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Introduction

» We had defined et as a basic function for CT LTI systems,s.t.
et — H(s)e*

» In Fourier transform s = jw

> In Laplace transform s = 0 + jw

» By Laplace transform we can

» Analyze wider range of systems comparing to Fourier Transform
» Analyze both stable and unstable systems

» The bilateral Laplace Transform is defined:

X(s) = /\ x(t)e *dt

X0

= X(o+jw) = /00 [x(t)e tle It dt

—00
= F{x(t)e "t}
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Region of Convergence (ROC)

» Note that: X(s) exists only for a specific region of s which is called
Region of Convergence (ROC)

» ROC: is the s = 0 + jw by which x(t)e™? converges:
ROC :{s=o0+jws.t. [7 |x(t)e 7t|dt < o0}
» Roc does not depend on w
» Roc is absolute integrability condition of x(t)e 7t

> If o0 =0, ie s=jw~X(s)=F{x(t)}
» ROC is shown in s-plane

» The coordinate axes are Re{s} along the horizontal axis and Zm{s}
along the vertical axis.
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Example
» Consider x(t) = e~ u(t)
> X(s)= [T e ?u(t)e tdt = ilae_(s+a)t|8° = #ﬂ)(e_(s“)Oo -1)

> If Re(s+a) >0~ Re(s) =0 > —Re(a), X(s) is bounded
» - X(s) = -1, ROC : Re(s) > —Re(a
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Example
» Consider x(t) = —e ?tu(—t)
» X(s) = f e~tu(—t)e Stdt = s+ae (s—&-a)t|(1oO _ sJ%a(l _ e(s-|—a)oo)

> If Re( ) < 0~ Re(s) =0 < —Re(a), X(s) is bounded
X(s) = 2=, ROC : Re(s) < —Re(a)

s-plane

Re
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» In the recent two examples two different signals had similar Laplace
transform but with different Roc

» To obtain unique x(t) both X(s) and ROC is required

» If x(t) is defined as a linear combination of exponential functions,~ its
Laplace transform (X(s)) is rational

» In LTI expressed in terms of linear constant-coefficient differential
equations, Laplace Transform of its impulse response (its transfer
function) is rational

> X(S) N(S;

> Roots of N(s) zeros of X(s); They make X(s) equal to zero.
» Roots of D(s) poles of X(s); They make X(s) to be unbounded.
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» To study the stability of LTI systems zeros and poles are illustrated in
s-plane (pole-zero plot)

» number of poles and zeros are equal for —oco to oo
> Consider degree of D(s) (# of poles): m; degree of N(s) (# of zeros): n

» If m < n~> There are n — m = k poles in 0o
» If m > n~ There are m — n = k zeros in 0o

Farzaneh Abdollahi
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Introduction

ROC Properties

v

ROC only depends on o
> In s-plane Roc is strips parallel to jw axis

» If X(s) is rational, Roc does not contain any pole

» Since D(s) = 0, makes X(s) unbounded

» If x(t) is finite duration and is absolutely integrable, then ROC is entire
s-plane

» If x(t) is right sided and Re{s} = 0o € ROC then Vs Re{s} > o¢ €
ROC

» If x(t) is left sided and Re{s} = oo € ROC then Vs Re{s} < oy € ROC

» If x(t) is two sided and Re{s} = o9 € ROC then ROC is a strip in
s-plane including Re{s} = o9
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ROC Properties

» If X(s) is rational

the ROC is bounded between poles or extends to infinity,

no poles of X(s) are contained in ROC

If x(t) is right sided, then ROC is in the right of the rightmost pole
If x(t) is left sided, then ROC is in the left of the leftmost pole

» If ROC includes jw axis then x(t) has FT

v

vVvYyy
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Inverse of Laplace Transform (LT)

» By considering o fixed, inverse of LT can be obtained from inverse of FT:
—ot _ 1 o) : jw
> x(t)e 7t =5 [T X(o + jw)etdw
S
x(t) = &= [% X(o + jw)elr )t dw
assuming o is fixed ~~ds = jdw
~x(t) = % 7 X(s)etds

If X(s) is rational , we can use expanding the rational algebraic into a
linear combination of lower order terms and then one may use

> X(s) = 5 ~ x(t) = —e'u(—t) if Re{s} < —a
» X(s) = ?13 ~ x(t) = e ?u(t) if Re{s} > —a

» Do not forget to consider ROC in obtaining inverse of LT!

vV v v Vv
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LT Properties

v

Linearity: axl(t) + bX2(t)<:>aX1(S) + bXQ(S)
» ROC contains: Ry Rz
» If R R, =0 it means that LT does not exit
» By zeros and poles cancelation ROC can be larger than Ry [ Rz

Time Shifting:x(t — T)<e~5T X(s) with ROC=R

Shifting in S-Domain: esOtx(t)(:)X(s — sp) with ROC= R + Re{so}
LX(£) with ROC = B

dx(t)

v

v

v

Time Scaling: x(at)<

fa

Differentiation in Time-Domain:

v

<sX(s) with ROC containing R

Differentiation in the s-Domain: —tx (t)@dx(s) with ROC = R
Convolution: x1(t) * xo(t)<X1(s)X2(s) with ROC containing Ry N Rz

v

v
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Analyzing LTIl Systems with LT

» LT of impulse response is H(s) which is named or
system function.

» Transfer fcn can represent many properties of the system:
» Causality: h(t) =0 for t < 0~ It is right sided
» ROC of a causal system is a right-half plane

> Note that the converse is not always correct

> Example: H(s) = 51, Re{s} > —1 ~ h(t) = e Dy(t + 1) it is none

zero for —1 <t <0
» For a system with rational transfer fcn, causality is equivalent to ROC being
the right-half plane to the right of the rightmost pole
» Stability: h(t) should be absolute integrable ~ its FT converges
» An LTI system is stable iff its ROC includes jw axis (0 € ROC)
» A causal system with rational H(s) is stable iff all the poles of H(s) have
negative real-parts (are in left-half plane)
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Geometric Evaluation of FT by Zero/Poles Plot

» Consider Xi(s) =s—a

am

s-plane

{3, —a)

> |Xi|: length of Xi
» A Xi: angel of Xi

» Now consider X»(s) = i = Xll(s)

> /Ong = —/OgXl
> KXQ = —KXl
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> For higher order fcns:
X( ) MH’ 1(s=81)

Jj= l(s aj)

> 1X(s)| = M| Ll=sl
12, Is—ayl
> AX(s) =AM+ R £(s—
B) = Eils 4(s — ) €5 e
» Example: '
1/2 _ PR W w,
H(S) = s+/1/2, RG{S} > 71 liw, + 31

» h(t) = e t2u(t)
> s(t) = [1— e~/2u(t) 3 e
> H(jw) = 7

2
> |H(jw)? = %

» AH(jw) = —tan"12w

» 0<w< oo —T/2<
£LH(jw) <0

> wl o [H] 1, £H(jw) |
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» Now let us substitute 2 with 7 in the previous example
. _1/7
> H(Jw) T jwl/T
1 w=0
. 2 1 1 1
> |H(jw)? = A2 [H(jw)| = v oY=t
0 w=0
» {H(jw)=—tantrw=1¢ T w= %
= ow>t
» Relation between real part of poles and response of the systems

» 7 is time constant of first order systems which control response speed of
the systems

» Poles are located at —%

» The farther the poles from jw axis ~~ cut-off freq. T, 7 |, the faster
decaying the impulse response, the faster rise time of step response
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Response for Second Order system

v

h(t) = M(et — e2t)u(t)

H(S) _ w) w

$2+4+2Cwps+w? = (s—c1)(s—c2)

c12 = —Cwn twnpy/(%—1

0 < ¢ < 1: under damp (two complex poles), c» = ¢

v

¢ =1 critically damp (s = —wj,)
¢ > 1: Over damp (two negative real poles)

vV v. v v Y

For fixed wp, ¢ 1T ~~, settling time for step response |
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Zero-Pole Pattern of Second Order System

Im Im
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Freq. Response of Second Order System

2

= (s—q)(ns—cf)

> H(jw) = H(s)ls=jw =

> H(s)
Go—a)jo—c7)

Im

(jw—c1)
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Bode Plot of H(jw)

Bode Disgram
20 . i :

40 db/dec

Magnitude (dB)

Phase (deg)
o
=

133

180 MR |
10 1’ 10" 10 10
Frequency (radizec)
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Impulse and Step Response of the second order system

2 T T
—— =01
— =02
15— ——=05| o

step response
T

impulse respanse
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Outline Intr

All Pass Filters

» Passes the signal in all fregs. with a little decreasing/increasing the
magnitude

» Why do we use all-pass filters?

> H(s) =32 Re{s}>—-a, a>0

s+a
> [H(w)[ =1
™ w=0
> KH(jw) =01 -0, =71 —20, = 7r—2tan_1(§) = g w=a
0 w>»a
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LTI Systems Description

v

N d y(t) d*x(t
> k=0 2k dyt£ Zk —o0 bk dXtﬁ)
S ko aksKY (s) = Yplo bis* X(s)

— Y(s) _ w

H(S) T X(s) T o0 aksk
ROC depends on

» placement of poles

» boundary conditions (right sided, left sided, two sided,...)

v

v

v
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LTI Systems Description

» High Order Systems can be expressed by connected simple order systems:

» Cascade Connection:

—~ - - - - -

H(S) = H1(S)HQ(S)H3(S)H4(S)H5(S)

» Parallel Connection:

Ha(s)

Hs(s)

H(S) = Hl(S) + H2(S) + H3($) + H4 S) + H5($)

Farzaneh Abdollahi Signal and Systems Lecture 7 26/43
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LTI Systems Description

» Feedback Interconnection of two LTI systems:
> Y(s) = Yi(s) = Xa(s)
Xi1(s) = X(s) + Ya(s) = X(s) + Ha(s)Y(s)
Y(s) = Hi(s)Xu(s) = Hi(s)[X(s) + Ha(s) Y (s)]
Y(s) _ H(s) = Hi(s)
X(s) 1—H,(s)Hi(s)
ROC: is determined based on roots of 1 — Ha(s)Hi(s)

vV VvV VY

X1=X+Y2 Y=y1 Output
—_— —

Input *
—

X2=Y1=Y

;.
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Block Diagram Representation for Causal LTI Systems

» We can represent a transfer fcn by different methods:
. _ 2524456
> Example: H(s) = 55525
_ (92 1
2. Assuming it is causal so it is at initial rest
» W(s)= X(s)=>Lw 439 4 oy — x(t)

1
s2+3s5+2 2 )
> Y(s) = (25" +4s — 6)W(s)<y(t) =295 + 49 — 6w

3. H(s) =2+ 3% — 3%

2(s—1
4. H(s) = (ss+2)§i7?
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Stability Analysis by Routh-Hurwitz

» Remind: A system with rational transfer fcn is causal and stable if all of
its poles are in LHP.

» H(s) = ggg D(s) = ans" 4+ ap_18""1 4+ ...+ a1s + ag

» How can we verify the stability of this system?
» Method 1: Find the roots of D(s)
> If nis large, it is difficult to find: —(
» Method 2: Routh-Hurwitz method

s” an  an—2 an-a
—1
s" an—1  an—3 an—s
-2
s" b1 by—3  bns
> Provide the following table ¢"=3 | ¢ . ¢ 5 .5
S0 hn_l

> First row includes odd coefficients of D(s)
> Second row includes even coefficients of D(s)

Farzaneh Abdollahi Signal and Systems Lecture 7 29/43



Outline tion Analyzing LTI Sys s etric Evaluation LTI Systems Description Unilateral LT F
(o] e}

Stability Analysis by Routh-Hurwitz

» b;, ¢; are defined as follows:

b _ dn dpn—2 b _ 1 dn dn—4
T e an-1 an-3 |’ "3 e dn—1 4an-5
c _ 1 dn—-1 dan-3 c _ 1 an—1 an—5
"l T br-1 bp_3 P I3 T T b1 bp_s

» Follow the same rule for other rows parameters

» # of RHP root of D(s) equals to # of signs changing in the first column
of the table

» Necessary condition for using Routh-Horwitz method is that all
coefficients of D(s) should exist and have similar sign(otherwise there are
more than one pole on imaginary axis, it is not stable)

» Necessary and Sufficient conditions for stability is that no signs changing
appears in the first column of the Routh-Horwitz table
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» Initial Value Theorem: If x(t) = 0 for t < 0 and x(t) does not contain
any impulse or higher order singularities at the origin then
x(07) = lims— 00 sX(5)
» X(s) may include a simple pole at the origin which represents a step signal.
» More than one pole at the origin and in jw axis make the signal oscillating

» Final Value Theorem: If x(t) = 0 for t < 0 and x(t) is bounded when

t — oo then x(oc) = lim. g sX(s)
» Consider H(s) = ggg n is degree of N(s), d is degree of D(s):
0 d>n+1
» H(0") = ( constantvalue#0 d=n+1
(e) d<n+1
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Unilateral LT

» It is used to describe causal systems with nonzero initial conditions:
X(s) = foof x(t)e stdt = UL{x(t)}

If x(t) =0 for t < 0 then X(s) = X(s)

Unilateral LT of x(t) = Bilateral LT of x(t)u(t™)

If h(t) is impulse response of a causal LTI system then H(s) = H(s)

vV v v Vv

ROC is not necessary to be recognized for unilateral LT since it is always
a right-half plane

» For rational X'(s), ROC is in right of the rightmost pole
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Similar Properties of Unilateral and Bilateral LT

» Convolution: Note that for unilateral LT, If both x1(t) and x(t) are zero
for t <0, then X(s) = X1(s)Xa(s)

Time Scaling

v

v

Shifting in s domain

» Initial and Finite Theorems: they are indeed defined for causal signals
> Integrating: [ x(7)dT = x(t) * u(t) Ex(s)U(s) = 1x(s)
» The main difference between U/L and LT is in time differentiation:

> uﬁ{dX(f)} foo dX(f) e—Stdt

» Use the rule f fdg = fg | gdf

> x(t)e stdt + x(t)e |32 = sX(s) — x(07)

> (s ) (0 )

> L&Y} = s(sX(s) —x(07)) = X(07) =

22(( ) - sx(O ) — X(O’)
» Follow the same rule for higher derivatives

Farzaneh Abdollahi Signal and Systems Lecture 7 33/43



Ami

Outline | ction Analyzing LTI Sys s with LT Geometric Evaluation LTI stems Description Unilateral LT FA&=

Example
» Consider ¢ dt2 +3 -+ 2y(t ) x(t), where
y(07)=p=3, y(O )=~ = -5, x(t) = au(t) = 2u(t)
> Take Z/IE:
> $2V(s) — ?37(5))— v+ 3(537(5() N B) +2Y(s) = X(s)
_ B(s+3)+7 X(s
> V() = s2+4+35s+2 243542
zl ZSR
» Zero State Response (ZSR): is a response in absence of initial values
> H(s) = g;gs;_
» Transfer fcn is ZSR
> ZSR'yl(S)_ﬁziﬁ-%—ﬁ%
> yi(t) = (1—2e7" + e *)u(t)

v

Zero Input Response (ZIR): is a response in absence of input (x(t) = 0)

+3)—5 2
ZIR: Ya(s) = (s(+51)(3+2) =1t s+2

yo(t) = (et + 2e~2)u(t)
> y(t) = yi(t) + ya(t)
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Feed Back Applications

» Closed loop Transfer fen: Q(s) = 1+GCZSL(S) = Ol”f’ZO’gZPforf"

H—=

Xt * y(t)

"
L |
e >

H(s) I—

1. Inverting

LY y(t)

;
L

|

P(s) |-

_ _ K
> Q(S) — 1+Kp(s)
> If choose K s.t. Kp(s) > 1 then Q(s) ~ ﬁ
> Example: For a capacitor, consider i as output and v as input, it is a

differentiator
> By using the above interconnection, we can make an integrator
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2. Stabilizing Unstable Systems

x(t) + y(t)
Cc(s) 1 G(s)

P(s)

» G(s) is unstable
» We should define P(s) and C(s) to make closed-loop system stable (poles of

closed-loop system be in LHP)
C(s)G(s
> Q(s) = 1+C((ss)f>(£))c(§)

Example 1: G( )= i, C(s)=K, P(s)=1
Q(s) = 5= 2+K
Choosing K > 2 make it stable
Example 20 G(s) = 2
By C(s) = K cannot be stabilized
Choose C(s) = Ky + Kas, Kz > 0, and Kj > 4 can stabilize the closed-loop
system

v

vV vy vy VvYy
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3. Tracking
x(t) + <(t) y(®)
cls) 1 G(s)
» Objective: Defining C(s) s.t. e(t) = x(t) —y(t) = 0ast — o0
> E(s) = mX(s)
» Consider x(t) as unite step
> lime(t)t—oo = limsE(s)s—o = lims_g m%
» If we choose C(s) s.t. C(s)G(s) > 1then e(t) - 0ast— oo

4. Decreasing effect of disturbance

5. Decreasing Sensitivity to uncertainties
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Inverted Pendulum

» Objective:
Find proper a(t) to make ;
6(t) =0 e

s(t)

External
disturbances
x(t)

System

_—
3(1) =—p-|  dynamics L

Farzaneh Abdollahi Signal and Systems Lecture 7




Outline |

stems Description Unilateral LT F

ction Analyzing LTI Systems with LT Geometric Evaluation LTI

Inverted Pendulum

» System Dynamics:

Ld29(f) _ :
dt2
gsin[0(t)] + Lx(t) — a(t) cos(6(t)) im
> Linearize it: assuming 6(t) is small
> sin(6(t)) = 0(t) i
» cos(6(t)) =1
LEND — g0(t) + Lx(t) — " :
- L gl(r) + Lx(1) = a0 e
O(s) = m[Lx(S) — A(s)]
——
H(s)
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Inverted Pendulum

> O(s) = H(s)[LX(s) — A(s)]

_ 1
> H(S) T Lls?—g

x(t) * ° o(t)

a(t)
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Inverted Pendulum

> O(s) = H(s)[LX(s) — A(s)]
> H(s) = o
» Using feedback connection, let us design a controller, C(s) to make the

pendulum in vertical position

LH(s
> 0(s) = g X(s)

o(t)

a(t)
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Proportional Feedback: C(s) = K;
> O(s) = ﬁX(s)

_&g-K
L
> Poles s = i\/gzKl
Im lm
K1<0 K1>0
e % » Re D =X » Re
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Outline Intr tion Analyzing LTI

ion Unilateral LT

Derivative Feedback: C(s) = Kjs

_ 1

> 00) = e X (9)

> Poles: s=—%2+,/(52)2+ ¢
Im Im
A Y

K2<0 K2>0
e * »Re - X < RE
Farzaneh Abdollahi Signal and Systems Lecture 7
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Proportional+ Derivative (PD) Feedback:
C(S) = Kl + K25

1
> O(s) = aramern—gmrryX(5)

e Ko Koy _ Ki—g
> Poles: s = —52 +1/(57) T

Im

K1>0
K2>0
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