Signals and Systems Lecture 7: Laplace Transform

Farzaneh Abdollahi

Department of Electrical Engineering
Amirkabir University of Technology

Winter 2014

Introduction
ROC Properties Inverse of LT
LT Properties
Analyzing LTI Systems with LT
Geometric Evaluation
All Pass Filters
LTI Systems Description
Stability Analysis by Routh-Hurwitz
Unilateral LT
Feed Back Applications

Introduction

- We had defined $e^{s t}$ as a basic function for CT LTI systems,s.t. $e^{s t} \rightarrow H(s) e^{s t}$
- In Fourier transform $s=j \omega$
- In Laplace transform $s=\sigma+j \omega$
- By Laplace transform we can
- Analyze wider range of systems comparing to Fourier Transform
- Analyze both stable and unstable systems
- The bilateral Laplace Transform is defined:

$$
\begin{aligned}
X(s) & =\int_{-\infty}^{\infty} x(t) e^{-s t} d t \\
\Rightarrow X(\sigma+j \omega) & =\int_{-\infty}^{\infty}\left[x(t) e^{-\sigma t}\right] e^{-j \omega t} d t \\
& =\mathcal{F}\left\{x(t) e^{-\sigma t}\right\}
\end{aligned}
$$

Region of Convergence (ROC)

- Note that: $X(s)$ exists only for a specific region of s which is called Region of Convergence (ROC)
- ROC: is the $s=\sigma+j \omega$ by which $x(t) e^{-\sigma}$ converges: ROC : $\left\{s=\sigma+j \omega\right.$ s.t. $\left.\int_{-\infty}^{\infty}\left|x(t) e^{-\sigma t}\right| d t<\infty\right\}$
- Roc does not depend on ω
- Roc is absolute integrability condition of $x(t) e^{-\sigma t}$
- If $\sigma=0, \mathrm{i}, \mathrm{e}, s=j \omega \rightsquigarrow X(s)=\mathcal{F}\{x(t)\}$
- ROC is shown in s-plane
- The coordinate axes are $\mathcal{R e}\{s\}$ along the horizontal axis and $\operatorname{Im}\{s\}$ along the vertical axis.

Example

- Consider $x(t)=e^{-a t} u(t)$
- $X(s)=\int_{-\infty}^{\infty} e^{-a t} u(t) e^{-s t} d t=\left.\frac{-1}{s+a} e^{-(s+a) t}\right|_{0} ^{\infty}=\frac{-1}{s+a}\left(e^{-(s+a) \infty}-1\right)$
- If $\operatorname{Re}(s+a)>0 \rightsquigarrow \mathcal{R e}(s)=\sigma>-\mathcal{R e}(a), X(s)$ is bounded
$\therefore X(s)=\frac{1}{s+a}, \operatorname{ROC}: \mathcal{R e}(s)>-\mathcal{R e}(a)$

(a)

Example

- Consider $x(t)=-e^{-a t} u(-t)$
- $X(s)=-\int_{-\infty}^{\infty} e^{-a t} u(-t) e^{-s t} d t=\left.\frac{1}{s+a} e^{-(s+a) t}\right|_{-\infty} ^{0}=\frac{1}{s+a}\left(1-e^{(s+a) \infty}\right)$
- If $\operatorname{Re}(s+a)<0 \rightsquigarrow \mathcal{R e}(s)=\sigma<-\operatorname{Re}(a), X(s)$ is bounded
$-\therefore X(s)=\frac{1}{s+a}, \operatorname{ROC}: \mathcal{R e}(s)<-\mathcal{R e}(a)$

- In the recent two examples two different signals had similar Laplace transform but with different Roc
- To obtain unique $x(t)$ both $X(s)$ and ROC is required
- If $x(t)$ is defined as a linear combination of exponential functions, \rightsquigarrow its Laplace transform $(X(s))$ is rational
- In LTI expressed in terms of linear constant-coefficient differential equations, Laplace Transform of its impulse response (its transfer function) is rational
- $X(s)=\frac{N(s)}{D(s)}$
- Roots of $N(s)$ zeros of $\mathrm{X}(\mathrm{s})$; They make $\mathrm{X}(\mathrm{s})$ equal to zero.
- Roots of $D(s)$ poles of $X(s)$; They make $X(s)$ to be unbounded.
- To study the stability of LTI systems zeros and poles are illustrated in s-plane (pole-zero plot)
- number of poles and zeros are equal for $-\infty$ to ∞
- Consider degree of $D(s)$ (\# of poles): m; degree of $N(s)$ (\# of zeros): n
- If $m<n \rightsquigarrow$ There are $n-m=k$ poles in ∞
- If $m>n \rightsquigarrow$ There are $m-n=k$ zeros in ∞

ROC Properties

- ROC only depends on σ
- In s-plane Roc is strips parallel to $j \omega$ axis
- If $X(s)$ is rational, Roc does not contain any pole
- Since $D(s)=0$, makes $X(s)$ unbounded
- If $x(t)$ is finite duration and is absolutely integrable, then ROC is entire s-plane
- If $x(t)$ is right sided and $\operatorname{Re}\{s\}=\sigma_{0} \in \operatorname{ROC}$ then $\forall s \operatorname{Re} e\{s\}>\sigma_{0} \in$ ROC
- If $x(t)$ is left sided and $\mathcal{R e}\{s\}=\sigma_{0} \in \operatorname{ROC}$ then $\forall s \operatorname{Re} e\{s\} \leq \sigma_{0} \in \operatorname{ROC}$
- If $x(t)$ is two sided and $\operatorname{Re}\{s\}=\sigma_{0} \in \operatorname{ROC}$ then ROC is a strip in s-plane including $\mathcal{R e}\{s\}=\sigma_{0}$

ROC Properties

- If $X(s)$ is rational
- the ROC is bounded between poles or extends to infinity,
- no poles of $X(s)$ are contained in ROC
- If $x(t)$ is right sided, then ROC is in the right of the rightmost pole - If $x(t)$ is left sided, then ROC is in the left of the leftmost pole
- If ROC includes $j \omega$ axis then $x(t)$ has FT

Inverse of Laplace Transform (LT)

- By considering σ fixed, inverse of LT can be obtained from inverse of FT:
- $x(t) e^{-\sigma t}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\underbrace{\sigma+j \omega}_{s}) e^{j \omega t} d \omega$
- $x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\sigma+j \omega) e^{(\sigma+j \omega) t} d \omega$
- assuming σ is fixed $\rightsquigarrow d s=j d \omega$
$\therefore x(t)=\frac{1}{2 \pi j} \int_{-\infty}^{\infty} X(s) e^{s t} d s$
- If $X(s)$ is rational, we can use expanding the rational algebraic into a linear combination of lower order terms and then one may use
- $X(s)=\frac{1}{s+a} \rightsquigarrow x(t)=-e^{-a t} u(-t)$ if $\mathcal{R e}\{s\}<-a$
- $X(s)=\frac{1}{s+a} \rightsquigarrow x(t)=e^{-a t} u(t)$ if $\operatorname{Re}\{s\}>-a$
- Do not forget to consider ROC in obtaining inverse of LT!

LT Properties

- Linearity: $a x_{1}(t)+b x_{2}(t) \Leftrightarrow a X_{1}(s)+b X_{2}(s)$
- ROC contains: $R_{1} \bigcap R_{2}$
- If $R_{1} \bigcap R_{2}=\emptyset$ it means that LT does not exit
- By zeros and poles cancelation ROC can be larger than $R_{1} \bigcap R_{2}$
- Time Shifting: $x(t-T) \Leftrightarrow e^{-s T} X(s)$ with ROC $=R$
- Shifting in S-Domain: $e^{s_{0} t} x(t) \Leftrightarrow X\left(s-s_{0}\right)$ with $\mathrm{ROC}=R+\mathcal{R} e\left\{s_{0}\right\}$
- Time Scaling: $x(a t) \Leftrightarrow \frac{1}{|a|} X\left(\frac{s}{a}\right)$ with $\mathrm{ROC}=\frac{R}{a}$
- Differentiation in Time-Domain: $\frac{d x(t)}{d t} \Leftrightarrow s X(s)$ with ROC containing R
- Differentiation in the s-Domain: $-t x(t) \Leftrightarrow \frac{d X(s)}{d s}$ with ROC $=R$
- Convolution: $x_{1}(t) * x_{2}(t) \Leftrightarrow X_{1}(s) X_{2}(s)$ with ROC containing $R_{1} \cap R_{2}$

Analyzing LTI Systems with LT

- LT of impulse response is $H(s)$ which is named transfer function or system function.
- Transfer fcn can represent many properties of the system:
- Causality: $h(t)=0$ for $t<0 \rightsquigarrow \mathrm{It}$ is right sided
- ROC of a causal system is a right-half plane
- Note that the converse is not always correct
- Example: $H(s)=\frac{e^{s}}{s+1}, \operatorname{Re}\{s\}>-1 \rightsquigarrow h(t)=e^{-(t+1)} u(t+1)$ it is none zero for $-1<t<0$
- For a system with rational transfer fcn, causality is equivalent to ROC being the right-half plane to the right of the rightmost pole
- Stability: $h(t)$ should be absolute integrable \rightsquigarrow its FT converges
- An LTI system is stable iff its ROC includes $j \omega$ axis $(0 \in R O C)$
- A causal system with rational $H(s)$ is stable iff all the poles of $H(s)$ have negative real-parts (are in left-half plane)

Geometric Evaluation of FT by Zero/Poles Plot

- Consider $X_{1}(s)=s-a$

- $\left|X_{1}\right|$: length of X_{1}
- $\measuredangle X_{1}$: angel of X_{1}
- Now consider $X_{2}(s)=\frac{1}{s-a}=\frac{1}{X_{1}(s)}$
- $\log X_{2}=-\log X_{1}$
- $\measuredangle X_{2}=-\measuredangle X_{1}$
- For higher order fcns:

$$
\begin{aligned}
X(s) & =M \frac{\prod_{i=1}^{R}\left(s-\beta_{i}\right)}{\prod_{j=1}^{j}\left(s-\alpha_{j}\right)} \\
\text { - } & |X(s)|=|M| \frac{\prod_{i=1}^{R}\left|s-\beta_{i}\right|}{\prod_{j=1}^{j\left|s-\alpha_{j}\right|}} \\
\text { - } & \measuredangle X(s)=\measuredangle M+\sum_{i=1}^{R} \measuredangle(s- \\
& \left.\beta_{i}\right)-\sum_{j=1}^{R} \measuredangle\left(s-\alpha_{j}\right)
\end{aligned}
$$

- Example:

$$
\begin{aligned}
H(s) & =\frac{1 / 2}{s+1 / 2}, \quad \operatorname{Re} e\{s\}>\frac{-1}{2} \\
\text { - } & h(t)=\frac{1}{2} e^{-t / 2} u(t) \\
\text { - } & s(t)=\left[1-e^{-t / 2}\right] u(t) \\
\text { - } & H(j \omega)=\frac{1 / 2}{j \omega+1 / 2} \\
\text { - } & |H(j \omega)|^{2}=\frac{(1 / 2)^{2}}{w^{2}+(1 / 2)^{2}} \\
\text { - } & \measuredangle H(j \omega)=-\tan ^{-1} 2 \omega \\
\text { - } & 0<\omega<\infty \rightsquigarrow-\pi / 2< \\
& \measuredangle H(j \omega)<0 \\
\text { - } & \omega \uparrow \rightsquigarrow|H| \downarrow, \measuredangle H(j \omega) \downarrow
\end{aligned}
$$

- Now let us substitute 2 with τ in the previous example
- $H(j \omega)=\frac{1 / \tau}{j \omega+1 / \tau}$
$-|H(j \omega)|^{2}=\frac{(1 / \tau)^{2}}{w^{2}+(1 / \tau)^{2}},|H(j \omega)|=\left\{\begin{array}{cc}1 & \omega=0 \\ \frac{1}{\sqrt{2}} & \omega=\frac{1}{\tau} \\ \frac{1}{\tau \omega} & \omega \gg \frac{1}{\tau}\end{array}\right.$
- $\measuredangle H(j \omega)=-\tan ^{-1} \tau \omega=\left\{\begin{array}{cc}0 & \omega=0 \\ \frac{-\pi}{4} & \omega=\frac{1}{\tau} \\ \frac{-\pi}{2} & \omega \gg \frac{1}{\tau}\end{array}\right.$
- Relation between real part of poles and response of the systems
- τ is time constant of first order systems which control response speed of the systems
- Poles are located at $-\frac{1}{\tau}$
- The farther the poles from $j \omega$ axis \rightsquigarrow cut-off freq. $\uparrow, \tau \downarrow$, the faster decaying the impulse response, the faster rise time of step response

Response for Second Order system

- $h(t)=M\left(e^{c_{1} t}-e^{c_{2} t}\right) u(t)$
- $H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{\left(s-c_{1}\right)\left(s-c_{2}\right)}$
- $c_{1,2}=-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1}$
- $0<\zeta<1$: under damp (two complex poles), $c_{2}=c_{1}^{*}$
- $\zeta=1$ critically damp $\left(s=-\omega_{n}\right)$
- $\zeta>1$: Over damp (two negative real poles)
- For fixed $\omega_{n}, \zeta \uparrow \uparrow \rightsquigarrow$, settling time for step response \uparrow

Zero-Pole Pattern of Second Order System

Freq. Response of Second Order System

- $H(s)=\frac{\omega_{n}^{2}}{\left(s-c_{1}\right)\left(s-c_{1}^{*}\right)}$
- $H(j \omega)=\left.H(s)\right|_{s=j \omega}=\frac{\omega_{n}^{2}}{\left(j \omega-c_{1}\right)\left(j \omega-c_{1}^{*}\right)}$

Bode Plot of $H(j \omega)$

Impulse and Step Response of the second order system

All Pass Filters

- Passes the signal in all freqs. with a little decreasing/increasing the magnitude
- Why do we use all-pass filters?
- $H(s)=\frac{s-a}{s+a} \operatorname{Re}\{s\}>-a, a>0$
- $|H(\mathrm{~J} \omega)|=1$
- $\measuredangle H(j \omega)=\theta_{1}-\theta_{2}=\pi-2 \theta_{2}=\pi-2 \tan ^{-1}\left(\frac{\omega}{a}\right)=\left\{\begin{array}{cc}\pi & \omega=0 \\ \frac{\pi}{2} & \omega=a \\ 0 & \omega \gg a\end{array}\right.$

(a)

LTI Systems Description

$-\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}}$

- $\sum_{k=0}^{N} a_{k} s^{k} Y(s)=\sum_{k=0}^{M} b_{k} s^{k} X(s)$
- $H(s)=\frac{Y(s)}{X(s)}=\frac{\sum_{k=0}^{M} b_{k} s^{k}}{\sum_{k=0}^{N} a_{k} s^{k}}$
- ROC depends on
- placement of poles
- boundary conditions (right sided, left sided, two sided,...)
- High Order Systems can be expressed by connected simple order systems:
- Cascade Connection:

$$
H(s)=H_{1}(s) H_{2}(s) H_{3}(s) H_{4}(s) H_{5}(s)
$$

- Parallel Connection:

$$
H(s)=H_{1}(s)+H_{2}(s)+H_{3}(s)+H_{4}(s)+H_{5}(s)
$$

- Feedback Interconnection of two LTI systems:
- $Y(s)=Y_{1}(s)=X_{2}(s)$
- $X_{1}(s)=X(s)+Y_{2}(s)=X(s)+H_{2}(s) Y(s)$
- $Y(s)=H_{1}(s) X_{1}(s)=H_{1}(s)\left[X(s)+H_{2}(s) Y(s)\right]$
- $\frac{Y(s)}{X(s)}=H(s)=\frac{H_{1}(s)}{1-H_{2}(s) H_{1}(s)}$
- ROC: is determined based on roots of $1-H_{2}(s) H_{1}(s)$

Block Diagram Representation for Causal LTI Systems

- We can represent a transfer fcn by different methods:
- Example: $H(s)=\frac{2 s^{2}+4 s-6}{s^{2}+3 s+2}$

1. $H(s)=\left(2 s^{2}+4 s-6\right) \frac{1}{s^{2}+3 s+2}$
2. Assuming it is causal so it is at initial rest

- $W(s)=\frac{1}{s^{2}+3 s+2} X(s) \Leftrightarrow \frac{d^{2} w}{d t^{2}}+3 \frac{d w}{d t}+2 w=x(t)$
- $Y(s)=\left(2 s^{2}+4 s-6\right) W(s) \Leftrightarrow y(t)=2 \frac{d w^{2}}{d t^{2}}+4 \frac{d v}{d t}-6 w$

3. $H(s)=2+\frac{6}{s+2}-\frac{8}{s+1}$
4. $H(s)=\frac{2(s-1)}{s+2} \frac{s+3}{s+1}$

Stability Analysis by Routh-Hurwitz

- Remind: A system with rational transfer fcn is causal and stable if all of its poles are in LHP.
- $H(s)=\frac{N(s)}{D(s)}, D(s)=a_{n} s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}$
- How can we verify the stability of this system?
- Method 1: Find the roots of $D(s)$
- If n is large, it is difficult to find: -
- Method 2: Routh-Hurwitz method
- Provide the following table | s^{n} | a_{n} | a_{n-2} | a_{n-4} | \ldots |
| :---: | :---: | :---: | :---: | :---: |
| | s^{n-1} | s_{n-1} | a_{n-3} | a_{n-5} |
| s^{n-3} | b_{n-1} | b_{n-3} | b_{n-5} | \ldots |
| | \vdots | c_{n-1} | c_{n-3} | c_{n-5} |
| \ldots | | | | |
| | s^{0} | h_{n-1} | | |
- First row includes odd coefficients of $D(s)$
- Second row includes even coefficients of $D(s)$

Stability Analysis by Routh-Hurwitz

- b_{i}, c_{i} are defined as follows:

$$
\begin{gathered}
b_{n-1}=-\frac{1}{a_{n-1}}\left|\begin{array}{cc}
a_{n} & a_{n-2} \\
a_{n-1} & a_{n-3}
\end{array}\right|, b_{n-3}=-\frac{1}{a_{n-1}} \left\lvert\, \begin{array}{cc}
a_{n} & a_{n-4} \\
a_{n-1} & a_{n-5} \\
c_{n-1}=-\frac{1}{b_{n-1}} & \left|\begin{array}{cc}
a_{n-1} & a_{n-3} \\
b_{n-1} & b_{n-3}
\end{array}\right|, c_{n-3}=-\frac{1}{b_{n-1}} \left\lvert\, \begin{array}{cc}
a_{n-1} & a_{n-5} \\
b_{n-1} & b_{n-5}
\end{array} ~\right.
\end{array} \begin{array}{l}
\\
b_{n} \\
b_{n}
\end{array}\right.
\end{gathered}
$$

- Follow the same rule for other rows parameters
- \# of RHP root of $D(s)$ equals to \# of signs changing in the first column of the table
- Necessary condition for using Routh-Horwitz method is that all coefficients of $D(s)$ should exist and have similar sign(otherwise there are more than one pole on imaginary axis, it is not stable)
- Necessary and Sufficient conditions for stability is that no signs changing appears in the first column of the Routh-Horwitz table
- Initial Value Theorem: If $x(t)=0$ for $t<0$ and $x(t)$ does not contain any impulse or higher order singularities at the origin then $x\left(0^{+}\right)=\lim _{s \rightarrow \infty} s X(s)$
- $X(s)$ may include a simple pole at the origin which represents a step signal.
- More than one pole at the origin and in $j \omega$ axis make the signal oscillating
- Final Value Theorem: If $x(t)=0$ for $t<0$ and $x(t)$ is bounded when $t \rightarrow \infty$ then $x(\infty)=\lim _{s \rightarrow 0} s X(s)$
- Consider $H(s)=\frac{N(s)}{D(s)}, n$ is degree of $N(s), d$ is degree of $D(s)$:
- $H\left(0^{+}\right)=\left\{\begin{array}{cl}0 & d>n+1 \\ \text { constant value } \neq 0 & d=n+1 \\ \infty & d<n+1\end{array}\right.$

Unilateral LT

- It is used to describe causal systems with nonzero initial conditions:
$\mathcal{X}(s)=\int_{0^{-}}^{\infty} x(t) e^{-s t} d t=\mathcal{U} \mathcal{L}\{x(t)\}$
- If $x(t)=0$ for $t<0$ then $\mathcal{X}(s)=X(s)$
- Unilateral LT of $x(t)=$ Bilateral LT of $x(t) u\left(t^{-}\right)$
- If $h(t)$ is impulse response of a causal LTI system then $H(s)=\mathcal{H}(s)$
- ROC is not necessary to be recognized for unilateral LT since it is always a right-half plane
- For rational $\mathcal{X}(s)$, ROC is in right of the rightmost pole

Similar Properties of Unilateral and Bilateral LT

- Convolution: Note that for unilateral LT, If both $x_{1}(t)$ and $x_{2}(t)$ are zero for $t<0$, then $\mathcal{X}(s)=\mathcal{X}_{1}(s) \mathcal{X}_{2}(s)$
- Time Scaling
- Shifting in s domain
- Initial and Finite Theorems: they are indeed defined for causal signals
- Integrating: $\int_{0^{-}}^{t} x(\tau) d \tau=x(t) * u(t) \stackrel{\mu}{\Leftrightarrow} \mathcal{X}(s) \mathcal{U}(s)=\frac{1}{s} \mathcal{X}(s)$
- The main difference between $\mathcal{U L}$ and $L T$ is in time differentiation:
- $\mathcal{U} \mathcal{L}\left\{\frac{d \times(t)}{d t}\right\}=\int_{0^{-}}^{\infty} \frac{d \times(t)}{d t} e^{-s t} d t$
- Use the rule $\int f d g=f g-\int g d f$
- $\because \mathcal{U L}\left\{\frac{d x(t)}{d t}\right\}=s \int_{0^{-}}^{\infty} x(t) e^{-s t} d t+\left.x(t) e^{-s t}\right|_{0^{-}} ^{\infty}=s \mathcal{X}(s)-x\left(0^{-}\right)$
- $\mathcal{U} \mathcal{L}\left\{\frac{d \times(t)}{d t}\right\}=s \mathcal{X}(s)-x\left(0^{-}\right)$
- $\mathcal{U} \mathcal{L}\left\{\frac{d^{2} \times(t)}{d t^{2}}\right\}=\mathcal{U} \mathcal{L}\left\{\frac{d}{d t}\left\{\frac{d x(t)}{d t}\right\}\right\}=s\left(s \mathcal{X}(s)-x\left(0^{-}\right)\right)-\dot{x}\left(0^{-}\right)=$ $s^{2} \mathcal{X}(s)-s x\left(0^{-}\right)-\dot{x}\left(0^{-}\right)$
- Follow the same rule for higher derivatives

Example

- Consider $\frac{d^{2} y}{d t^{2}}+3 \frac{d y}{d t}+2 y(t)=x(t)$, where

$$
y\left(0^{-}\right)=\beta=3, y\left(0^{-}\right)=\gamma=-5, x(t)=\alpha u(t)=2 u(t)
$$

- Take $\mathcal{U L}$:
- $s^{2} \mathcal{Y}(s)-\beta \mathcal{Y}(s)-\gamma+3(s \mathcal{Y}(s)-\beta)+2 \mathcal{Y}(s)=\mathcal{X}(s)$
- $\mathcal{Y}(s)=\underbrace{\frac{\beta(s+3)+\gamma}{s^{2}+3 s+2}}_{\text {ZIR }}+\underbrace{\frac{\mathcal{X}(s)}{s^{2}+3 s+2}}_{\text {ZSR }}$
- Zero State Response (ZSR): is a response in absence of initial values
- $\mathcal{H}(s)=\frac{\mathcal{Y}(s)}{\mathcal{X}(s)}$
- Transfer fon is ZSR
- ZSR: $\mathcal{Y}_{1}(s)=\frac{\alpha}{s(s+1)(s+2)}=\frac{1}{s}+\frac{1}{s+2}-\frac{2}{s+1}$
- $y_{1}(t)=\left(1-2 e^{-t}+e^{-2 t}\right) u(t)$
- Zero Input Response (ZIR): is a response in absence of input $(x(t)=0)$
- ZIR: $\mathcal{Y}_{2}(s)=\frac{3(s+3)-5}{(s+1)(s+2)}=\frac{1}{s+1}+\frac{2}{s+2}$
- $y_{2}(t)=\left(e^{-t}+2 e^{-2 t}\right) u(t)$
- $y(t)=y_{1}(t)+y_{2}(t)$

Feed Back Applications

- Closed loop Transfer fcn: $Q(s)=\frac{G(s)}{1+G(s) H(s)}=\frac{\text { Open loop Gain }}{1-\text { Loop Gain }}$

1. Inverting

- $Q(s)=\frac{K}{1+K p(s)}$
- If choose K s.t. $K p(s) \gg 1$ then $Q(s) \simeq \frac{1}{p(s)}$
- Example: For a capacitor, consider i as output and v as input, it is a differentiator
- By using the above interconnection, we can make an integrator

2. Stabilizing Unstable Systems

- $G(s)$ is unstable
- We should define $P(s)$ and $C(s)$ to make closed-loop system stable (poles of closed-loop system be in LHP)
- $Q(s)=\frac{C(s) G(s)}{1+C(s) P(s) G(s)}$
- Example 1: $G(s)=\frac{1}{s-2}, C(s)=K, P(s)=1$
- $Q(s)=\frac{K}{s-2+K}$
- Choosing $K>2$ make it stable
- Example 2: $G(s)=\frac{1}{s^{2}-4}$
- By $C(s)=K$ cannot be stabilized
- Choose $C(s)=K_{1}+K_{2} s, K_{2}>0$, and $K_{1}>4$ can stabilize the closed-loop system

3. Tracking

- Objective: Defining $C(s)$ s.t. $e(t)=x(t)-y(t) \rightarrow 0$ as $t \rightarrow \infty$
- $E(s)=\frac{1}{1+C(s) G(s)} X(s)$
- Consider $x(t)$ as unite step
- $\lim e(t)_{t \rightarrow \infty}=\lim s E(s)_{s \rightarrow 0}=\lim _{s \rightarrow 0} \frac{s}{1+C(s) G(s)} \frac{1}{s}$
- If we choose $C(s)$ s.t. $C(s) G(s) \gg 1$ then $e(t) \rightarrow 0$ as $t \rightarrow \infty$

4. Decreasing effect of disturbance
5. Decreasing Sensitivity to uncertainties

Inverted Pendulum

- Objective:

Find proper $a(t)$ to make $\theta(t)=0$

Inverted Pendulum

- System Dynamics:
$L \frac{d^{2} \theta(t)}{d t^{2}}=$ $g \sin [\theta(t)]+L x(t)-a(t) \cos (\theta(t))$
- Linearize it: assuming $\theta(t)$ is small
- $\sin (\theta(t))=\theta(t)$
- $\cos (\theta(t))=1$
- $L \frac{d^{2} \theta(t)}{d t^{2}}=g \theta(t)+L x(t)-a(t)$
- LT:

$$
\Theta(s)=\underbrace{\frac{1}{L s^{2}-g}}_{H(s)}[L X(s)-A(s)]
$$

Inverted Pendulum

- $\Theta(s)=H(s)[L X(s)-A(s)]$
- $H(s)=\frac{1}{L s^{2}-g}$

Inverted Pendulum

- $\Theta(s)=H(s)[L X(s)-A(s)]$
- $H(s)=\frac{1}{L s^{2}-g}$
- Using feedback connection, let us design a controller, $C(s)$ to make the pendulum in vertical position
- $\Theta(s)=\frac{L H(s)}{1+C(s) H(s)} X(s)$

Proportional Feedback: $C(s)=K_{1}$

- $\Theta(s)=\frac{1}{s^{2}-\frac{g-K_{1}}{L}} X(s)$
- Poles $s= \pm \sqrt{\frac{g-K_{1}}{L}}$

Derivative Feedback: $C(s)=K_{2} s$

- $\Theta(s)=\frac{1}{s^{2}+s\left(K_{2} / L\right)-g / L} X(s)$
- Poles: $s=-\frac{K_{2}}{2 L} \pm \sqrt{\left(\frac{K_{2}}{2 L}\right)^{2}+\frac{g}{L}}$

Proportional+ Derivative (PD) Feedback:

$C(s)=K_{1}+K_{2} s$

- $\Theta(s)=\frac{1}{s^{2}+s\left(K_{2} / L\right)-g / L+K_{1} / L} X(s)$
- Poles: $s=-\frac{K_{2}}{2 L} \pm \sqrt{\left(\frac{K_{2}}{2 L}\right)^{2}-\frac{K_{1}-g}{L}}$

