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Introduction
I We had defined est as a basic function for CT LTI systems,s.t.

est → H(s)est

I In Fourier transform s = jω

I In Laplace transform s = σ + jω
I By Laplace transform we can

I Analyze wider range of systems comparing to Fourier Transform
I Analyze both stable and unstable systems

I The bilateral Laplace Transform is defined:

X (s) =

∫ ∞
−∞

x(t)e−stdt

⇒ X (σ + jω) =

∫ ∞
−∞

[x(t)e−σt ]e−jωtdt

= F{x(t)e−σt}
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Region of Convergence (ROC)

I Note that: X (s) exists only for a specific region of s which is called
Region of Convergence (ROC)

I ROC: is the s = σ + jω by which x(t)e−σ converges:
ROC : {s = σ + jω s.t.

∫∞
−∞ |x(t)e−σt |dt <∞}

I Roc does not depend on ω
I Roc is absolute integrability condition of x(t)e−σt

I If σ = 0, i,e, s = jω X (s) = F{x(t)}
I ROC is shown in s-plane

I The coordinate axes are Re{s} along the horizontal axis and Im{s}
along the vertical axis.
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Example
I Consider x(t) = e−atu(t)

I X (s) =
∫∞
−∞ e−atu(t)e−stdt = −1

s+ae−(s+a)t |∞0 = −1
s+a(e−(s+a)∞ − 1)

I If Re(s + a) > 0 Re(s) = σ > −Re(a),X (s) is bounded

I ∴X (s) = 1
s+a , ROC : Re(s) > −Re(a)
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Example

I Consider x(t) = −e−atu(−t)

I X (s) = −
∫∞
−∞ e−atu(−t)e−stdt = 1

s+ae−(s+a)t |0−∞ = 1
s+a(1− e(s+a)∞)

I If Re(s + a) < 0 Re(s) = σ < −Re(a),X (s) is bounded

I ∴X (s) = 1
s+a , ROC : Re(s) < −Re(a)
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I In the recent two examples two different signals had similar Laplace
transform but with different Roc

I To obtain unique x(t) both X (s) and ROC is required

I If x(t) is defined as a linear combination of exponential functions, its
Laplace transform (X (s)) is rational

I In LTI expressed in terms of linear constant-coefficient differential
equations, Laplace Transform of its impulse response (its transfer
function) is rational

I X (s) = N(s)
D(s)

I Roots of N(s) zeros of X(s); They make X(s) equal to zero.
I Roots of D(s) poles of X(s); They make X(s) to be unbounded.
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I To study the stability of LTI systems zeros and poles are illustrated in
s-plane (pole-zero plot)

I number of poles and zeros are equal for −∞ to ∞
I Consider degree of D(s) (# of poles): m; degree of N(s) (# of zeros): n
I If m < n There are n −m = k poles in ∞
I If m > n There are m − n = k zeros in ∞
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ROC Properties

I ROC only depends on σ
I In s-plane Roc is strips parallel to jω axis

I If X (s) is rational, Roc does not contain any pole
I Since D(s) = 0, makes X (s) unbounded

I If x(t) is finite duration and is absolutely integrable, then ROC is entire
s-plane

I If x(t) is right sided and Re{s} = σ0 ∈ ROC then ∀s Re{s} > σ0 ∈
ROC

I If x(t) is left sided and Re{s} = σ0 ∈ ROC then ∀s Re{s} ≤ σ0 ∈ ROC

I If x(t) is two sided and Re{s} = σ0 ∈ ROC then ROC is a strip in
s-plane including Re{s} = σ0
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ROC Properties

I If X (s) is rational
I the ROC is bounded between poles or extends to infinity,
I no poles of X (s) are contained in ROC
I If x(t) is right sided, then ROC is in the right of the rightmost pole
I If x(t) is left sided, then ROC is in the left of the leftmost pole

I If ROC includes jω axis then x(t) has FT
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Inverse of Laplace Transform (LT)

I By considering σ fixed, inverse of LT can be obtained from inverse of FT:

I x(t)e−σt = 1
2π

∫∞
−∞ X (σ + jω︸ ︷︷ ︸

s

)e jωtdω

I x(t) = 1
2π

∫∞
−∞ X (σ + jω)e(σ+jω)tdω

I assuming σ is fixed  ds = jdω

I ∴x(t) = 1
2πj

∫∞
−∞ X (s)estds

I If X (s) is rational , we can use expanding the rational algebraic into a
linear combination of lower order terms and then one may use

I X (s) = 1
s+a  x(t) = −e−atu(−t) if Re{s} < −a

I X (s) = 1
s+a  x(t) = e−atu(t) if Re{s} > −a

I Do not forget to consider ROC in obtaining inverse of LT!
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LT Properties

I Linearity: ax1(t) + bx2(t)⇔aX1(s) + bX2(s)
I ROC contains: R1

⋂
R2

I If R1

⋂
R2 = ∅ it means that LT does not exit

I By zeros and poles cancelation ROC can be larger than R1

⋂
R2

I Time Shifting:x(t − T )⇔e−sTX (s) with ROC=R

I Shifting in S-Domain: es0tx(t)⇔X (s − s0) with ROC= R +Re{s0}
I Time Scaling: x(at)⇔ 1

|a|X ( s
a) with ROC = R

a

I Differentiation in Time-Domain: dx(t)
dt ⇔sX (s) with ROC containing R

I Differentiation in the s-Domain: −tx(t)⇔dX (s)
ds with ROC = R

I Convolution: x1(t) ∗ x2(t)⇔X1(s)X2(s) with ROC containing R1 ∩ R2
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Analyzing LTI Systems with LT

I LT of impulse response is H(s) which is named transfer function or
system function.

I Transfer fcn can represent many properties of the system:
I Causality: h(t) = 0 for t < 0 It is right sided

I ROC of a causal system is a right-half plane
I Note that the converse is not always correct
I Example: H(s) = es

s+1
, Re{s} > −1 h(t) = e−(t+1)u(t + 1) it is none

zero for −1 < t < 0
I For a system with rational transfer fcn, causality is equivalent to ROC being

the right-half plane to the right of the rightmost pole

I Stability: h(t) should be absolute integrable  its FT converges
I An LTI system is stable iff its ROC includes jω axis (0 ∈ ROC)

I A causal system with rational H(s) is stable iff all the poles of H(s) have
negative real-parts (are in left-half plane)
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Geometric Evaluation of FT by Zero/Poles Plot

I Consider X1(s) = s − a

I |X1|: length of X1

I ]X1: angel of X1

I Now consider X2(s) = 1
s−a = 1

X1(s)

I logX2 = −logX1

I ]X2 = −]X1
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I For higher order fcns:

X (s) = M
∏R

i=1(s−βi )∏P
j=1(s−αj )

I |X (s)| = |M|
∏R

i=1 |s−βi |∏P
j=1 |s−αj |

I ]X (s) = ]M +
∑R

i=1](s −
βi )−

∑R
j=1 ](s − αj)

I Example:

H(s) = 1/2
s+1/2 , Re{s} > −1

2

I h(t) = 1
2e−t/2u(t)

I s(t) = [1− e−t/2]u(t)
I H(jω) = 1/2

jω+1/2

I |H(jω)|2 = (1/2)2

w2+(1/2)2

I ]H(jω) = − tan−1 2ω
I 0 < ω <∞ − π/2 <
]H(jω) < 0

I ω↑ |H| ↓,]H(jω) ↓
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I Now let us substitute 2 with τ in the previous example

I H(jω) = 1/τ
jω+1/τ

I |H(jω)|2 = (1/τ)2

w2+(1/τ)2
, |H(jω)| =


1 ω = 0
1√
2

ω = 1
τ

1
τω ω � 1

τ

I ]H(jω) = − tan−1 τω =


0 ω = 0
−π
4 ω = 1

τ
−π
2 ω � 1

τ

I Relation between real part of poles and response of the systems
I τ is time constant of first order systems which control response speed of

the systems
I Poles are located at − 1

τ
I The farther the poles from jω axis  cut-off freq. ↑, τ ↓, the faster

decaying the impulse response, the faster rise time of step response
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Response for Second Order system

I h(t) = M(ec1t − ec2t)u(t)

I H(s) = ω2
n

s2+2ζωns+ω2
n

= ω2
n

(s−c1)(s−c2)

I c1,2 = −ζωn ± ωn

√
ζ2 − 1

I 0 < ζ < 1: under damp (two complex poles), c2 = c∗1
I ζ = 1 critically damp (s = −ωn)

I ζ > 1: Over damp (two negative real poles)

I For fixed ωn, ζ ↑↑ , settling time for step response ↑
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Zero-Pole Pattern of Second Order System
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Freq. Response of Second Order System

I H(s) = ω2
n

(s−c1)(s−c∗1 )

I H(jω) = H(s)|s=jω = ω2
n

(jω−c1)(jω−c∗1 )
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Bode Plot of H(jω)
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Impulse and Step Response of the second order system

Farzaneh Abdollahi Signal and Systems Lecture 7 22/43



Outline Introduction Analyzing LTI Systems with LT Geometric Evaluation LTI Systems Description Unilateral LT Feed Back Applications

All Pass Filters

I Passes the signal in all freqs. with a little decreasing/increasing the
magnitude

I Why do we use all-pass filters?

I H(s) = s−a
s+a Re{s} > −a, a > 0

I |H(ω)| = 1

I ]H(jω) = θ1 − θ2 = π − 2θ2 = π − 2tan−1(ωa ) =


π ω = 0
π
2 ω = a
0 ω � a
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LTI Systems Description

I
∑N

k=0 ak
dky(t)

dtk =
∑M

k=0 bk
dkx(t)

dtk

I
∑N

k=0 akskY (s) =
∑M

k=0 bkskX (s)

I H(s) = Y (s)
X (s) =

∑M
k=0 bk sk∑N
k=0 ak sk

I ROC depends on
I placement of poles
I boundary conditions (right sided, left sided, two sided,...)
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I High Order Systems can be expressed by connected simple order systems:

I Cascade Connection:

H(s) = H1(s)H2(s)H3(s)H4(s)H5(s)

I Parallel Connection:

H(s) = H1(s) + H2(s) + H3(s) + H4(s) + H5(s)
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I Feedback Interconnection of two LTI systems:
I Y (s) = Y1(s) = X2(s)
I X1(s) = X (s) + Y2(s) = X (s) + H2(s)Y (s)
I Y (s) = H1(s)X1(s) = H1(s)[X (s) + H2(s)Y (s)]
I

Y (s)
X (s) = H(s) = H1(s)

1−H2(s)H1(s)
I ROC: is determined based on roots of 1− H2(s)H1(s)
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Block Diagram Representation for Causal LTI Systems

I We can represent a transfer fcn by different methods:

I Example: H(s) = 2s2+4s−6
s2+3s+2

1. H(s) = (2s2 + 4s − 6) 1
s2+3s+2

2. Assuming it is causal so it is at initial rest

I W (s) = 1
s2+3s+2

X (s)⇔ d2w
dt2

+ 3 dw
dt

+ 2w = x(t)

I Y (s) = (2s2 + 4s − 6)W (s)⇔y(t) = 2 dw2

dt2
+ 4 dw

dt
− 6w

3. H(s) = 2 + 6
s+2 −

8
s+1

4. H(s) = 2(s−1)
s+2

s+3
s+1
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Stability Analysis by Routh-Hurwitz

I Remind: A system with rational transfer fcn is causal and stable if all of
its poles are in LHP.

I H(s) = N(s)
D(s) , D(s) = ans

n + an−1s
n−1 + . . .+ a1s + a0

I How can we verify the stability of this system?
I Method 1: Find the roots of D(s)

I If n is large, it is difficult to find: −(

I Method 2: Routh-Hurwitz method

I Provide the following table

sn an an−2 an−4 . . .
sn−1 an−1 an−3 an−5 . . .
sn−2 bn−1 bn−3 bn−5 . . .
sn−3 cn−1 cn−3 cn−5 . . .

...
...

s0 hn−1

I First row includes odd coefficients of D(s)
I Second row includes even coefficients of D(s)
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Stability Analysis by Routh-Hurwitz

I bi , ci are defined as follows:

bn−1 = − 1
an−1

∣∣∣∣ an an−2

an−1 an−3

∣∣∣∣ , bn−3 = − 1
an−1

∣∣∣∣ an an−4

an−1 an−5

∣∣∣∣
cn−1 = − 1

bn−1

∣∣∣∣ an−1 an−3

bn−1 bn−3

∣∣∣∣ , cn−3 = − 1
bn−1

∣∣∣∣ an−1 an−5

bn−1 bn−5

∣∣∣∣
I Follow the same rule for other rows parameters

I # of RHP root of D(s) equals to # of signs changing in the first column
of the table

I Necessary condition for using Routh-Horwitz method is that all
coefficients of D(s) should exist and have similar sign(otherwise there are
more than one pole on imaginary axis, it is not stable)

I Necessary and Sufficient conditions for stability is that no signs changing
appears in the first column of the Routh-Horwitz table
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I Initial Value Theorem: If x(t) = 0 for t < 0 and x(t) does not contain
any impulse or higher order singularities at the origin then
x(0+) = lims→∞ sX (s)

I X (s) may include a simple pole at the origin which represents a step signal.
I More than one pole at the origin and in jω axis make the signal oscillating

I Final Value Theorem: If x(t) = 0 for t < 0 and x(t) is bounded when
t →∞ then x(∞) = lims→0 sX (s)

I Consider H(s) = N(s)
D(s) , n is degree of N(s), d is degree of D(s):

I H(0+) =

 0 d > n + 1
constant value 6= 0 d = n + 1

∞ d < n + 1
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Unilateral LT

I It is used to describe causal systems with nonzero initial conditions:
X (s) =

∫∞
0− x(t)e−stdt = UL{x(t)}

I If x(t) = 0 for t < 0 then X (s) = X (s)

I Unilateral LT of x(t) = Bilateral LT of x(t)u(t−)

I If h(t) is impulse response of a causal LTI system then H(s) = H(s)

I ROC is not necessary to be recognized for unilateral LT since it is always
a right-half plane

I For rational X (s), ROC is in right of the rightmost pole
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Similar Properties of Unilateral and Bilateral LT
I Convolution: Note that for unilateral LT, If both x1(t) and x2(t) are zero

for t < 0, then X (s) = X1(s)X2(s)

I Time Scaling

I Shifting in s domain

I Initial and Finite Theorems: they are indeed defined for causal signals

I Integrating:
∫ t
0− x(τ)dτ = x(t) ∗ u(t)

UL⇔X (s)U(s) = 1
sX (s)

I The main difference between UL and LT is in time differentiation:
I UL{ dx(t)

dt } =
∫∞
0−

dx(t)
dt e−stdt

I Use the rule
∫

fdg = fg −
∫

gdf

I ∴UL{ dx(t)
dt } = s

∫∞
0−

x(t)e−stdt + x(t)e−st |∞0− = sX (s)− x(0−)

I UL{ dx(t)
dt } = sX (s)− x(0−)

I UL{ d2x(t)
dt2 } =UL{ d

dt {
dx(t)
dt }} = s(sX (s)− x(0−))− x́(0−) =

s2X (s)− sx(0−)− x́(0−)
I Follow the same rule for higher derivatives
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Example
I Consider d2y

dt2 + 3dy
dt + 2y(t) = x(t), where

y(0−) = β = 3, ý(0−) = γ = −5, x(t) = αu(t) = 2u(t)
I Take UL:

I s2Y(s)− βY(s)− γ + 3(sY(s)− β) + 2Y(s) = X (s)

I Y(s) =
β(s + 3) + γ

s2 + 3s + 2︸ ︷︷ ︸
ZIR

+
X (s)

s2 + 3s + 2︸ ︷︷ ︸
ZSR

I Zero State Response (ZSR): is a response in absence of initial values

I H(s) = Y(s)
X (s)

I Transfer fcn is ZSR
I ZSR: Y1(s) = α

s(s+1)(s+2)
= 1

s
+ 1

s+2
− 2

s+1

I y1(t) = (1− 2e−t + e−2t)u(t)

I Zero Input Response (ZIR): is a response in absence of input (x(t) = 0)
I ZIR: Y2(s) = 3(s+3)−5

(s+1)(s+2) = 1
s+1 + 2

s+2

I y2(t) = (e−t + 2e−2t)u(t)

I y(t) = y1(t) + y2(t)
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Feed Back Applications
I Closed loop Transfer fcn: Q(s) = G(s)

1+G(s)H(s) = Open loop Gain
1−Loop Gain

1. Inverting

I Q(s) = K
1+Kp(s)

I If choose K s.t. Kp(s)� 1 then Q(s) ' 1
p(s)

I Example: For a capacitor, consider i as output and v as input, it is a
differentiator

I By using the above interconnection, we can make an integrator
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2. Stabilizing Unstable Systems

I G (s) is unstable
I We should define P(s) and C (s) to make closed-loop system stable (poles of

closed-loop system be in LHP)
I Q(s) = C(s)G(s)

1+C(s)P(s)G(s)

I Example 1: G (s) = 1
s−2 , C (s) = K , P(s) = 1

I Q(s) = K
s−2+K

I Choosing K > 2 make it stable
I Example 2: G (s) = 1

s2−4
I By C (s) = K cannot be stabilized
I Choose C (s) = K1 + K2s, K2 > 0, and K1 > 4 can stabilize the closed-loop

system
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3. Tracking

I Objective: Defining C (s) s.t. e(t) = x(t)− y(t)→ 0 as t →∞
I E (s) = 1

1+C(s)G(s)X (s)
I Consider x(t) as unite step
I lim e(t)t→∞ = lim sE (s)s→0 = lims→0

s
1+C(s)G(s)

1
s

I If we choose C (s) s.t. C (s)G (s)� 1 then e(t)→ 0 as t →∞

4. Decreasing effect of disturbance

5. Decreasing Sensitivity to uncertainties
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Inverted Pendulum

I Objective:
Find proper a(t) to make
θ(t) = 0
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Inverted Pendulum

I System Dynamics:

Ld2θ(t)
dt2 =

g sin[θ(t)] + Lx(t)− a(t) cos(θ(t))
I Linearize it: assuming θ(t) is small

I sin(θ(t)) = θ(t)
I cos(θ(t)) = 1

I L d2θ(t)
dt2 = gθ(t) + Lx(t)− a(t)

I LT:

Θ(s) =
1

Ls2 − g︸ ︷︷ ︸
H(s)

[LX (s)− A(s)]
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Inverted Pendulum

I Θ(s) = H(s)[LX (s)− A(s)]

I H(s) = 1
Ls2−g
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Inverted Pendulum

I Θ(s) = H(s)[LX (s)− A(s)]

I H(s) = 1
Ls2−g

I Using feedback connection, let us design a controller, C (s) to make the
pendulum in vertical position

I Θ(s) = LH(s)
1+C(s)H(s)X (s)
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Proportional Feedback: C (s) = K1
I Θ(s) = 1

s2− g−K1
L

X (s)

I Poles s = ±
√

g−K1
L
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Derivative Feedback: C (s) = K2s
I Θ(s) = 1

s2+s(K2/L)−g/L
X (s)

I Poles: s = −K2
2L ±

√
(K2

2L )2 + g
L
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Proportional+ Derivative (PD) Feedback:
C (s) = K1 + K2s

I Θ(s) = 1
s2+s(K2/L)−g/L+K1/L

X (s)

I Poles: s = −K2
2L ±

√
(K2

2L )2 − K1−g
L
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