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Feedback Linearzation

I The main idea is: algebraically
transform a nonlinear system dynamics
into a (fully or partly) linear one, so that
linear control techniques can be applied.

I In its simplest form, feedback linearization
cancels the nonlinearities in a nonlinear
system so that the closed-loop dynamics
is in a linear form.

I Example: Controlling the fluid level in a
tank

I Objective: controlling of the level h of
fluid in a tank to a specified level hd ,
using control input u

I the initial level is h0.
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Example Cont’d
I The dynamics:

A(h)ḣ(t) = u − a
√

2gh

where A(h) is the cross section of the tank and a is the cross section of
the outlet pipe.

I Choose u = a
√

2gh + A(h)v ḣ = v

I Choose the equivalent input v : v = −αh̃ where h̃ = h(t)− hd is error
level, α a pos. const.

I ∴ resulting closed-loop dynamics: ḣ + αh̃ = 0⇒ h̃→ 0 as t →∞
I The actual input flow: u = a

√
2gh + A(h)αh̃

I First term provides output flow a
√

2gh
I Second term raises the fluid level according to the desired linear dynamics

I If hd is time-varying: v = ḣd(t)− αh̃
I ∴ h̃→ 0 as t →∞

Farzaneh Abdollahi Nonlinear Control Lecture 9 4/75



Outline Feedback Linearzation Preliminary Mathematics Input-State Linearization Input-Output Linearization

I Canceling the nonlinearities and imposing a desired linear dynamics, can
be simply applied to a class of nonlinear systems, so-called companion
form, or controllability canonical form:

I A system in companion form:

x (n)(t) = f (x) + b(x)u (1)

I u is the scalar control input
I x is the scalar output;x = [x , ẋ , ..., x (n−1)] is the state vector.
I f (x) and b(x) are nonlinear functions of the states.
I no derivative of input u presents.

I (1) can be presented as controllability canonical form

d
dt


x1
...

xn−1

xn

 =


x2
...

xn

f (x) + b(x)u


I for nonzero b, define control input: u = 1

b [v − f ]
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Feedback Linearzation
I ∴ the control law:

v = −k0x − k1ẋ − . . .− kn−1x (n−1)

I ki is chosen s.t. the roots of sn + kn−1sn−1 + . . .+ k0 are strictly in LHP.

I Thus: x (n) + kn−1x (n−1) + . . .+ k0 = 0 is e.s.

I For tracking desired output xd , the control law is:

v = x
(n)
d − k0e − k1ė − . . .− kn−1e(n−1)

I ∴ Exponentially convergent tracking, e = x − xd → 0.

I This method is extendable when the scalar x was replaced by a vector
and the scalar b by an invertible square matrix.

I When u is replaced by an invertible function g(u) u = g−1( 1
b [v − f ]),
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Example: Feedback Linearization of a Two-link Robot

I A two-link robot: each joint equipped
with

I a motor for providing input torque
I an encoder for measuring joint position
I a tachometer for measuring joint velocity

I objective: the joint positions ql and q2

follow desired position histories qdl(t) and
qd2(t)

I For example when a robot manipulator is
required to move along a specified path,
e.g., to draw circles.

Farzaneh Abdollahi Nonlinear Control Lecture 9 7/75



Outline Feedback Linearzation Preliminary Mathematics Input-State Linearization Input-Output Linearization

I Using the Lagrangian equations the robotic dynamics are:[
H11 H12

H21 H22

] [
q̈1

q̈2

]
+

[
−hq̇2 −hq̇2 − hq̇1

hq̇1 0

] [
q̇1

q̇2

]
+

[
g1

g2

]
=

[
τ1
τ2

]
where q = [q1 q2]T : the two joint angles, τ = [τ1 τ2]T : the joint inputs, and

H11 = m1l2c1 + l1 + m2[l21 + l2c2 + 2l1lc2 cos q2] + I2

H22 = m2l2c2 + I2H12 = H21 = m2l1lc2 cos q2 + m2l2c2 + I2

g1 = m1lc1 cos q1 + m2g [lc2 cos(q1 + q2) + l1 cos q1]

g2 = m2lc2g cos(q1 + q2), h = m2l1lc2 sin q2

I Control law for tracking, (computed torque):[
τ1
τ2

]
=

[
H11 H12

H21 H22

] [
v1

v2

]
+

[
−hq̇2 −hq̇2 − hq̇1

hq̇1 0

] [
q̇1

q̇2

]
+

[
g1

g2

]
where v = q̈d − 2λ ˙̃q − λ2q̃, q̃ = q − qd : position tracking error, λ: pos. const.

I ∴ ¨̃qd + 2λ ˙̃q + λ2q̃ = 0 where q̃ converge to zero exponentially.

I This method is applicable for arbitrary # of links
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Input-State Linearization

I When the nonlinear dynamics is not in a controllability canonical form,
use algebraic transformations

I Consider the SISO system

ẋ = f (x , u)

I In input-state linearization technique:

1. finds a state transformation z = z(x) and an input transformation
u = u(x , v) s.t. the nonlinear system dynamics is transformed into
ż = Az + bv

2. Use standard linear techniques (such as pole placement) to design v .
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Example:
I Consider ẋ1 = −2x1 + ax2 + sin x1

ẋ2 = −x2 cos x1 + u cos(2x1)
I Equ. pt. (0, 0)
I The nonlinearity cannot be directly canceled by the control input u
I Define a new set of variables:

z1 = x1

z2 = ax2 + sin x1

∴ ż1 = −2z1 + z2

ż2 = −2z1 cos z1 + cos z1 sin z1 + au cos(2z1)

I The Equ. pt. is still (0, 0).
I The control law: u = 1

a cos(2z1)
(v − cos z1 sin z1 + 2z1 cos z1)

I The new dynamics is linear and controllable: ż1 = −2z1 + z2, ż2 = v
I By proper choice of feedback gains k1 and k2 in v = −k1z1 − k2z2, place

the poles properly.
I Both z1 and z2 converge to zero,  the original state x converges to zero
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I The result is not global.
I The result is not valid when xl = (π/4± kπ/2), k = 0, 1, 2, ...

I The input-state linearization is achieved by a combination of a state
transformation and an input transformation with state feedback used in
both.

I To implement the control law, the new states (z1, z2) must be available.
I If they are not physically meaningful or measurable, they should be

computed by measurable original state x .

I If there is uncertainty in the model, e.g., on a error in the computation
of new state z as well as control input u.

I For tracking control, the desired motion needs to be expressed in terms of
the new state vector.

I Two questions arise for more generalizations which will be answered in
next lectures:

I What classes of nonlinear systems can be transformed into linear systems?
I How to find the proper transformations for those which can?
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Input-Output Linearization

I Consider
ẋ = f (x , u)

y = h(x)

I Objective: tracking a desired trajectory yd(t), while keeping the whole
state bounded

I yd(t) and its time derivatives up to a sufficiently high order are known
and bounded.

I The difficulty: output y is only indirectly related to the input u
I ∴ it is not easy to see how the input u can be designed to control the

tracking behavior of the output y .

I Input-output linearization approach:

1. Generating a linear input-output relation
2. Formulating a controller based on linear control
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Example:
I Consider ẋ1 = sin x2 + (x2 + 1)x3

ẋ2 = x5
1 + x3

ẋ3 = x2
1 + u

y = x1

I To generate a direct relationship between the output y and the input u,
differentiate the output ẏ = ẋ1 = sin x2 + (x2 + 1)x3

I No direct relationship  differentiate again: ÿ = (x2 + 1)u + f (x), where
f (x) = (x5

1 + x3)(x3 + cos x2) + (x2 + 1)x2
1

I Control input law: u = 1
x2+1(v − f ).

I Choose v = ÿd − k1e − k2ė, where e = y − yd is tracking error, k1 and k2

are pos. const.

I The closed-loop system: ë + k2ė + k1e = 0

I ∴ e.s. of tracking error
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Example Cont’d

I The control law is defined everywhere except at singularity points s.t.
x2 = −1

I To implement the control law, full state measurement is necessary,
because the computations of both the derivative y and the input
transformation need the value of x .

I If the output of a system should be differentiated r times to generate an
explicit relation between y and u, the system is said to have relative
degree r .

I For linear systems this terminology expressed as # poles −# zeros.

I For any controllable system of order n, by taking at most n
differentiations, the control input will appear to any output, i.e., r ≤ n.

I If the control input never appears after more than n differentiations, the
system would not be controllable.
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Feedback Linearzation
I Internal dynamics: a part of dynamics which is unobservable in the

input-output linearization.
I In the example it can be ẋ3 = x2

1 + 1
x2+1 (ÿd(t)− k1e − k2ė + f )

I The desired performance of the control based on the reduced-order model
depends on the stability of the internal dynamics.

I stability in BIBO sense

I Example: Consider [
ẋ1

ẋ2

]
=

[
x3
2 + u

u

]
(2)

y = x1

I Control objective: y tracks yd .
I First differentiations of y linear I/O relation
I The control law u = −x3

2 − e(t) + ẏd(t) exp. convergence of e :
ė + e = 0

I Internal dynamics: ẋ2 + x3
2 = ẏd − e

I Since e and ẏd are bounded (ẏd(t)− e ≤ D) x2 is ultimately bounded.
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I I/O linearization can also be applied to stabilization (yd(t) ≡ 0):
I For previous example the objective will be y and ẏ will be driven to zero

and stable internal dynamics guarantee stability of the whole system.
I No restriction to choose physically meaningful h(x) in y = h(x)
I Different choices of output function leads to different internal dynamics

which some of them may be unstable.

I When the relative degree of a system is the same as its order:
I There is no internal dynamics
I The problem will be input-state linearization
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Summary
I Feedback linearization cancels the nonlinearities in a nonlinear system s.t.

the closed-loop dynamics is in a linear form.

I Canceling the nonlinearities and imposing a desired linear dynamics, can
be applied to a class of nonlinear systems, named companion form, or
controllability canonical form.

I When the nonlinear dynamics is not in a controllability canonical form,
input-state linearization technique is employed:

1. Transform input and state into companion canonical form
2. Use standard linear techniques to design controller

I For tracking a desired traj, when y is not directly related to u, I/O
linearizaton is applied:

1. Generating a linear input-output relation (take derivative of y r ≤ n times)
2. Formulating a controller based on linear control

I Relative degree: # of differentiating y to find explicate relation to u.

I If r 6= n, there are n − r internal dynamics that their stability be checked.
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Internal Dynamics of Linear Systems
I In general, directly determining the stability of the internal dynamics is

not easy since it is nonlinear. nonautonomous, and coupled to the
“external” closed-loop dynamics.

I We are seeking to translate the concept of internal dynamics to the more
familiar context of linear systems.

I Example: Consider the controllable, observable system[
ẋ1

ẋ2

]
=

[
x2 + u

u

]
(3)

y = x1

I Control objective: y tracks yd .
I First differentiations of y ẏ = x2 + u
I The control law u = −x2− e(t) + ẏd(t) exp. convergence of e : ė + e = 0
I Internal dynamics: ẋ2 + x2 = ẏd − e
I e and ẏd are bounded  x2 and therefore u are bounded.
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I Now consider a little different dynamics[
ẋ1

ẋ2

]
=

[
x2 + u
−u

]
(4)

y = x1

I using the same control law yields the following internal dynamics

ẋ2 − x2 = e(t)− ẏd

I Although yd and y are bounded, x2 and u diverge to ∞ as t →∞
I why the same tracking design method yields different results?

I Transfer function of (3) is: W1(s) = s+1
s2 .

I Transfer function of (4) is: W2(s) = s−1
s2 .

I ∴ Both have the same poles but different zeros
I The system W1 which is minimum-phase tracks the desired trajectory

perfectly.
I The system W2 which is nonminimum-phase requires infinite effort for

tracking.
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Internal Dynamics

I Consider a third-order linear system with one zero

ẋ = Ax + bu, y = cT x (5)

I Its transfer function is: y = b0+b1s
a0+a1s+a2s2+s3 u

I First transform it into the companion form: ż1

ż2

ż3

 =

 0 1 0
0 0 1
−a0 −a1 −a2

 z1

z2

z3

+

 0
0
1

 u (6)

y = [b0 b1 0]

 z1

z2

z3


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I In second derivation of y , u appears:
ÿ = b0z3 + b1(−a0z1 − a1z2 − a2z3 + u)

I ∴ Required number of differentiations (the relative degree) is indeed the
same as # of poles- # of zeros

I Note that: the I/O relation is independent of the choice of state variables
 two differentiations is required for u to appear if we use (5).

I The control law: u = (a0z1 + a1z2 + a2z3 − b0
b1

z3) + 1
b1

(−k1e − k2ė + ÿd)

I ∴ an exp. stable tracking is guaranteed
I The internal dynamics can be described by only one state equation

I z1 can complete the state vector,( z1, y , and ẏ are related to z1, z2 and z3

through a one-to-one transformation).
I ż1 = z2 = 1

b1
(y − b0z1)

I y is bounded  stability of the internal dynamics depends on − b0

b1
I If the system is minimum phase the internal dynamics is stable

(independent of initial conditions and magnitude of desired trajectory)
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Zero-Dynamics

I For linear systems the stability of the internal dynamics is determined by
the locations of the zeros.

I To extend the results for nonlinear systems the concept of zero should be
modified.

I Extending the notion of zeros to nonlinear systems is not trivial
I In linear systems I/O relation is described by transfer function which zeros

and poles are its fundamental components. But in nonlinear systems we
cannot define transfer function

I Zeros are intrinsic properties of a linear plant. But for nonlinear systems
the stability of the internal dynamics may depend on the specific control
input.

I Zero dynamics: is defined to be the internal dynamics of the system when
the system output is kept at zero by the input.(output and all of its
derivatives)
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I For dynamics (2), the zero dynamics is ẋ2 + x3
2 = 0

I we find input u to maintain the system output at zero uniquely (keep x1

zero in this example),
I By Layap. Fcn V = x2

2 it can be shown it is a.s

I For linear system (5), the zero dynamics is ż1 + (b0/b1)z1 = 0

I ∴ The poles of the zero-dynamics are exactly the zeros of the system.

I In linear systems, if all zeros are in LHP  g.a.s. of the zero-dynamics  g.s. of
internal dynamics.

I In nonlinear systems, no results on the global stability
I only local stability is guaranteed for the internal dynamics even if the

zero-dynamics is g.e.s.

I Zero-dynamics is an intrinsic feature of a nonlinear system, which does not
depend on the choice of control law or the desired trajectories.

I Examining the stability of zero-dynamics is easier than examining the stability of
internal dynamics,But the result is local.

I Zero-dynamics only involves the internal states
I Internal dynamics is coupled to the external dynamics and desired trajs.
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Zero-Dynamics
I Similar to the linear case, a nonlinear system whose zero dynamics is

asymptotically stable is called an asymptotically minimum phase system,

I If the zero-dyiamics is unstable, different control strategies should be
sought

I As summary control design based on input-output linearization is in three
steps:

1. Differentiate the output y until the input u appears
2. Choose u to cancel the nonlinearities and guarantee tracking convergence
3. Study the stability of the internal dynamics

I If the relative degree associated with the input-output linearization is the
same as the order of the system  the nonlinear system is fully linearized
 satisfactory controller

I Otherwise, the nonlinear system is only partly linearized  whether or
not the controller is applicable depends on the stability of the internal
dynamics.
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Preliminary Mathematics

I Vector function f : Rn → Rn is called a vector field in Rn.

I Smooth vector field: function f(x) has continuous partial derivatives of
any required order.

I Gradient of a smooth scalar function h(x) is denoted by a row vector
∇h = ∂h

∂x , where (∇h)j = ∂h
∂xj

I Jacobian of a vector field f(x):an n × n matrix ∇f = ∂f
∂x , where

(∇f)ij = ∂fi
∂xj

I Lie derivative of h with respect to f is a scalar function defined by
Lfh = ∇hf, where h : Rn → R: a smooth scalar, f : Rn → Rn: a smooth
vector field.

I If g is another vector field: LgLfh = ∇(Lfh)g

I L0
f h = h; Li

f h = Lf (Li−1
f h) = ∇(Li−1

f h)f
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I Example: For single output system ẋ = f(x), y = h(x) then

ẏ =
∂h

∂x
ẋ = Lfh

ÿ =
∂[Lfh]

∂x
ẋ = L2

f h

I If V is a Lyap. fcn candidate, its derivative V̇ can be written as LfV .

I Lie bracket of f and g is a third vector field defined by
[f, g] = ∇gf−∇f g, where f and g two vector field on Rn.

I The Lie bracket [f, g] is also written as adf g (ad stands for ”adjoint”).

I ad0
f g = g ; ad i

f g = [f , ad i−1
f g ], i = 1, ...

I Example: Consider ẋ = f(x) + g(x)u where

f =

[
−2x1 + ax2 + sin x1

−x2 cos x1

]
, g =

[
0

cos(2x1)

]
I So the Lie bracket is:

[f, g] =

[
−a cos(2x1)

cos x1cos(2x1)− 2 sin(2x1)(−2x1 + ax2 + sin x1)

]
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I Lemma: Lie brackets have the following properties:

1. bilinearity:

[α1f1 + α2f2, g] = α1[f1, g] + α2[f2, g]

[f, α1g1 + α2g2] = α1[f, g1] + α2[f, g2]

where f, f1, f2, g g1, g2 are smooth vector fields and α1 and α2 are
constant scalars.

2. skew-commutativity:

[f, g] = −[g, f]

3. Jacobi identity

Ladfgh = LfLgh − LgLfh

where h is a smooth fcn.
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Diffeomorphism

I The concept of diffeomorphism can be applied to transform a nonlinear
system into another nonlinear system in terms of a new set of states.

I Definition: A function φ : Rn → Rn defined in a region Ω is called a
diffeomorphism if it is smooth, and if its inverse φ−1 exists and is smooth.

I If the region Ω is the whole space Rn φ(x) is global diffeomorphism

I Global diffeomorphisms are rare,we are looking for local diffeomorphisms.

I Lemma: Let φ(x) be a smooth function defined in a region Ω in Rn. If
the Jacobian matrix ∇φ is non-singular at a point x = x0 of Ω, then φ(x)
defines a local diffeomorphism in a subregion of Ω
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Diffeomorphism
I Consider the dynamic system described by

ẋ = f (x) + g(x)u, y = h(x)

I Let the new set of states z = φ(x) ż = ∂φ
∂x ẋ = ∂φ

∂x (f (x) + g(x)u)

I The new state-space representation

ż = f ∗(z) + g∗(z)u, y = h∗(z)

where x = φ−1(z).
I Example of a non-global diffeomorphism: Consider[

z1

z2

]
= φ(x) =

[
2x1 + 5x1x2

2

3 sin x2

]
I Its Jacobian matrix: ∂φ

∂x =

[
2 + 5x2

2 10x1x2

0 3 cos x2

]
.

I rank is 2 at x = (0, 0) local diffeomorphism around the origin where
Ω = {(x1, x2), |x2| < π/2}.

I outside the region, the inverse of φ does not uniquely exist.
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Frobenius Theorem
I An important tool in feedback linearization

I Provide necess. and suff. conditions for solvability of PDEs.

I Consider a PDE with (n=3):
∂h

∂x1
f1 +

∂h

∂x2
f2 +

∂h

∂x3
f3 = 0

∂h

∂x1
g1 +

∂h

∂x2
g2 +

∂h

∂x3
g3 = 0 (7)

where fi (x1, x2, x3), gi (x1, x2, x3) (i = 1, 2, 3) are known scalar fcns and
h(x1, x2, x3) is an unknown function.

I This set of PDEs is uniquely determined by the two vectors
f = [f1 f2 f3]T , g = [g1 g2 g3]T .

I If the solution h(x1, x2, x3) exists, the set of vector fields {f , g} is
completely integrable.

I When the equations are solvable?
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Frobenius Theorem
I Frobenius theorem states that Equation (7) has a solution h(x1, x2, x3) iff

there exists scalar functions α1(x1, x2, x3) and α2(x1, x2, x3) such that

[f , g ] = α1 f + α2 g

i.e., if the Lie bracket of f and g can be expressed as a linear combination of f
and g

I This condition is called involutivity of the vector fields {f , g}.
I Geometrically, it means that the vector field [f , g ] is in the plane formed by the

two vectors f and g

I The set of vector fields {f , g} is completely integrable iff it is involutive.

I Definition (Complete Integrability): A linearly independent set of vector
fields {f1, f2, ..., fm} on Rn is said to be completely integrable, iff, there exist
n −m scalar fcns h1(x), h2(x), ..., hn−m(x) satisfying the system of PDEs:

∇hi fj = 0

where 1 ≤ i ≤ n −m, 1 ≤ j ≤ m and ∇hi are linearly independent.
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I Number of vectors: m, dimension of the vectors: n, number of unknown
scalar fcns hi : (n-m), number of PDEs: m(n-m)

I Definition (Involutivity): A linearly independent set of vector fields
{f1, f2, ..., fm} on Rn is said to be involutive iff, there exist scalar fcns
αijk : RN −→ R s.t.

[fi , fj ](x) =
m∑

k=i

αijk(x) fk(x) ∀ i , j

i.e., the Lie bracket of any two vector fields from the set {f1, f2, ..., fm}
can be expressed as the linear combination of the vectors from the set.

I Constant vector fields are involutive since their Lie brackets are zero
I A set composed of a single vector is involutive:

[f , f ] = (∇f )f − (∇f )f = 0

I Involutivity means:

rank (f1(x) .... fm(x)) = rank (f1(x) .... fm(x) [fi , fj ](x))

for all x and for all i , j .
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Frobenius Theorem
I Theorem (Frobenius): Let f1, f2, ...., fm be a set of linearly

independent vector fields. The set is completely integrable iff it is
involutive.

I Example: Consider the set of PDEs:

4x3
∂h

∂x1
− ∂h

∂x2
= 0

−x1
∂h

∂x1
+ (x2

3 − 3x2)
∂h

∂x2
+ 2x3

∂h

∂x3
= 0

I The associated vector fields are {f1, f2}

f1 = [4x3 − 1 0]T f2 = [−x1 (x2
3 − 3x2) 2x3]T

I We have [f1, f2] = [−12x3 3 0]T

I Since [f1, f2] = −3f1 + 0f2, the set {f1, f2} is involutive and the set of
PDEs are solvable.

Farzaneh Abdollahi Nonlinear Control Lecture 9 33/75



Outline Feedback Linearzation Preliminary Mathematics Input-State Linearization Input-Output Linearization

Input-State Linearization
I Consider the following SISO nonlinear system

ẋ = f (x) + g(x)u (8)

where f and g are smooth vector fields

I The above system is also called “linear in control” or “affine”

I If we deal with the following class of systems:

ẋ = f (x) + g(x)w(u + φ(x))

where w is an invertible scalar fcn and φ is an arbitrary fcn
I We can use v = w(u + φ(x)) to get the form (8).
I Control design is based on v and u can be obtained by inverting w :

u = w−1(v)− φ(x)

I Now we are looking for
I Conditions for system linearizability by an input-state transformation
I A technique to find such transformations
I A method to design a controller based on such linearization technique
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Input-State Linearization
I Definition: Input-State Linearization The nonlinear system (8) where f (x)

and g(x) are smooth vector fields in Rn is input-state linearizable if there exist
region Ω in Rn, a diffeomorphism mapping φ : Ω −→ Rn, and a control law:

u = α(x) + β(x)v

s.t. new state variable z = φ(x) and new input variable v satisfy an LTI relation:

ż = Az + Bv

A =


0 1 0 . . . 0
0 0 1 . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

 B =


0
0
...
0
1

 (9)

I The new state z is called the linearizing state and the control law u is called the
linearizing control law

I Let z = z(x)
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Input-State Linearization

I (9) is the so-called linear controllability or companion form

I This linear companion form can be obtained from any linear controllable
system by a transformation  if u leads to a linear system, (9) can be
obtained by another transformation easily.

I This form is an special case of Input-Output linearization leading to
relative degree r = n.

I Hence, if the system I/O linearizable with r = n, it is also I/S linearizable.

I On the other hand, if the system is I/S linearizable, it is also I/O
linearizable with y = z , r = n.
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Input-State Linearization

I Lemma: An nth order nonlinear system is I/S linearizable iff there exists
a scalar fcn z1(x) for which the system is I/O linearizable with r = n.

I Still no guidance on how to find the z1(x).
I Conditions for Input-State Linearization:

I Theorem: The nonlinear system (8) with f (x) and g(x) being smooth
vector field is input-state linearizable iff there exists a region Ω s.t. the
following conditions hold:

I The vector fields {g , adf g , ... adf
n−1g} are linearly independent in Ω

I The set {g , adf g , ... adf
n−2g} is involutive in Ω

I The first condition:
I can be interpreted as a controllability condition
I For linear system, the vector field above becomes {B, AB, ... An−1B}
I Linear independency ≡ invertibility of controllability matrix
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I The second condition
I is always satisfied for linear systems since the vector fields are constant, but

for nonlinear system is not necessarily satisfied.
I It is necessary according to Ferobenius theorem for existence of z1(x).

I Lemma: If z(x) is a smooth vector field in Ω, then the set of equations

Lg z = Lg Lf z = ... = Lg Lf
kz = 0

is equivalent to

Lg z = Ladf g z = ... = Ladf
kg z = 0

I Proof:
I Let k = 1, from Jacobi’s identity, we have

Ladf g z = Lf Lg z − Lg Lf z = 0− 0 = 0

I When k = 2, we have from Jacobi’s identity:

Ladf
2g z = Lf

2Lg z − 2Lf Lg Lf z + Lg Lf
2z = 0− 0 + 0 = 0
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I Proof of the linearization theorem:
I Necessity:

I Suppose state transformation z = z(x) and input transformation
u = α(x) + β(x)v s.t. z and v satisfy (9), i.e.

ż1 =
∂z1

∂x
(f + gu) = z2

similarly:
∂z1

∂x
f +

∂z1

∂x
gu = z2

∂z2

∂x
f +

∂z2

∂x
gu = z3

...
∂zn

∂x
f +

∂zn

∂x
gu = v
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I z1, ..., zn−1 are independent of u,

Lg z1 = Lg z2 = ... Lg zn−1 = 0, Lg zn 6= 0

Lf zi = zi+1, i = 1, 2, ..., n − 1

I Use, z = [z1 Lf z1, ... Lf
n−1z1]T to get

żk = zk+1, k = 1, ... n − 1

żn = Lf
nz1 + Lg Lf

n−1z1u

I The above equations can be expressed in terms of z1 only
∇z1adf

kg = 0, k = 0, 1, 2, ..., n − 2 (10)

∇z1adf
n−1g = (−1)n−1Lg zn (11)

I First note that for above eqs to hold, the vector field g , adf g , ..., adf
n−1g

must be linearly independent.

I If for some i(i ≤ n − 1) there exist scalar fcns α1(x), ... αi−1(x) s.t.

adf
ig =

i−1∑
k=0

αkadf
kg
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I We, then have:

∴ adf
n−1g =

n−2∑
k=n−i−1

αkadf
kg

∴ ∇z1adf
n−1g =

n−2∑
k=n−i−1

αk∇z1adf
kg = 0 (12)

∴ Contradicts with (11).

I The second property is that ∃ a scalar fcn z1 that satisfy n − 1 PDEs
∇z1adf

kg = 0

I ∴ From the necessity part of Frobenius theorem, we conclude that the set
of vector field must be involutive.

I Sufficient condition
I Involutivity condition =⇒ Frobenius theorem, ∃ a scalar fcn z1(x):

Lg z1 = Ladf g z1 = ... Ladf
kg z1 = 0, implying

Lg z1 = Lg Lf z1 = ... Lg Lf
kz1 = 0
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I Define the new sets of variable as z = [z1 Lf z1 ... Lf
n−1z1]T , to get

żk = zk+1 k = 1, ..., n − 1

żn = Lf
nz1 + Lg Lf

n−1z1u (13)

The question is whether Lg Lf
n−1z1 can be equal to zero.

I Since {g , adf g , ..., adf
n−1g} are linearly independent in Ω:

Lg Lf
n−1z1 = (−1)n−1Ladf

n−1g z1

I We must have Ladf
n−1g z1 6= 0, otherwise the nonzero vector ∇z1

satisfies

∇z1 [g , adf g , ..., adf
n−1g ] = 0

i.e. ∇z1 is normal to n linearly independent vector =⇒ impossible

I Now, we have:

żn = Lf
nz1 + Lg Ln−1

f z1u = a(x) + b(x)u

Farzaneh Abdollahi Nonlinear Control Lecture 9 42/75



Outline Feedback Linearzation Preliminary Mathematics Input-State Linearization Input-Output Linearization

I Now, select u = 1
b(x)(−a(x) + v) to get:

żn = v

implying input-state linearization is obtained.
I Summary: how to perform input-state Linearization

1. Construct the vector fields g , adf g , ... adf
n−1g

2. Check the controllability and involutivity conditions
3. If the conditions hold, obtain the first state z1 from:

∇z1adf
ig = 0 i = 0, ..., n − 2

∇z1adf
n−1g 6= 0

4. Compute the state transformation z(x) = [z1 Lf z1 ... Lf
n−1z1]T and the

input transformation u = α(x) + β(x)v :

α(x) = − Lf
nz1

Lg Lf
n−1z1

β(x) =
1

Lg Lf
n−1z1
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Example:A single-link flexible-joint manipulator:

I The link is connected to the motor shaft via a torsional spring

I Equations of motion:
I q̈1 + MgLsinq1 + K (q1 − q2) = 0

Jq̈2 − K (q1 − q2) = u
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Example:A single-link flexible-joint manipulator:
I Equations of motion:

I q̈1 + MgLsinq1 + K (q1 − q2) = 0

Jq̈2 − K (q1 − q2) = u

I nonlinearities appear in the first equation and torque is in the second equation

I Let:

x =


q1

q̇1

q2

q̇2

 , f =


x2

−MgL
I sinx1 − K

I (x1 − x3)
x4

K
J (x1 − x3)

 , g =


0
0
0
1
J


I Controllability and involutivity conditions:

[g adf g adf
2g adf

3g ] =


0 0 0 −K

IJ

0 0 K
IJ 0

0 − 1
J 0 K

J2

1
J 0 − K

J2 0


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Example: Cont’d

I It’s full rank for k > 0 and IJ <∞ =⇒ vector fields are linearly
independent

I Vector fields are constant =⇒ involutive

I The system is input-state linearizable

I Computing z = z(x), u = α(x) + β(x)v

I ∂z1
∂x2

= 0, ∂z1
∂x3

= 0, ∂z1
∂x4

= 0, ∂z1
∂x1
6= 0

I Hence, z1 is the fcn of x1 only. Let z1 = x1, then

z2 = ∇z1f = x2

z3 = ∇z2f = −MgL

I
sinx1 −

K

I
(x1 − x3)

z4 = ∇z3f = −MgL

I
x2cosx1 −

K

I
(x2 − x4)
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Example: Cont’d
I The input transformation is given by:

u = (v −∇z4f )/(∇z4g) =
IJ

K
(v − a(x))

a(x) =
MgL

I
sinx1(x2

2 +
MgL

I
cosx1 +

K

I
)

+
K

I
(x1 − x3)(

K

I
+

K

J
+

MgL

I
cosx1)

I As a result, we get the following set of linear equations
ż1 = z2, ż2 = z3

ż3 = z4, ż4 = v

I The inverse of the state transformation is given by:
x1 = z1, x2 = z2

x3 = z1 +
I

K

(
z3 +

MgL

I
sinz1

)
x4 = z2 +

I

K

(
z4 +

MgL

I
z2cosz1

)
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Example Cont’d

I State and input transformations are defined globally

I In this example, transformed state have physical meaning, z1 : link
position, z2 : link velocity, z3 : link acceleration, z4 : link jerk.

I It could be obtained by I/O linearization, i.e. by differentiating the output
q1. (4 times)

I We can transform the inequality (11) to a normalized equation by setting
∇z1adf

n−1g = 1 resulting in:

[adf
0g adf

1g ... adf
n−2g adf

n−1g ]


∂z1
∂x1
...
∂z1
∂xn

 =


0
0
...
0
1


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Control Design
I Once, the linearized dynamics is obtained, either a tracking or

stabilization problem can be solved

I For instance, in flexible-joint manipulator case, we have

z
(4)
1 = v

I Then, a tracking controller can be obtained as

v = z
(4)
d1 − a3z̃

(3)
1 − a2

¨̃z1 − a1
˙̃z1 − a0z̃1

where z̃1 = z1 − zd1.

I The error dynamics is then given by:

z̃
(4)
1 + a3z̃

(3)
1 + a2

¨̃z1 + a1
˙̃z1 + a0z̃1 = 0

I The above dynamics is exponentially stable if ai are selected s.t.

s4 + a3s3 + a2s2 + a1s + a0 is Hurwitz
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Input-Output Linearization

I Consider the system:

ẋ = f (x) + g(x)u

y = h(x) (14)

I Input-output linearization yields a linear relationship between the output
y and the input v (similar to v in I/S Lin.)

I How to generate a linear I/O relation for such systems?
I What are the internal dynamics and zero-dynamics associated with this I/O

linearization
I How to design a stable controller based on this technique?

I Performing I/O Linearization
I The basic approach is to differentiate the output y until the input u

appears, then design u to cancel nonlinearities
I Sometime, cancelation might not be possible due to the undefined relative

degree.
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Well Defined Relative Degree

I Differentiate y and express it in the form of Lie derivative:

ẏ = ∇h(f + gu) = Lf h(x) + Lg h(x)u

if Lg h(x) 6= 0 for some x = x0 in Ωx , then continuity implies that
Lg h(x) 6= 0 in some neighborhood Ω of x0. Then, the input
transformation

u =
1

Lg h(x)
(−Lf h(x) + v)

results in a linear relationship between y and v , namely ẏ = v .

I If Lg h(x) = 0 for all x ∈ Ωx , differentiate ẏ to obtain

ÿ = Lf
2h(x) + Lg Lf h(x)u

I If Lg Lf h(x) = 0 for all x ∈ Ωx , keep differentiating until for some
integer r , Lg Lf

r−1h(x) 6= 0 for some x = x0 ∈ Ωx
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I Hence, we have

y (r) = Lf
r h(x) + Lg Lf

r−1h(x)u (15)

and the control law

u =
1

Lg Lf
r−1h(x)

(−Lf
r h(x) + v)

yields a linear mapping:

y (r) = v

I The number r of differentiation required for u to appear is called the
relative degree of the system.

I r ≤ n, if r = n, the input-state realization is obtained with z1 = y .

I Definition: The SISO system is said to have a relative degree r in Ω if:

Lg Lf
ih(x) = 0 0 ≤ i ≤ r − 2

Lg Lf
r−1h(x) 6= 0
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Undefined Relative Degree

I Sometimes, we are interested in the properties of a system about a
specific operating point x0.

I Then, we say the system has relative degree r at x0 if

Lg Lf
r−1h(x0) 6= 0

I However, it might happen that Lg Lf
r−1h(x) is zero at x0, but nonzero in

a close neighborhood of x0.

I The relative degree of the nonlinear system is then undefined at x0.

I Example:

ẍ = ρ(x , ẋ) + u

where ρ is a smooth nonlinear fcn. Define x = [x ẋ ]T and let y = x =⇒
the system is in companion form with r = 2.
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I However, if we define y = x2, then:

ẏ = 2xẋ

ÿ = 2xẍ + 2ẋ2 = 2xρ(x , ẋ) + 2xu + 2ẋ2 =⇒
Lg Lf h = 2x (16)

I The system has neither relative degree 1 nor 2 at x0 = 0.

I Sometime, change of output leads us to a solvable problem.

I We assume that the relative degree is well defined.
I Normal Forms

I When, the relative degree is defined as r ≤ n, using y , ẏ , ..., y (r−1), we
can transform the system into the so-called normal form.

I Normal form allows a formal treatment of the notion of internal dynamics
and zero dynamics.

I Let µ = [µ1 µ2 ... µr ]T = [y ẏ ... y (r−1)]T

in a neighborhood Ω of a point x0.
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Normal Form
I The normal form of the system can be written as

µ̇ =


µ2

...
µr

a(µ,Ψ) + b(µ,Ψ)u

 (17)

Ψ̇ = w(µ,Ψ) (18)

y = µ1

I The µi and Ψj are called normal coordinate or normal states.

I The first part of the Normal form, (17) is another form of (15), however in (18)
the input u does not appear.

I The system can be transformed to this form if the state transformation φ(x) is a
local diffeomorphism: φ(µ1 ... µr Ψ1 ... Ψn−r )T

I To show that φ is a diffeomorphism, we must show that the Jacobian is
invertible, i.e. ∇µi and ∇Ψi are all linearly independent.
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Normal Form
I ∇µi are linearly independent =⇒ µ can be part of state variables, (µ is

output and its r − 1 derivatives)

I There exist n − r other vector fields that complete the transformation

I Note that u does not appear in (18), hence:

∇Ψjg = 0 1 ≤ j ≤ n − r

∴ Ψ can be obtained by solving n − r PDE above.

I Generally, internal dynamics can be obtained simpler by intuition.
I Zero Dynamics

I System dynamics have two parts:

1. external dynamics µ̇
2. internal dynamics Ψ̇

I For tracking problems (y −→ yd), one can easily design v once the linear
relation is obtained.

I The question is whether the internal dynamics remain bounded
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Zero-Dynamics

I Stability of the zero dynamics (i.e. internal dynamics when y is kept 0)
gives an idea about the stability of internal dynamics

I u is selected s.t. y remains zero at all time.

y (r)(t) = Lf
r h(x) + Lg Lf

r−1h(x)u0 ≡ 0 =⇒

u0(x) =
−Lf

r h(x)

Lg Lf
r−1h(x)

I ∴ In normal form: {
µ̇ = 0

Ψ̇ = w(0,Ψ)

u0(Ψ) =
−a(0,Ψ)

b(0,Ψ)
(19)
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Example

I Consider
ẋ =

 −x1

2x1x2 + sinx2

2x2

+

 e2x2

1/2
0

 u

y = h(x) = x3

I We have ẏ = 2x2

ÿ = 2ẋ2 = 2(2x1x2 + sinx2) + u

I The system has relative degree r = 2 and

Lf h(x) = 2x2

Lg h(x) = 0

Lg Lf h(x) = 1
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Example Cont’d

I To obtain the normal form

µ1 = h(x) = x3

µ2 = Lf h(x) = 2x2

I The third function Ψ(x) is obtained by

Lg Ψ =
∂Ψ

∂x1
e2x2 +

1

2

∂Ψ

∂x2
= 0

I One solution is Ψ(x) = 1 + x1 − e2x2

I Consider the jacobian of state transformation z = [µ1 µ2 Ψ]T . The
Jacobian matrix is  0 0 1

0 2 0
1 −2e2x2 0


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Example Cont’d
I The Jacobian is non-singular for any x . In fact, inverse transformation is given

by:

x1 = −1 + Ψ + eµ2

x2 =
1

2
µ2

x3 = µ1

I State transformation is valid globally and the normal form is given by:

µ̇1 = µ2

µ̇2 = 2(−1 + Ψ + eµ2)µ2 + 2sin(µ2/2) + u

Ψ̇ = (1−Ψ− eµ2)(1 + 2µ2eµ2)− 2sin(µ2/2)eµ2 (20)

I Zero dynamics is obtained by setting µ1 = µ2 = 0 =⇒

Ψ̇ = −Ψ (21)

which is clearly known to be globally exponentially stable.Farzaneh Abdollahi Nonlinear Control Lecture 9 60/75
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Zero-Dynamics

I In order to obtain the zero dynamics, it is not necessary to put the system
into normal form

I since µ is known, we can intuitively find n − r vector to complete the
transformation.

I As mention before, zero dynamics is obtained by substituting u0 for u in
internal dynamics.

I Definition: A nonlinear system with asymptotically stable zero dynamics
is called asymptotically minimum phase

I If the zero dynamics is stable for all x , the system is globally minimum
phase, otherwise the results are local.
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Local Asymptotic Stabilization

I Consider again the nonlinear system

ẋ = f (x) + g(x)u

y = h(x) (22)

Assume that the system is I/O linearized, i.e.

y (r) = Lf
r h(x) + Lg Lf

r−1h(x)u (23)

and the control law
u =

1

Lg Lf
r−1h(x)

(−Lf
r h(x) + v) (24)

yields a linear mapping: y (r) = v

I Now let v be chosen as

v = −kr−1y (r−1) − ... − k1ẏ − k0y (25)

where ki are selected s.t. K (s) = s r + kr−1s r−1 + ... + k1s + k0 is Hurwitz
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I Then, provided that the zero-dynamics is asymptotically stable, the control law
(24) and (25) locally stabilize the whole system:

I Theorem: Suppose the nonlinear system (22) has a well defined relative degree
r and its associated zero-dynamics is locally asymptotically stable. Now, if ki are
selected s.t. K (s) = s r + kr−1s r−1 + ... + k1s + k0 is Hurwitz, then the control
law (24) and (25) yields a locally asymptotically stable system.

I Proof: First, write the closed-loop system in a normal form:

µ̇ =


0 1 0 . . . 0
0 0 1 . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . 1
−k0 −k1 −k2 . . . −kr−1

 = Aµ

Ψ̇ = w(µ,Ψ) = A1µ + A2Ψ + h.o.t.

h.o.t. is higher order terms in the Taylor expansion about x0 = 0.
The above Eq. can be written as:

d

dt

[
µ
Ψ

]
=

[
A 0
A1 A2

] [
µ
Ψ

]
+ h.o.t.
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I Now, since the zero dynamics is asymptotically stable, its linearization Ψ̇ = A2Ψ
is either asymptotically stable or marginally stable.

I If A2 is asymptotically stable, then all eigenvalues of the above system
matrix are in LHP and the linearized system is stable and the nonlinear
system is locally asymptotically stable

I If A2 is marginally stable, asymptotic stability of the closed-loop system
was shown in (Byrnes and Isidori, 1988).

I Comparing the above method to local stabilization and using linear control:
I the above stabilization method can treat systems whose linearizations

contain uncontrollable but marginally stable modes,
I while linear control methods requires the linearized system to be strictly

stabilizable
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I For stabilization where state convergence is required, we can freely
choose y = h(x) to make zero-dynamics a.s.

I Example: Consider the nonlinear system:
ẋ1 = x2

1 x2

ẋ2 = 3x2 + u

I System linearization at x = 0:
ẋ1 = 0

ẋ2 = 3x2 + u

thus has an uncontrollable mode
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I Example (cont’d)
I Define y = −2x1 − x2 =⇒

ẏ = −2ẋ1 − ẋ2 = −2x2
1 x2 − 3x2 − u

I Hence, the relative degree r = 1 and the associated zero-dynamics is

ẋ1 = −2x3
1

I The zero-dynamics is asymptotically stable, hence the control law
u = −2x2

1 x2 − 4x2 − 2x1 locally stabilizes the system

I Global Asymptotic Stabilization

I Stability of the zero-dynamics only guarantees local stability unless relative
degree is n in which case there is no internal dynamics

I Can the idea of I/O linearization be used for global stabilization problem?

I Can the idea of I/O linearization be used for systems with unstable zero
dynamics?
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Global Asymptotic Stabilization

I Global stabilization approach based on partial feedback linearization is to
simply regard the problem as a standard Lyapunov controller design
problem

I But simplified by the fact that in normal form part of the system
dynamics is now linear.

I The basic idea is to view µ as the input to the internal dynamics and Ψ
as its output.

I The first step: find the control law µ0 = µ0(Ψ) which stabilizes the internal
dynamics with the corresponding Lyapunov fcn V0.

I Then: find a Lyapunov fcn candidate for the whole system (as a modified
version of V0) and choose the control input v s.t. V be a Lyapunov fcn for
the whole closed-loop dynamics.
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Example:

I Consider a nonlinear system with the normal form:

ẏ = v

z̈ + ż3 + yz = 0 (26)

where v is the control input and Ψ = [z ż ]T

I Considering y as an input to internal dynamics (26), it would be
asymptotically stabilized by the choice of y = y0 = z2

I Let V0 be a Lyap. fcn:

V0 =
1

2
ż2 +

1

4
z4

I Differentiating V0 along the actual dynamics results in

V̇0 = −ż4 − zż(y − z2)
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Example Cont’d

I Consider the Lyap. fcn candidate, obtained by adding a quadratic “error”
term in y − y0 to V0

V = V0 +
1

2
(y − z2)2

∴ V̇ = −ż4 + (y − z2)(v − 3zż)

I The following choice of control action will then make V̇ n.d.

v = −y + z2 + 3zż

∴ V̇ = −ż4 − (y − z2)2

I Application of Invariant-set theorem shows all states converges to zero
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Example: A non-minimum phase system
I Consider the system dynamics

ẏ = v

z̈ + ż3 − z5 + yz = 0

where again Ψ = [z ż ]T

I The system is non-minimum phase since its zero-dynamics is unstable
I The zero-dynamics would be stable if we select y = 2z4:

V0 =
1

2
ż2 +

1

6
z6 V̇0 = −ż4 − zż(y − 2z4)

I Consider the Lyap. fcn candidate

V = V0 +
1

2
(y − 2z4)2 V̇ = −ż4 + (y − 2z4)(v − 8z3ż − zż)

I suggesting the following choice of control law

v = −y + 2z4 + 8z3ż + zż V̇ = −ż4 − (y − 2z4)2

I Application of Invariant-set theorem shows all states converges to zero
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Tracking Control
I I/O linearization can be used in tracking problem

I Let µd = [yd ẏd ... y
(r−1)
d ]T and the tracking error µ̃(t) = µ(t)− µd(t)

I Theorem: Assume the system (22) has a well defined relative degree r
and µd is smooth and bounded and that the solution Ψd :

Ψ̇d = w(µd ,Ψd), Ψd(0) = 0

exists and bounded and is uniformly asymptotically stable. Choose ki s.t
K (s) = sr + kr−1sr−1 + ... + k1s + k0 is Hurwitz, then by using

u =
1

Lg Lf
r−1µ1

[−Lf
rµ1 + y

(r)
d − kr−1µ̃r − ... − k0µ̃1] (27)

the whole system remains bounded and the tracking error µ̃ converge to
zero exponentially.

I Proof: Refer to Isidori (1989).

I For perfect tracking µ(0) ≡ µd(0)
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Tracking Control for Non-minimum Phase Systems:

I The tracking control (27) cannot be applied to non-minimum phase
systems since they cannot be inverted

I Hence we cannot have perfect or asymptotic tracking and should seek
controllers that yields small tracking errors

I One approach is the so-called Output redefinition
I The new output y1 is defined s.t. the associated zero-dynamics is stable
I y1 is defined s.t. it is close to the original output y in the frequency range

of interest
I Then, tracking y1 also implies good tracking the original output y

I Example: Consider a linear system

y =

(
1− s

b

)
B0(s)

A(s)
u b > 0

I Perfect/asymptotic tracking is impossible due to the presence of zero @
s = b

Farzaneh Abdollahi Nonlinear Control Lecture 9 72/75



Outline Feedback Linearzation Preliminary Mathematics Input-State Linearization Input-Output Linearization

Example Cont’d

I Let us redefine the output as

y1 =
B0(s)

A(s)
u

with the desired output for y1 be simply yd

I A controller can be found s.t. y1 asymptotically tracks yd . What about
the actual tracking error?

y(s) =
(

1− s

b

)
y1 =

(
1− s

b

)
yd

I Thus, the tracking error is proportional to the desired velocity ẏd :

y(t)− yd(t) = − ẏd(t)

b

I ∴ Tracking error is bounded as long as ẏd is bounded, it is small when
the frequency content of yd is well below b
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Example Cont’d

I An alternative output, motivated by (1− s
b ) ≈ 1/(1 + s

b ) for small |s|/b:

y2 =
B0(s)

A(s)(1 + s
b )

u

y(s) =
(

1− s

b

)(
1 +

s

b

)
yd =

(
1− s2

b2

)
yd

I Thus, the tracking error is proportional to the desired acceleration ÿd :

y(t)− yd(t) = − ÿd(t)

b2

I Small tracking error if the frequency content of yd is below b
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Tracking Control

I Another approximate tracking (Hauser, 1989) can be obtained by
I When performing I/O linearization, using successive differentiation, simply

neglect the terms containing the input
I Keep differentiating n timed (system order)
I Approximately, there is no zero dynamics
I It is meaningful if the coefficients of u at the intermediate steps are “small”

or the system is “weakly non-minimum phase” system
I The approach is similar to neglecting fast RHP zeros in linear systems.

I Zero-dynamics is the property of the plant, choice of input and output
and desired Trajectory. It cannot be changed by feedback:

I Modify the plant (distribution of control surface on an aircraft or the mass
and stiffness in a flexible robot)

I Change the output (or the location of sensor)
I Change the input (or the location of actuator)
I Change the desired Traj.
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