

Computational Intelligence Lecture 9: Fuzzy Control I

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

・ 同 ト ・ ヨ ト ・ ヨ ト

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目▶ ▲□▶

Comparing Fuzzy Control with Conventional Control

Similarities:

- They must address the same issues that are common to any control problem, e.g., stability and performance.
- ► The mathematical tools used to analyze the designed control systems are similar, because they are studying the same issues (stability, convergence, etc.) for the same kind of systems.

Difference

- In conventional control mathematical model of the process and controllers are available. In fuzzy control, the controllers are designed using rules based on heuristics and human expertise
 - Advanced fuzzy controllers may use both heuristics and mathematical models

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Fuzzy Control

Fuzzy control is classified into

- Nonadaptive Fuzzy Control
 - ► the structure and parameters of the fuzzy controller are fixed
- Adaptive Fuzzy Control
 - The structure or/and parameters of the fuzzy controller change during realtime operation.
- ► Nonadaptive fuzzy control is simpler than adaptive fuzzy control
- Nonadaptive fuzzy control requires more knowledge of the process model or heuristic rules.
- Adaptive requires less information and may perform better at the cost of more complexity.

3

A E > A E >

Assumption is Fuzzy Control Design

- The plant is observable and controllable: state, input, and output variables are usually available for observation and measurement or computation.
- There exists a body of knowledge comprised of a set of linguistic rules, engineering common sense, intuition, or a set of inputoutput measurements data from which rules can be extracted
- A solution exists.
- The control engineer is looking for a good enough solution, not necessarily the optimum one.
- ► The controller will be designed within an acceptable range of precision.

・ 戸 ト ・ ヨ ト ・ ヨ ト

The Trial-and-Error Approach

- By using experience-based knowledge (e.g., an operating manual) and by asking the domain 'experts to answer a carefully organized questionnaire, IF-THEN rules are provided and fuzzy controllers are constructed
- Then the fuzzy controllers are tested in the real system and if the performance is not satisfactory, the rules are fine-tuned or redesigned in a number of trial-and-error cycles until the desired performance is achieved.

A E F A E F

The Trial-and-Error Approach

- 1. Analyze the real system to choose state and control variables and outputs.
 - The state variables:
 - characterize the key features of the system
 - The control variables (inputs of the plant):
 - influence the states of the system.
 - are the outputs of the fuzzy controller.
- 2. Partition the universe of discourse or the interval spanned by each variable into a number of fuzzy subsets, assigning each a linguistic label
 - Assign or determine a membership function for each fuzzy subset.
 - ➤ You may require to choose appropriate scaling factors for the input and output variables in order to normalize the variables to the [0, 1] or the [-1, 1] interval.

A E > A E >

The Trial-and-Error Approach

- 3. Derive IF-THEN rules that relate the state variables with the control variables
 - The rules are defined using
 - ► An introspective verbalization of human expertise like operating manual
 - ▶ the information obtained from a filled carefully organized questionnaire
- 4. Design the fuzzy system and test the closed-loop system with this fuzzy system as the controller
 - If the performance is not satisfactory, fine-tune or redesign the fuzzy controller by trial and error
 - repeat the procedure until achieving the desired performance

→ ∃ > < ∃ >

Example: AIRCRAFT LANDING CONTROL

- The desired profile is shown in Fig.
- The downward velocity is proportional to the square of the height.
 - At higher altitudes, a large downward velocity is desired.
 - As the height (altitude) diminishes, the desired downward velocity gets smaller and smaller.
 - In the limit, as the height tends to be zero, the downward velocity also goes to zero.
- The states:
 - h:height above ground
 - v: vertical velocity of the aircraft
- The control signal
 - ► f: force

- Mass *m* moving with velocity *v* has momentum p = mv.
- If a force f is applied over a time interval $\Delta t \rightsquigarrow \Delta v = f \Delta t / m$
- $\Delta t = 1.0(s)$ and $m = 1.0lb \rightarrow \Delta v = f$
- $\blacktriangleright \therefore v_{i+1} = v_i + f_i, \quad h_{i+1} = h_i + v_i \Delta t$
 - *v_{i+1}*: new velocity, *v_i*: old velocity
 - h_{i+1} new height, h_i old height

1

590

11/1

イロン イロン イヨン イヨン

	Output force												
	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
Up large (UL)	0	0	0	0	0	0	0	0	0	0.5	1	1	1
Up small (US)	0	0	0	0	0	0	0	0.5	1	0.5	0	0	0
Zero (Z)	0	0	0	0	0	0.5	1	0.5	0	0	0	0	0
Down small (DS)	0	0	0	0.5	1	0.5	0	0	0	0	0	0	0
Down large (DL)	1	1	1	0.5	0	0	0	0	0	0	0	0	0

Membership values for control force

・ロト ・回ト ・ヨト ・ヨト

≡ ∽∢⊘

Height	Velocity							
	DL	DS	Zero	US	UL			
L	Z	DS	DL	DL	DL			
М	US	Z	DS	DL	DL			
S	UL	US	Z	DS	DL			
NZ	UL	UL	Z	DS	DS			

The rules are summarized in the table

Let us use

- singleton fuzzifier,
- ▶ min inf. eng.
- centroid defuzzifier

э

4 ∃ > < ∃ >

- ▶ Initial height, h_0 : 1000ft; Initial velocity, v_0 : -20ft/s
- h = 1 for L and 0.6 for M
- v = 1 for DL

```
► \therefore

L(1.0) \text{ AND } DL(1.0) \Rightarrow Z

M(0.6) \text{ AND } DL(1.0) \Rightarrow US
```

• Using defuzzifier: $f_0 = 5.8 lb$

э

- $h_1 = h_0 + v_0 = 980 ft;$
- $v_1 = v_0 + f_0 = -14.2 ft/s$
- ▶ h₁ = 0.96 for L and 0.64 for M
- $v_1 = 0.58$ for *DS* and 0.42 for *DL*

 $\begin{array}{l} L(0.96) \text{ AND } DS(0.58) \Rightarrow DS \\ L(0.96) \text{ AND } DL(0.42) \Rightarrow Z \\ M(0.64) \text{ AND } DS(0.58) \Rightarrow Z \\ M(0.64) \text{ AND } DL(0.42) \Rightarrow US \end{array}$

• Using defuzzifier: $f_1 = -0.5/b$

- $h_2 = h_1 + v_1 = 965.8 ft;$
- $v_2 = v_1 + f_1 = -14.7 \, ft/s$
- ▶ h = 0.93 for L and 0.67 for M
- ▶ v = 0.57 for DS and 0.43 for DL

 $\begin{array}{l} L(0.93) \text{ AND } DL(0.43) \Rightarrow Z \\ L(0.93) \text{ AND } DS(0.57) \Rightarrow DS \\ M(0.67) \text{ AND } DL(0.43) \Rightarrow US \\ M(0.67) \text{ AND } DS(0.57) \Rightarrow Z \end{array}$

• Using defuzzifier: $f_2 = -0.4lb$

	Cycle 0	Cycle 1	Cycle 2	Cycle 3	Cycle 4
Height, ft	1000.0	980.0	965.8	951.1	936.0
Velocity, ft/s	-20	-14.2	-14.7	-15.1	-14.8
Control force	5.8	-0.5	-0.4	0.3	

Summary of four-cycle simulation results

イロン イロン イヨン イヨン

