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Sliding Control
I Sliding control is a robust control technique to control systems with

model imprecision and uncertainties.

I Sliding control is based on the idea that ”controlling a 1st order system is
much easier than the general nth order system

I To achieve this goal:

1. A first order system (sliding surface) is proposed and provide a condition
(sliding condition) to make the introduced surface an invariant set of the
system stability

2. A control is designed to reach to the sliding surface

I Providing perfect performance in presence of arbitrary parameter
inaccuracy is at the price of extremely high control activity.

I ∴ a modification of control law is required to provide an effective
trade-off between tracking performance and parametric uncertainty.

I In some specific applications, such as those involving the control of
electric motor the unmodified control law can be applied directly.
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Sliding Surface
I Consider single input dynamics

x (n) = f (x) + b(x)u (1)
I f is not exactly known, upper bounded by known continuous function of x
I b is not exactly known, its sign is known and upper bounded by known

continuous function of x

I Objective: find u, s.t. x track xd = [xd , ẋd , . . . , x
(n−1)
d ]T in presence of

imprecision on f (x) and b(x)

I Tracking error vector: x̃ = x− xd = [x̃ ˙̃x . . . x̃ (n−1)]

I Define a time-varying surface S(t) in state-space Rn by scaler equation
s(x; t) = 0:

s(x; t) = (
d

dt
+ λ)n−1x̃ (2)

where λ > 0 conts.
I for n = 2 s = ˙̃x + λx̃ , s is a weighted sum of position error and velocity

error
I for n = 3 s = ¨̃x + 2λ ˙̃x + λ2x̃
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Sliding Surface

I The problem of tracking the n-dimensional vector xd (the original
tracking problem) can be replaced by a 1st-order stabilization
problem in s.

I Given initial condition xd(0) = x(0), the problem of tracking x ≡ xd is
equivalent to remaining on the surface S(t) for all t > 0 (s ≡ 0 represents
a linear differential equation whose unique solution is x̃ ≡ 0)

I In (1),s contains x̃(n − 1) we only need to differentiate s once for the
input u to appear.

I Bounds on s can be directly translated into bounds on x̃ s represents a
true measure of tracking performance. When x̃(0) = 0:

∀t ≥ 0, |s(t)| ≤ Φ⇒ ∀t ≥ 0, |x̃ (i)| ≤ (2λ)iε, i = 0, ..., n − 1 (3)

where ε = Φ/λn−1
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I Proof: x̃ is obtained from s through a sequence of first-order lowpass filters,
shown in Fig.

I Let y1 output of first filter: y1 =
∫ t

0
e−λ(t−T )s(T )dT , |s| ≤ Φ⇒

|y1| ≤ Φ
∫ t

0
e−λ(t−T )dT = (Φ/λ)(1− e−λt) ≤ Φ/λ

I Repeat the same procedure all the way to yn−1 = x̃ |x̃ | ≤ Φ/λn−1 = ε

I To obtain x̃ (i), see the Fig b

I The output of the (n − 1− i)th filter: z1 < Φ/λn−1−i

I Note that p±λ
p+λ = 1− λ

λ+p ≤ 1 + λ
λ+p

I ∴|x̃ (i)| ≤ (Φ/λn−1−i )(1 + λ
λ )i = (2λ)iε

I If x̃(0) 6= 0,  , (3) is obtained asymptotically, within a short time-constant
(n − 1)/λ.
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Sliding Condition

I To keep the scalar s at zero, a control law u it should
be found s.t outside of S(t):

1

2

d

dt
s2 ≤ −η|s| (4)

where η > 0 conts.

I ∴ The squared ”distance” to the surface, s2 ,
decreases along all system trajectories. (V = 1

2 s2)

I (4), so-called sliding condition, makes the surface an
invariant set.

I By keeping the invariant set, some disturbances or
dynamic uncertainties can be tolerated.

I S(t) is sliding surface; behavior of the system on the
surface is sliding mode
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I If it is on the sliding surface, the system behavior can be expressed by
( d
dt + λ)n−1x̃ = 0

I If sliding condition is guaranteed, for nonzero initial condition,
(x(0) 6= xd(0)), the surface S(t) will be reached in a finite time smaller
than |s(t = 0)|/η:

I For treach: required time to reach s = 0, integrate (4) from 0 to treach:
s(treach)− s(0) = 0− s(0) < −η(treach − 0) treach ≤ |s(t = 0)|/η

I Once on the surface, tracking error tends exponentially to zero with time
constant (n − 1)/λ

I from the sequence of (n − 1) filters of time constants equal to 1/λ
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Local Asymptotic Stabilization

I For n = 2
I sliding surface is a line with slope −λ
I Starting with any initial conditions, the traj. reaches the time-varying

surface in finite time ≤ |s(t = 0)|/η
I Then slide along the surface towards xd exp. with time constant 1/λ
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I After defining the sliding surface s, the control is designed in two steps

1. A feedback control law u is selected so as to verify sliding condition (4)
2. The discontinuous control law u is suitably smoothed to achieve an optimal

trade-off between control bandwidth and tracking precision
I To cope with modeling imprecision and disturbances, the control law has to

be discontinuous across S(t).
I Implementing the associated control switchings is always imperfect

(switching is not instantaneous, and the value of s is not known with
infinite precision)  yields chattering

I Chattering  high control activity and may excite high frequency dynamics
neglected in modeling (such as unmodeled structural modes, neglected
time-delays, and so on).
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Example
I Consider ẍ = f + u (5)

I f is unknown,but estimated by f̂ , estimation error on f assumed to be bounded
by known function F = F (x , ṫ) |f̂ − f | ≤ F

I To track x ≡ xd , define the sliding surface:

s = (
d

dt
+ λ)x̃ = ˙̃x + λx̃ ṡ = f + u − ẍd + λ ˙̃x

I Best approximation û to achieve ṡ = 0
û = −f̂ + ẍd − λ ˙̃x

I The feedback control strategy is chosen intuitive ”if the error is negative, push
hard enough in the positive direction (and conversely)”

I To satisfy (4), a term discontinuous across the surface s = 0:
u = û − ksgn(s)

where
sgn(s) = 1 if s > 0

sgn(s) = −1 if s < 0
Farzaneh Abdollahi Nonlinear Control Lecture 9 11/30



Outline Sliding Control Continuous Approximations of Switching Control Laws

I Note that this strategy works only for first-order systems.

I By choosing k to be large enough (4) can be guaranteed

1

2

d

dt
s2 = ṡ.s = (f − f̂ )s − k |s|

’

I letting k = F + η 1
2

d
dt s

2 ≤ −η|s|
I Integral Control: To minimize the reaching time and make s(t = 0) = 0,

one can use integral control, i.e.
∫ t

0 x̃(r)dr as variable of interest.
I The previous example is third order relative to this variable, so s:

s = ( d
dt + λ)2(

∫ t

0
x̃(r)dr) = ˙̃x + 2λx̃ + λ2

∫ t

0
x̃(r)dr

I The approximation of control law will be changed to

û = −f̂ + ẍd − 2λ ˙̃x − λ2x̃

I The control law, u and k will remain the same
I Now if x̃(0) 6= 0 s = ˙̃x + 2λx̃ + λ2

∫ t

0
x̃(r)dr − ˙̃x(0)− 2λx̃(0)

I ∴ Although x̃(0) 6= 0, s(t = 0) = 0
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Gain Margins

I Consider ẍ = f + bu

where the control gain , b which is may be time-varying or
state-dependent is unknown, but of known bounds

0 < bmin ≤ b ≤ bmax

I choose estimation of b as its geometric mean of bounds: b̂ = (bminbmax)1/2.
I ∴ β−1 ≤ b̂

b ≤ β,
I β = (bmax/bmin)1/2 is gain margin

I With s and û defined in previous example u = b̂−1[û − ksgn(s)]

I ṡ = (f − bb̂−1f̂ ) + (1− bb̂−1)(−ẍd + λ ˙̃x)− bb̂−1ksgn(s)

I ∴ to satisfy sliding condition
k ≥ |b̂b−1f − f̂ + (b̂b−1 − 1)(−ẍd + λ ˙̃x)|+ ηb̂b−1

I Since f = f̂ + (f − f̂ ), where |f − f̂ | ≤ F k ≥ β(F + η) + (β − 1)|û|
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Continuous Approximations of Switching Control Laws
I For system dynamics (1) a unique smooth

control to track a feasible trajectory is
u(t) = b(xd)−1[ẍd − f (xd)]

I Control laws obtained by using sliding control
which provides ”perfect” tracking in the face
of model uncertainty, are discontinuous across
the surface S(t), chattering.

I In general, chattering is undesirable, since it
causes high control activity, and may excite
high-frequency dynamics neglected in
modeling

I The chattering is avoided by smoothing out
the control discontinuity in a thin boundary
layer neighboring the switching surface
B(t) = {X , |s(x ; t)| ≤ Φ}, Φ > 0 is the
boundary layer thickness
ε = Φ/λn−1 is the boundary width
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I Outside of B(t), the control law u is like
before to guarantee that the boundary
layer is invariant

I All trajectories starting inside B(t = 0)
remain inside B(t) for all t > 0

I Inside B(t), u is interpolated
I For instance,, inside B(t), in the

expression of u replace sgn(s) by s/Φ, as
shown in Fig

I As it has been shown before, instead of
perfect tracking, tracking to within a
guaranteed precision εis guaranteed.

I For all trajectories starting inside
B(t = 0)
∀t ≥ 0|x̃ (i)| ≤ (2λ)iε i = 1, ..., n − 1
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Example

I Consider the system dynamics

ẍ + a(t)ẋ2 cos 3x = u

I 1 ≤ a(t) ≤ 2, for simulation a(t) = | sin t|+ 1,

I λ = 20, η = 0.1

I f̂ = 1.5ẋ2 cos 3x , F = 0.5ẋ2| cos 3x |
I By using the switching control law: u = û − ksgn(s) =

1.5ẋ2cos3x + ẍd − 20 ˙̃x − (0.5ẋ2| cos 3x |+ 0.1)sgn( ˙̃x + 20x̃)
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Example Cont’d

I Tracking performance is excellent at the price of high control chattering
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Example Cont’d

I Modify control law by considering a thin boundary layer of thickness 0.1

I u = û − ksat(s/Φ) =
1.5ẋ2cos3x + ẍd − 20 ˙̃x − (0.5ẋ2| cos 3x |+ 0.1)sat(( ˙̃x + 20x̃)/0.1)

I The tracking is not as perfect as before but acceptable, instead the
control law is smooth
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I The smoothing of control discontinuity inside B(t) actually assigns a low
pass filter structure to the local dynamics of the variables to eliminating
chattering

I Recognizing this filter-like structure allows us to
I tune up the control law by selecting λ and Φ properly s.t achieve a trade-off

between tracking precision and robustness to unmodeled dynamics.

I Φ can be made time varying

I Case 1: b = b̂ = 1
I Φ is TV  the sliding condition (4) to guarantee the decreasing distance

to the boundary layer is changed to:

‖s‖ ≥ Φ :
1

2

d

dt
s2 ≤ (Φ̇− η)|s| (6)

I The boundary layer attraction ↑ when the boundary layer ↓ (Φ̇ < 0)
I The boundary layer attraction ↓ when the boundary layer ↑ (Φ̇ > 0)
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Case 1: b = b̂ = 1

I the control signal is modified as:
u = û − k̄(x)sat(s/Φ)

I k̄(x) = k(x)− Φ̇

I sat(y) =

{
y if |y | ≤ 1

sgn(y) otherwise

I So the system trajectories inside the boundary layer:
ṡ = −k̄(x) s

Φ −∆f (x) = −k̄(xd) s
Φ + (−∆f (xd) + O(ε))

where ∆f = f̂ − f
I We can consider a first order filter:

I its dynamic depends on desired state xd

I s : a measure of the algebraic distance to the surface S(t) is its output
I the ”perturbations,” (uncertainty ∆f (xd)) is its input

Farzaneh Abdollahi Nonlinear Control Lecture 9 20/30



Outline Sliding Control Continuous Approximations of Switching Control Laws

I s provides tracking error x̃ by further low pass filtering (2)
I λ is break-frequency of the filter
I It must be chosen to be ”small” with respect to high-frequency unmodeled

dynamics (such as unmodeled structural modes or neglected time delays)

I Let us define Φ based on bandwidth λ: k̄(xd )
Φ = λ

I and:

φ̇+ λΦ = k(xd) (7)

k̄(x) = k(x)− k(xd) + λΦ
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I The boundary layer thickness Φ is defined based on the evolution of
dynamic model uncertainty

I Control signal depends on s

I s-trajectory represents a TV measure of the validity of the assumptions
on model uncertainty

I tracking error x̃ is a filtered version of s
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Example

I Recall the previous example and modify the control properly:

I u = 1.5ẋ2cos3x + ẍd − 20 ˙̃x − (0.5ẋ2| cos 3x |+ η+Φ̇)sat(( ˙̃x + 20x̃)/Φ)

Φ̇ = −λΦ + 0.5ẋd
2| cos 3xd |+ η

I ẋd(0) = 0, η = 0.1, λ = 20, Φ(0) = η
λ

I Max of the Φ is the same as the constant value of Φ in previous example

I The tracking error is about 4 times better
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Example Cont’d
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Case 2: β 6= 1

I Define: βd = β(xd) = b(xd )

b̂(xd )

I If k(xd) ≥ λΦ
βd
⇒Φ̇ + λΦ = βdk(xd)

I If k(xd) ≤ λΦ
βd
⇒Φ̇ + λΦ

β2
d

= k(xd )
βd

I Φ(0) = βdk(xd(0))/λ

I Modify λ = k̄(xd )βd

Φ

I And finally k̄(x) = k(x)− k(xd) + λΦ
βd
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Remarks

1. The desired trajectory xd must be smooth enough not to excite the
high-frequency unmodeled dynamics.

2. The sliding control guarantees the best tracking performance given the
desired control bandwidth and the extent of parameter uncertainty.

3. If the model or its bounds are so imprecise that F can only be chosen as
a large constant, then define Φ a large constant, s.t. the term
k̄sat(s/Φ) = λs/β  like simple P.D.
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Remarks

4. For exceptional disturbances which their intensity is high s.t may take
the traj. out of the boundary:

I If integral control is applied, the integral term in the control may become
unreasonably large

I once the disturbance stops, the system goes through large amplitude
oscillations in order to return to the desired trajectory (integrator windup)

I It is a potential cause of instability because of saturation effects and
physical limits on the motion.

I Solution: As long as the system is outside the boundary layer maintain
the integral term constant

I When the system remains in the boundary layer (returns to normal case
after the exceptional disturbance) integration can resume
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Example:

I Consider the following system θ̇
α̇
q̇

 =

 0 0 1
0 −1 1
0 4 −1.2

 θ
α
q

+

 0
−0.2
−20

 u

y = θ − α

I The transfer function will be: y
u = 0.2 (s+10.8)(s−9.8)

s(s+3.1)(s−0.9)

I It is non minimum phase

I Taking one time derivative of output yields: ẏ = −y + θ + 0.2u

I ∴ The internal dynamics will be:[
θ̇
q̇

]
=

[
0 1
4 −1.2

] [
θ
q

]
+

[
0
1

]
(−4y − 20u)
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Example Cont’d

I If we consider u = −5θ the internal dynamics will be:[
θ̇
q̇

]
=

[
0 1

104 −1.2

] [
θ
q

]
I Eigne values: -10.8, 9.6
I The system is unstable

I The sliding surface: s = y = 0

I Since the internal is not stable, no limited control signal can provide
y = 0

I Consider u = −sgn(y)

I The results in the next slide confirm that the classical siding mode
cannot control the non minimum phase systems
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Example Cont’d
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