

Signals and Systems Lecture 7: Laplace Transform

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Winter 2014

Introduction

ROC Properties Inverse of LT LT Properties

Analyzing LTI Systems with LT

Geometric Evaluation All Pass Filters

LTI Systems Description Stability Analysis by Routh-Hurwitz

Unilateral LT

Feed Back Applications

Introduction

- ▶ We had defined e^{st} as a basic function for CT LTI systems,s.t. $e^{st} \rightarrow H(s)e^{st}$
- In Fourier transform $s = j\omega$
- In Laplace transform $s = \sigma + j\omega$
- By Laplace transform we can
 - Analyze wider range of systems comparing to Fourier Transform
 - Analyze both stable and unstable systems
- ► The bilateral Laplace Transform is defined:

$$X(s) = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

$$\Rightarrow X(\sigma + j\omega) = \int_{-\infty}^{\infty} [x(t)e^{-\sigma t}]e^{-j\omega t}dt$$

$$= \mathcal{F}\{x(t)e^{-\sigma t}\}$$

Region of Convergence (ROC)

► Note that: X(s) exists only for a specific region of s which is called Region of Convergence (ROC)

Outline Introduction Analyzing LTI Systems with LT Geometric Evaluation LTI Systems Description Unilateral LT

- ► ROC: is the $s = \sigma + j\omega$ by which $x(t)e^{-\sigma}$ converges: ROC : { $s = \sigma + j\omega$ s.t. $\int_{-\infty}^{\infty} |x(t)e^{-\sigma t}| dt < \infty$ }
 - \blacktriangleright Roc does not depend on ω
 - Roc is absolute integrability condition of $x(t)e^{-\sigma t}$

• If
$$\sigma = 0$$
, i.e., $s = j\omega \rightsquigarrow X(s) = \mathcal{F}\{x(t)\}$

- ▶ ROC is shown in s-plane
- ► The coordinate axes are Re{s} along the horizontal axis and Im{s} along the vertical axis.

Example

• Consider
$$x(t) = e^{-at}u(t)$$

►
$$X(s) = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-st} dt = \frac{-1}{s+a} e^{-(s+a)t} |_{0}^{\infty} = \frac{-1}{s+a} (e^{-(s+a)\infty} - 1)$$

► If
$$\mathcal{R}e(s + a) > 0 \rightsquigarrow \mathcal{R}e(s) = \sigma > -\mathcal{R}e(a), X(s)$$
 is bounded

$$\blacktriangleright \therefore X(s) = \frac{1}{s+a}, \ ROC : \mathcal{R}e(s) > -\mathcal{R}e(a)$$

2

Example

- Consider $x(t) = -e^{-at}u(-t)$
- ► $X(s) = -\int_{-\infty}^{\infty} e^{-at} u(-t) e^{-st} dt = \frac{1}{s+a} e^{-(s+a)t} |_{-\infty}^{0} = \frac{1}{s+a} (1 e^{(s+a)\infty})$
- ► If $\mathcal{R}e(s+a) < 0 \rightsquigarrow \mathcal{R}e(s) = \sigma < -\mathcal{R}e(a), X(s)$ is bounded
- $\blacktriangleright \therefore X(s) = \frac{1}{s+a}, \ ROC : \mathcal{R}e(s) < -\mathcal{R}e(a)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- In the recent two examples two different signals had similar Laplace transform but with different Roc
- To obtain unique x(t) both X(s) and ROC is required
- If x(t) is defined as a linear combination of exponential functions, → its Laplace transform (X(s)) is rational
- In LTI expressed in terms of linear constant-coefficient differential equations, Laplace Transform of its impulse response (its transfer function) is rational
- ► $X(s) = \frac{N(s)}{D(s)}$
 - Roots of N(s) zeros of X(s); They make X(s) equal to zero.
 - ▶ Roots of *D*(*s*) poles of X(s); They make X(s) to be unbounded.

ヘロト 人間ト 人団ト 人団ト

- To study the stability of LTI systems zeros and poles are illustrated in s-plane (pole-zero plot)
- \blacktriangleright number of poles and zeros are equal for $-\infty$ to ∞
 - Consider degree of D(s) (# of poles): m; degree of N(s) (# of zeros): n
 - If $m < n \rightarrow$ There are n m = k poles in ∞
 - If $m > n \rightsquigarrow$ There are m n = k zeros in ∞

ROC Properties

\blacktriangleright ROC only depends on σ

- In s-plane Roc is strips parallel to $j\omega$ axis
- If X(s) is rational, Roc does not contain any pole
 - Since D(s) = 0, makes X(s) unbounded
- ► If x(t) is finite duration and is absolutely integrable, then ROC is entire s-plane
- ► If x(t) is right sided and $\mathcal{R}e\{s\} = \sigma_0 \in \text{ROC}$ then $\forall s \ \mathcal{R}e\{s\} > \sigma_0 \in \text{ROC}$ ROC
- ▶ If x(t) is left sided and $\mathcal{R}e\{s\} = \sigma_0 \in \mathsf{ROC}$ then $\forall s \ \mathcal{R}e\{s\} \le \sigma_0 \in \mathsf{ROC}$
- If x(t) is two sided and Re{s} = σ₀ ∈ ROC then ROC is a strip in s-plane including Re{s} = σ₀

イロト 不得下 イヨト イヨト

ROC Properties

• If X(s) is rational

- the ROC is bounded between poles or extends to infinity,
- no poles of X(s) are contained in ROC
- If x(t) is right sided, then ROC is in the right of the rightmost pole
- If x(t) is left sided, then ROC is in the left of the leftmost pole

• If ROC includes $j\omega$ axis then x(t) has FT

Inverse of Laplace Transform (LT)

- \blacktriangleright By considering σ fixed, inverse of LT can be obtained from inverse of FT:
- $x(t)e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\underbrace{\sigma + j\omega}_{\epsilon}) e^{j\omega t} d\omega$

•
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\sigma + j\omega) e^{(\sigma + j\omega)t} d\omega$$

• assuming σ is fixed $\rightsquigarrow ds = jd\omega$

•
$$\therefore x(t) = \frac{1}{2\pi j} \int_{-\infty}^{\infty} X(s) e^{st} ds$$

 If X(s) is rational, we can use expanding the rational algebraic into a linear combination of lower order terms and then one may use

•
$$X(s) = \frac{1}{s+a} \rightsquigarrow x(t) = -e^{-at}u(-t)$$
 if $\mathcal{R}e\{s\} < -a$

•
$$X(s) = \frac{1}{s+a} \rightsquigarrow x(t) = e^{-at}u(t)$$
 if $\mathcal{R}e\{s\} > -a$

Do not forget to consider ROC in obtaining inverse of LT!

・ 同 ト ・ ヨ ト ・ ヨ ト

LT Properties

• Linearity: $ax_1(t) + bx_2(t) \Leftrightarrow aX_1(s) + bX_2(s)$

- ROC contains: $R_1 \bigcap R_2$
- If $R_1 \bigcap R_2 = \emptyset$ it means that LT does not exit
- ▶ By zeros and poles cancelation ROC can be larger than $R_1 \bigcap R_2$
- ► Time Shifting: $x(t T) \Leftrightarrow e^{-sT}X(s)$ with ROC=R
- ▶ Shifting in S-Domain: $e^{s_0t}x(t) \Leftrightarrow X(s-s_0)$ with ROC= $R + Re\{s_0\}$
- ▶ Time Scaling: $x(at) \Leftrightarrow \frac{1}{|a|} X(\frac{s}{a})$ with ROC = $\frac{R}{a}$
- ▶ Differentiation in Time-Domain: $\frac{dx(t)}{dt} \Leftrightarrow sX(s)$ with ROC containing R
- ▶ Differentiation in the s-Domain: $-tx(t) \Leftrightarrow \frac{dX(s)}{ds}$ with ROC = R
- ▶ Convolution: $x_1(t) * x_2(t) \Leftrightarrow X_1(s)X_2(s)$ with ROC containing $R_1 \cap R_2$

・ロト ・四ト ・ヨト ・ ヨト

3

Analyzing LTI Systems with LT

- ► LT of impulse response is H(s) which is named transfer function or system function.
- ► Transfer fcn can represent many properties of the system:
 - Causality: h(t) = 0 for $t < 0 \rightarrow$ It is right sided
 - ROC of a causal system is a right-half plane
 - Note that the converse is not always correct
 - Example: $H(s) = \frac{e^s}{s+1}$, $\mathcal{R}e\{s\} > -1 \rightsquigarrow h(t) = e^{-(t+1)}u(t+1)$ it is none zero for -1 < t < 0

Analyzing LTI Systems with LT Geometric Evaluation LTI Systems Description Unilateral LT

- For a system with rational transfer fcn, causality is equivalent to ROC being the right-half plane to the right of the rightmost pole
- Stability: h(t) should be absolute integrable \rightarrow its FT converges
 - An LTI system is stable iff its ROC includes $j\omega$ axis (0 \in ROC)
- ► A causal system with rational H(s) is stable iff all the poles of H(s) have negative real-parts (are in left-half plane)

イロト イポト イヨト イヨト

Outline Introduction Analyzing LTI Systems with LT Geometric Evaluation LTI Systems Description Unilateral LT

Geometric Evaluation of FT by Zero/Poles Plot

• Consider $X_1(s) = s - a$

- $|X_1|$: length of X_1
- $\measuredangle X_1$: angel of X_1
- Now consider $X_2(s) = \frac{1}{s-a} = \frac{1}{X_1(s)}$

•
$$log X_2 = -log X_1$$

• $\measuredangle X_2 = -\measuredangle X_1$

・ 同 ト ・ ヨ ト ・ ヨ ト

For higher order fcns:

$$X(s) = M \frac{\prod_{i=1}^{R} (s - \beta_i)}{\prod_{j=1}^{P} (s - \alpha_j)}$$

$$|X(s)| = |M| \frac{\prod_{i=1}^{R} |s - \beta_i|}{\prod_{j=1}^{P} |s - \alpha_j|}$$

$$\measuredangle X(s) = \measuredangle M + \sum_{i=1}^{R} \measuredangle (s - \beta_i) - \sum_{j=1}^{R} \measuredangle (s - \alpha_j)$$
Example:

$$H(s) = \frac{1/2}{s+1/2}, \quad \mathcal{R}e\{s\} > \frac{-1}{2}$$

$$h(t) = \frac{1}{2}e^{-t/2}u(t)$$

$$s(t) = [1 - e^{-t/2}]u(t)$$

$$H(j\omega) = \frac{1/2}{j\omega+1/2}$$

$$|H(j\omega)|^2 = \frac{(1/2)^2}{w^2 + (1/2)^2}$$

$$\Delta H(j\omega) = -\tan^{-1}2\omega$$

$$0 < \omega < \infty \to -\pi/2 < \Delta H(j\omega) < 0$$

$$\omega^{\uparrow} \rightsquigarrow |H| \downarrow, \Delta H(j\omega) \downarrow$$

イロン イロン イヨン イヨン

2

- \blacktriangleright Now let us substitute 2 with τ in the previous example
- $H(j\omega) = \frac{1/\tau}{j\omega+1/\tau}$

$$|H(j\omega)|^2 = \frac{(1/\tau)^2}{w^2 + (1/\tau)^2}, |H(j\omega)| = \begin{cases} 1 & \omega = 0\\ \frac{1}{\sqrt{2}} & \omega = \frac{1}{\tau}\\ \frac{1}{\tau\omega} & \omega \gg \frac{1}{\tau} \end{cases}$$
$$\land \mathcal{L}H(j\omega) = -\tan^{-1}\tau\omega = \begin{cases} 0 & \omega = 0\\ \frac{-\pi}{4} & \omega = \frac{1}{\tau}\\ \frac{-\pi}{2} & \omega \gg \frac{1}{\tau} \end{cases}$$

- ► Relation between real part of poles and response of the systems
 - $\blacktriangleright \ \tau$ is time constant of first order systems which control response speed of the systems
 - Poles are located at $-\frac{1}{\tau}$
 - The farther the poles from jω axis → cut-off freq. ↑, τ ↓, the faster decaying the impulse response, the faster rise time of step response

イロト イポト イヨト イヨト

Farzaneh Abdollahi

Signal and Systems

୬ ୯.୧୦ 17/43

2

Response for Second Order system

•
$$h(t) = M(e^{c_1t} - e^{c_2t})u(t)$$

$$\blacktriangleright H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s - c_1)(s - c_2)}$$

•
$$c_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

▶ 0 < ζ < 1: under damp (two complex poles), $c_2 = c_1^*$

•
$$\zeta = 1$$
 critically damp $(s = -\omega_n)$

- $\zeta > 1$: Over damp (two negative real poles)
- ▶ For fixed ω_n , $\zeta \uparrow \uparrow \rightsquigarrow$, settling time for step response \uparrow

・ 同 ト ・ ヨ ト ・ ヨ ト

Zero-Pole Pattern of Second Order System

Freq. Response of Second Order System

$$H(s) = \frac{\omega_n^2}{(s-c_1)(s-c_1^*)}$$

$$H(j\omega) = H(s)|_{s=j\omega} = \frac{\omega_n^2}{(j\omega-c_1)(j\omega-c_1^*)}$$

Farzaneh Abdollahi

2

21/43

Bode Plot of $H(j\omega)$

Farzaneh Abdollahi

Impulse and Step Response of the second order system

All Pass Filters

- Passes the signal in all freqs. with a little decreasing/increasing the magnitude
- Why do we use all-pass filters?
- $H(s) = \frac{s-a}{s+a}$ $\mathcal{R}e\{s\} > -a, a > 0$
- ► $|H(J\omega)| = 1$

$$\blacktriangleright \measuredangle H(j\omega) = \theta_1 - \theta_2 = \pi - 2\theta_2 = \pi - 2\tan^{-1}(\frac{\omega}{a}) = \begin{cases} \pi & \omega = 0\\ \frac{\pi}{2} & \omega = a\\ 0 & \omega \gg a \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

LTI Systems Description

$$\blacktriangleright \sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

$$\blacktriangleright \sum_{k=0}^{N} a_k s^k Y(s) = \sum_{k=0}^{M} b_k s^k X(s)$$

•
$$H(s) = \frac{Y(s)}{X(s)} = \frac{\sum_{k=0}^{M} b_k s^k}{\sum_{k=0}^{N} a_k s^k}$$

- ROC depends on
 - placement of poles
 - boundary conditions (right sided, left sided, two sided,...)

- ► High Order Systems can be expressed by connected simple order systems:
- ► Cascade Connection:

 $H(s) = H_1(s)H_2(s)H_3(s)H_4(s)H_5(s)$

Parallel Connection:

$$H(s) = H_1(s) + H_2(s) + H_3(s) + H_4(s) + H_5(s)$$

∃ → < ∃ →</p>

Feedback Interconnection of two LTI systems:

$$\bullet \quad Y(s) = Y_1(s) = X_2(s)$$

•
$$X_1(s) = X(s) + Y_2(s) = X(s) + H_2(s)Y(s)$$

•
$$Y(s) = H_1(s)X_1(s) = H_1(s)[X(s) + H_2(s)Y(s)]$$

•
$$\frac{Y(s)}{X(s)} = H(s) = \frac{H_1(s)}{1 - H_2(s)H_1(s)}$$

• ROC: is determined based on roots of $1 - H_2(s)H_1(s)$

イロト イポト イヨト イヨト

э

Block Diagram Representation for Causal LTI Systems

- We can represent a transfer fcn by different methods:
- ► Example: $H(s) = \frac{2s^2 + 4s 6}{s^2 + 3s + 2}$ 1. $H(s) = (2s^2 + 4s - 6)\frac{1}{s^2 + 3s + 2}$ 2. Assuming it is causal so it is at initial rest ► $W(s) = \frac{1}{s^2 + 3s + 2}X(s) \Leftrightarrow \frac{d^2w}{dt^2} + 3\frac{dw}{dt} + 2w = x(t)$ ► $Y(s) = (2s^2 + 4s - 6)W(s) \Leftrightarrow y(t) = 2\frac{dw^2}{dt^2} + 4\frac{dw}{dt} - 6w$ 3. $H(s) = 2 + \frac{6}{s + 2} - \frac{8}{s + 1}$ 4. $H(s) = \frac{2(s-1)}{s + 2}\frac{s+3}{s + 1}$

A E F A E F

Stability Analysis by Routh-Hurwitz

- Remind: A system with rational transfer fcn is causal and stable if all of its poles are in LHP.
- ► $H(s) = \frac{N(s)}{D(s)}, D(s) = a_n s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0$
- How can we verify the stability of this system?
 - Method 1: Find the roots of D(s)
 - ▶ If *n* is large, it is difficult to find: -(
 - Method 2: Routh-Hurwitz method

 - First row includes odd coefficients of D(s)
 - Second row includes even coefficients of D(s)

4 ∃ > < ∃ >

Stability Analysis by Routh-Hurwitz

► *b_i*, *c_i* are defined as follows:

$$b_{n-1} = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-2} \\ a_{n-1} & a_{n-3} \end{vmatrix}, \ b_{n-3} = -\frac{1}{a_{n-1}} \begin{vmatrix} a_n & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix}$$
$$c_{n-1} = -\frac{1}{b_{n-1}} \begin{vmatrix} a_{n-1} & a_{n-3} \\ b_{n-1} & b_{n-3} \end{vmatrix}, \ c_{n-3} = -\frac{1}{b_{n-1}} \begin{vmatrix} a_{n-1} & a_{n-5} \\ b_{n-1} & b_{n-5} \end{vmatrix}$$

- Follow the same rule for other rows parameters
- # of RHP root of D(s) equals to # of signs changing in the first column of the table
- Necessary condition for using Routh-Horwitz method is that all coefficients of D(s) should exist and have similar sign(otherwise there are more than one pole on imaginary axis, it is not stable)
- Necessary and Sufficient conditions for stability is that no signs changing appears in the first column of the Routh-Horwitz table

(人間) システレ イラン

- Initial Value Theorem: If x(t) = 0 for t < 0 and x(t) does not contain any impulse or higher order singularities at the origin then x(0⁺) = lim_{s→∞} sX(s)
 - X(s) may include a simple pole at the origin which represents a step signal.
 - More than one pole at the origin and in $j\omega$ axis make the signal oscillating
- ▶ Final Value Theorem: If x(t) = 0 for t < 0 and x(t) is bounded when $t \to \infty$ then $x(\infty) = \lim_{s \to 0} sX(s)$
- ► Consider H(s) = N(s)/D(s), n is degree of N(s), d is degree of D(s):
 ► H(0⁺) = $\begin{cases}
 0 & d > n+1 \\
 constant value \neq 0 & d = n+1 \\
 \infty & d < n+1
 \end{cases}$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへの

Unilateral LT

It is used to describe causal systems with nonzero initial conditions:
X(s) = ∫₀[∞] x(t)e^{-st}dt = UL{x(t)}

• If
$$x(t) = 0$$
 for $t < 0$ then $\mathcal{X}(s) = X(s)$

- Unilateral LT of $x(t) = \text{Bilateral LT of } x(t)u(t^{-})$
- ▶ If h(t) is impulse response of a causal LTI system then H(s) = H(s)
- ROC is not necessary to be recognized for unilateral LT since it is always a right-half plane
- ▶ For rational $\mathcal{X}(s)$, ROC is in right of the rightmost pole

・ロト ・回ト ・ヨト ・ヨト

Similar Properties of Unilateral and Bilateral LT

- Convolution: Note that for unilateral LT, If both x₁(t) and x₂(t) are zero for t < 0, then X(s) = X₁(s)X₂(s)</p>
- Time Scaling
- ► Shifting in *s* domain
- ► Initial and Finite Theorems: they are indeed defined for causal signals
- ► Integrating: $\int_{0^{-}}^{t} x(\tau) d\tau = x(t) * u(t) \stackrel{\mathcal{U}}{\Leftrightarrow} \mathcal{X}(s) \mathcal{U}(s) = \frac{1}{s} \mathcal{X}(s)$
- \blacktriangleright The main difference between \mathcal{UL} and LT is in time differentiation:

•
$$\mathcal{UL}\left\{\frac{dx(t)}{dt}\right\} = \int_{0^{-}}^{\infty} \frac{dx(t)}{dt} e^{-st} dt$$

- Use the rule $\int f dg = fg \int g df$
- $\blacktriangleright \quad \mathcal{UL}\left\{\frac{dx(t)}{dt}\right\} = s \int_{0^{-}}^{\infty} x(t) e^{-st} dt + x(t) e^{-st} \Big|_{0^{-}}^{\infty} = s \mathcal{X}(s) x(0^{-})$
- $\mathcal{UL}\left\{\frac{dx(t)}{dt}\right\} = s\mathcal{X}(s) x(0^{-})$
- $\mathcal{UL}\left\{\frac{d^2x(t)}{dt^2}\right\} = \mathcal{UL}\left\{\frac{d}{dt}\left\{\frac{dx(t)}{dt}\right\}\right\} = s(s\mathcal{X}(s) x(0^-)) \dot{x}(0^-) = s^2\mathcal{X}(s) sx(0^-) \dot{x}(0^-)$
- Follow the same rule for higher derivatives

- 4 同 ト - 4 国 ト - 4 国 ト

34/43

Example

- Consider $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = x(t)$, where $y(0^-) = \beta = 3$, $\dot{y}(0^-) = \gamma = -5$, $x(t) = \alpha u(t) = 2u(t)$
- ► Take *UL*:

$$\mathfrak{S}^{2}\mathcal{Y}(s) - \beta\mathcal{Y}(s) - \gamma + 3(s\mathcal{Y}(s) - \beta) + 2\mathcal{Y}(s) = \mathcal{X}(s)$$

$$\mathfrak{Y}(s) = \frac{\beta(s+3) + \gamma}{s^{2} + 3s + 2} + \frac{\mathcal{X}(s)}{s^{2} + 3s + 2}$$

ZIR ZSR
 Zero State Response (ZSR): is a response in absence of initial values

- $\mathcal{H}(s) = \frac{\mathcal{Y}(s)}{\mathcal{X}(s)}$
- Transfer fcn is ZSR

► ZSR:
$$\mathcal{Y}_1(s) = \frac{\alpha}{s(s+1)(s+2)} = \frac{1}{s} + \frac{1}{s+2} - \frac{2}{s+1}$$

► $u_n(t) = (1 - 2e^{-t} + e^{-2t})u(t)$

• $y_1(t) = (1 - 2e^{-t} + e^{-2t})u(t)$

▶ Zero Input Response (ZIR): is a response in absence of input (x(t) = 0)

► ZIR:
$$\mathcal{Y}_2(s) = \frac{3(s+3)-5}{(s+1)(s+2)} = \frac{1}{s+1} + \frac{2}{s+2}$$

► $y_2(t) = (e^{-t} + 2e^{-2t})u(t)$

$$\blacktriangleright y(t) = y_1(t) + y_2(t)$$

Farzaneh Abdollahi

Feed Back Applications

► Closed loop Transfer fcn: $Q(s) = \frac{G(s)}{1+G(s)H(s)} = \frac{Open \ loop \ Gain}{1-Loop \ Gain}$

1. Inverting

•
$$Q(s) = \frac{K}{1+Kp(s)}$$

- If choose K s.t. $Kp(s) \gg 1$ then $Q(s) \simeq \frac{1}{p(s)}$
- Example: For a capacitor, consider i as output and v as input, it is a differentiator
- By using the above interconnection, we can make an integrator

イロト イポト イヨト イヨト

2. Stabilizing Unstable Systems

- ► G(s) is unstable
- ► We should define P(s) and C(s) to make closed-loop system stable (poles of closed-loop system be in LHP)
- $Q(s) = \frac{C(s)G(s)}{1+C(s)P(s)G(s)}$
- Example 1: $G(s) = \frac{1}{s-2}$, C(s) = K, P(s) = 1
- $Q(s) = \frac{K}{s-2+K}$
- Choosing K > 2 make it stable
- Example 2: $G(s) = \frac{1}{s^2 4}$
- By C(s) = K cannot be stabilized
- ► Choose C(s) = K₁ + K₂s, K₂ > 0, and K₁ > 4 can stabilize the closed-loop system

(本間)と 本語(と) 本語(と

3. Tracking

- Objective: Defining C(s) s.t. $e(t) = x(t) y(t) \rightarrow 0$ as $t \rightarrow \infty$
- $E(s) = \frac{1}{1+C(s)G(s)}X(s)$
- Consider x(t) as unite step
- $\blacktriangleright \lim e(t)_{t\to\infty} = \lim sE(s)_{s\to0} = \lim_{s\to0} \frac{s}{1+C(s)G(s)} \frac{1}{s}$
- If we choose C(s) s.t. $C(s)G(s) \gg 1$ then $e(t) \to 0$ as $t \to \infty$
- 4. Decreasing effect of disturbance
- 5. Decreasing Sensitivity to uncertainties

Objective:

Find proper a(t) to make $\theta(t) = 0$

► System Dynamics:

$$L\frac{d^{2}\theta(t)}{dt^{2}} = g\sin[\theta(t)] + Lx(t) - a(t)\cos(\theta(t))$$
► Linearize it: assuming $\theta(t)$ is small
► $\sin(\theta(t)) = \theta(t)$
► $\cos(\theta(t)) = 1$
► $L\frac{d^{2}\theta(t)}{dt^{2}} = g\theta(t) + Lx(t) - a(t)$
► LT:
 $\Theta(s) = \underbrace{1}_{Ls^{2} - g}[LX(s) - A(s)]$

イロト イポト イヨト イヨト

2

$$\Theta(s) = H(s)[LX(s) - A(s)]$$

$$H(s) = \frac{1}{Ls^2 - g}$$

イロト イポト イヨト イヨト

2

- $\bullet \ \Theta(s) = H(s)[LX(s) A(s)]$
- ► $H(s) = \frac{1}{Ls^2 g}$
- Using feedback connection, let us design a controller, C(s) to make the pendulum in vertical position
- ► $\Theta(s) = \frac{LH(s)}{1+C(s)H(s)}X(s)$

Proportional Feedback: $C(s) = K_1$

$$\bullet \ \Theta(s) = \frac{1}{s^2 - \frac{g - K_1}{L}} X(s)$$

• Poles
$$s = \pm \sqrt{\frac{g - K_1}{L}}$$

Derivative Feedback: $C(s) = K_2 s$

$$\bullet \ \Theta(s) = \frac{1}{s^2 + s(K_2/L) - g/L} X(s)$$

• Poles:
$$s = -\frac{K_2}{2L} \pm \sqrt{(\frac{K_2}{2L})^2 + \frac{g}{L}}$$

Proportional+ Derivative (PD) Feedback: $C(s) = K_1 + K_2 s$

$$\bullet \Theta(s) = \frac{1}{s^2 + s(K_2/L) - g/L + K_1/L} X(s)$$

$$\bullet \text{ Poles: } s = -\frac{K_2}{2L} \pm \sqrt{\left(\frac{K_2}{2L}\right)^2 - \frac{K_1 - g}{L}}$$

