... + ks + ko is Hurwitz, then the control
law (24) and (25) yields a locally asymptotically stable system.

» Proof: First, write the closed-loop system in a normal form:

0o 1 0 ... 0
o 0 1

M - . . . .« . :AM
o o0 o0 .. 1
—ko —ki —ko ... —k_1

Vo= w(p,V)=Apu + AV + ho.t.

h.o.t. is higher order terms in the Taylor expansion about xp = 0.
The above Eq. can be written as:

Slul = (2 2] [4] +hee
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» Now, since the zero dynamics is asymptotically stable, its linearization V= AV
is either asymptotically stable or marginally stable.
» If A, is asymptotically stable, then all eigenvalues of the above system
matrix are in LHP and the linearized system is stable and the nonlinear

system is locally asymptotically stable
» If A, is marginally stable, asymptotic stability of the closed-loop system

was shown in (Byrnes and Isidori, 1988).
» Comparing the above method to local stabilization and using linear control:
» the above stabilization method can treat systems whose linearizations

contain uncontrollable but marginally stable modes,
» while linear control methods requires the linearized system to be
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» For stabilization where state convergence is required, we can freely
choose y = h(x) to make zero-dynamics a.s.

» Example: Consider the nonlinear system:

X1 = xix

X2 = 3x04u
» System linearization at x = O:

3 = 0

X2 = 3x04u

thus has an uncontrollable mode

Farzaneh Abdollahi Nonlinear Control Lecture 9
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» Example (cont’d)
> Definey = —2x; —xp =

y o= 2 —x=-2x2x—3x2—u
» Hence, the relative degree r = 1 and the associated zero-dynamics is
q o= —2x3
» The zero-dynamics is asymptotically stable, hence the control law
u = —2x2x, — 4xp — 2x; locally stabilizes the system

» Global Asymptotic Stabilization

» Stability of the zero-dynamics only guarantees local stability unless relative
degree is n in which case there is no internal dynamics

> Can the idea of 1/0O linearization be used for global stabilization problem?

> Can the idea of /0O linearization be used for systems with unstable zero
dynamics?
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Global Asymptotic Stabilization

» Global stabilization approach based on partial feedback linearization is to
simply regard the problem as a standard Lyapunov controller design
problem

» But simplified by the fact that in normal form part of the system
dynamics is now linear.
» The basic idea is to view p as the input to the internal dynamics and W
as its output.
> The first step: find the control law 1o = po(W) which stabilizes the internal
dynamics with the corresponding Lyapunov fcn V.
» Then: find a Lyapunov fcn candidate for the whole system (as a modified
version of V4) and choose the control input v s.t. V' be a Lyapunov fcn for
the whole closed-loop dynamics.
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Example:

» Consider a nonlinear system with the normal form:

y = v
3 + 24yz=0 (26)

where v is the control input and W = [z 2]

» Considering y as an input to internal dynamics (26), it would be
asymptotically stabilized by the choice of y = yg = z°
> Let V, be a Lyap. fecn:
1, 1,

VOZEZ +ZZ

» Differentiating Vj along the actual dynamics results in

4

Vo = —#*—zz(y-2%)
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Example Cont'd

> Consider the Lyap. fcn candidate, obtained by adding a quadratic “error”
term iny — yp to W

vV = V0+%(y—22)2
Vo= =2 (y -2 (v —322)

» The following choice of control action will then make V n.d.

v=—y+2z°+3zz
" V:—24—(y—22)2

» Application of Invariant-set theorem shows all states converges to zero
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Example: A non-minimum phase system
» Consider the system dynamics
y = v
7 4+ B—24yz=0
where again ¥ = [z 2|7
» The system is non-minimum phase since its zero-dynamics is unstable
» The zero-dynamics would be stable if we select y = 2z*:

1 1 .
Vo 522 + 626w Vo = —2* — zz(y — 22%)

» Consider the Lyap. fcn candidate

1 .
v = V0+§(y—2z4)2wV:—24+(y—224)(v—8z32—22)

» suggesting the following choice of control law

V= —y 4274 48574 22 V = —2* — (y — 27%)?

» Application of Invariant-set theorem shows all states converges to zero

Farzaneh Abdollahi

Nonlinear Control Lecture 9

70/75



Outline ary Mathematics Input-State Linearization

Tracking Control

» |/O linearization can be used in tracking problem

> Let pug = [yqg Yd - y‘(f_l)]T and the tracking error fi(t) = u(t) — puq(t)
» Theorem: Assume the system (22) has a well defined relative degree r

and g4 is smooth an.d bounded and that the solution W y4:
\Ud = W(Hda Wd), \Ud(O) =0

exists and bounded and is uniformly asymptotically stable. Choose k; s.t
K(s) =s"+ k15" "1+ ... + kis+ ko is Hurwitz, then by using

u= ﬁ[_Lf r,ul + ygr) —ke—1fir — ... — koﬁl] (27)

Lglys
the whole system remains bounded and the tracking error [i converge to
zero exponentially.
» Proof: Refer to Isidori (1989).
» For perfect tracking 1(0) = pq(0)
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Tracking Control for Non-minimum Phase Systems:

» The tracking control (27) cannot be applied to non-minimum phase
systems since they cannot be inverted

» Hence we cannot have perfect or asymptotic tracking and should seek
controllers that yields small tracking errors
» One approach is the so-called Output redefinition

» The new output y; is defined s.t. the associated zero-dynamics is stable

» vy is defined s.t. it is close to the original output y in the frequency range
of interest

» Then, tracking y; also implies good tracking the original output y

» Example: Consider a linear system
_ (1=3) Bols)
A(s)
» Perfect/asymptotic tracking is impossible due to the presence of zero ©
s=0b
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Example Cont'd

> Let us redefine the output as
Bo(s)
A(s)

yi= u

with the desired output for y; be simply yq4

» A controller can be found s.t. y; asymptotically tracks yy. What about
the actual tracking error?

o (30 (-2

» Thus, the tracking error is proportional to the desired velocity yg:

Y1)~ ya(t) = Y20

» .. Tracking error is bounded as long as y4 is bounded, it is small when
the frequency content of yy is well below b
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> An alternative output, motivated by (1 — ) ~ 1/(1 + ) for small |s|/b:

Bo(S)

2T AG) (1 5)

= (1) (1 3= (1)

» Thus, the tracking error is proportional to the desired acceleration y:

u

ol

Vd(t)
b2

y(t) = ya(t) = —
» Small tracking error if the frequency content of y, is below b
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Tracking Control

» Another approximate tracking (Hauser, 1989) can be obtained by

» When performing |/O linearization, using successive differentiation, simply
neglect the terms containing the input

» Keep differentiating n timed (system order)

» Approximately, there is no zero dynamics

> |t is meaningful if the coefficients of u at the intermediate steps are “small”
or the system is “weakly non-minimum phase” system

» The approach is similar to neglecting fast RHP zeros in linear systems.

» Zero-dynamics is the property of the plant, choice of input and output
and desired Trajectory. It cannot be changed by feedback:
» Modify the plant (distribution of control surface on an aircraft or the mass
and stiffness in a flexible robot)
» Change the output (or the location of sensor)
» Change the input (or the location of actuator)
» Change the desired Traj.
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