

Neural Networks Lecture 8: Identification Using Neural Networks

H.A Talebi Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Introduction

Representation of Dynamical Systems

Static Networks Dynamic Networks

Identification Model

Direct modeling Inverse Modeling

Example 1 Case Study

Example 2 Numerical Example

Example 3

Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3

- Engineers desired to model the systems by mathematical models.
- This model can expressed by operator f from input space u into an output space y.
- System Identification problem: is finding *f* which approximates *f* in desired sense.
 - Identification of static systems: A typical example is pattern recognition:
 - Compact sets $u_i \in \mathcal{R}^n$ are mapped into elements $y_i \in \mathcal{R}^m$ in the output
 - ► Identification of dynamic systems: The operator f is implicitly defined by I/O pairs of time function $u(t), y(t), t \in [0, T]$ or in discrete time:

$$y(k+1) = f(y(k), y(k-1), ..., y(k-n), u(k), ..., u(k-m)),$$
(1)

► In both cases the objective to determine \hat{f} is $\|\hat{y} - y\| = \|\hat{f} - f\| \le \epsilon$, for some desired $\epsilon > 0$.

- ► Behavior of systems in practice are mostly described by dynamical models.
- ▶ ∴ Identification of dynamical systems is desired in this lecture.
- ► In identification problem, it is always assumed that the system is stable

Representation of Dynamical Systems by Neural Networks

- Using Static Networks: Providing the dynamics out of the network and apply static networks such as multilayer networks (MLN).
 - Consists of an input layer, output layer and at least one hidden layer
 - In fig. there are two hidden layers with three weight matrices W₁, W₂ and W₃ and a diagonal nonlinear operator Γ with activation function elements.
 - ► Each layer of the network can be represented by N_i[u] = Γ[W_iu].
 - ► The I/O mapping of MLN can be represented by y = N[u] = Γ[W₃Γ[W₂Γ[W₁u]]] = N₃N₂N₁[u]
 - The weights W_i are adjusted s.t min a function of the error between the network output y and desired output y_d.

A three layer neural network.

A E > A E >

A block diagram representation of a three layer ne

H. A. Talebi, Farzaneh Abdollahi

Lecture 8

4/32

- The universal approximation theorem shows that a three layers NN with a backpropagation training algorithm has the potential of behaving as a universal approximator
- ► Universal Approximation Theorem: Given any \(\epsilon\) > 0 and any \(\mathcal{L}_2\) function f : [0,1]ⁿ \(\infty\) \(\mathcal{R}^n\) → \(\mathcal{R}^m\), there exists a three-layer backpropagation network that can approximate f within \(\epsilon\) mean-square error accuracy.

A E > A E >

- Providing dynamical terms to inject to static networks:
 - 1. Tapped-Delay-Lines (TDL): Consider (1) for identification (I/O Model) y(k+1) = f(y(k), y(k-1), ..., y(k-n),u(k), ..., u(k-m)),
 - ▶ Dynamical terms u(k − j), y(k − i) for i = 1,...,n,j = 1,...,m is made by delay elements out of the network and injected to the network as input.
 - The static network is employed to approximate the function f
 - ► ∴ The model provided by the network will be

$$\begin{split} \hat{y}(k+1) &= \hat{f}(\hat{y}(k), \hat{y}(k-1), ..., \\ \hat{y}(k-n), u(k), ..., u(k-m)), \end{split}$$

Lecture 8

Considering State Space model:

$$\begin{array}{rcl} x(k+1) & = & f(x(k), x(k-1), ..., x(k-n), u(k), ..., u(k-m)), \\ y(k) & = & C x(k) \end{array}$$

2 Filtering

- in continuous-time networks the delay operator can be shown by integrator.
- The dynamical model can be represented by an MLN , N₁[.], + a transfer matrix of linear function, W(s).
- For example:

$$\dot{x}(t)=f(x,u)\pm Ax,$$

- where A is Hurwitz. Define g(x, u) = f(x, u) Ax
- $\dot{x} = g(x, u) + Ax$
- Fig, shows 4 configurations using filter.

Representation of Dynamical Systems by Neural Networks

- Using Dynamic Networks: Time-Delay Neural Networks (TDNN) [?], Recurrent networks such as Hopfield:
 - Consists of a single layer network N_1 , included in feedback configuration and a time delay
 - Can represent discrete-time dynamical system as :

 $x(k+1) = N_1[x(k)], x(0) = x_0$

- If N_1 is suitably chosen, the solution of the NN converge to the same equilibrium point of the system.
- In continuous-time, the feedback path has a diagonal transfer matrix with $1/(s-\alpha)$ in diagonal.
- ▶ ∴ the system is represented by

$$\dot{x} = \alpha x + N_1[x] + I$$

Lecture 8

The Hopfield network.

Neural Networks Identification Model

Two principles of identification problems:

- 1. Identification model
- 2. Method of adjusting its parameters based on identification error e(t)

Identification Model

- 1. Direct modeling:
 - it is applicable for control, monitoring, simulation, signal processing
 - The objective: output of NN ŷ converge to output of the system y(k)
 - the signal of target is output of the system
 - ► Identification error e = y(k) ŷ(k) can be used for training.
 - The NN can be a MLN training with BP, such that minimizes the identification error.
 - The structure of identification shown in Fig named Parallel Model

Forward model

10/32

Lecture 8

Direct Modeling

- Drawback of parallel model: There is a feedback in this model which some times makes convergence difficult or even impossible.
 - 2. Series-Parallel Model
 - In this model the output of system is fed to the NN

Inverse Modeling

- It is employed for the control techniques which require inverse dynamic
- ► Objective is finding f⁻¹, i.e., y → u
- Input of the plant is target, u
- ► Error identification is defined e = u - û

Example 1: Using Filtering

Consider the nonlinear system

$$c = f(x, u) \tag{2}$$

- $u \in R^m$: input vector, $x \in R^n$: state vector, f(.): an **unknown** function.
- Open loop system is stable.
- Objective: Identifying f
- Define filter:
 - Adding Ax to and subtracting from (2), where A is an **arbitrary** Hurwitz matrix $\dot{x} = Ax + g(x, u)$ (3)

where g(x, u) = f(x, u) - Ax.

► Corresponding to the Hurwitz matrix A, M(s) := (sl - A)⁻¹ is an n × n matrix whose elements are stable transfer functions.

14/32

The model for identification purposes:

$$\dot{\hat{x}} = A\hat{x} + \hat{g}(\hat{x}, u)$$

► The identification scheme is based on the *parallel* configuration

- The states of the model are fed to the input of the neural network.
- an MLP with at least three layers can represent the nonlinear function g as:

$$g(x,u) = W\sigma(V\bar{x})$$

- W and V are the ideal but unknown weight matrices
- $\bar{x} = \begin{bmatrix} x & u \end{bmatrix}^T$,
- $\sigma(.)$ is the transfer function of the hidden neurons that is usually considered as a sigmoidal function:

$$\sigma_i(V_i\bar{x}) = \frac{2}{1 + exp^{-2V_i\bar{x}}} - 1$$

- where V_i is the *i*th row of V,
- $\sigma_i(V_i\bar{x})$ is the *ith* element of $\sigma(V\bar{x})$.

H. A. Talebi, Farzaneh Abdo	ollahi
-----------------------------	--------

(本部) (本語) (本語)

15/32

Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3

g can be approximated by NN as

$$\hat{g}(\hat{x}, u) = \hat{W}\sigma(\hat{V}\hat{\bar{x}})$$

The identifier is then given by

$$\dot{\hat{x}}(t) = A\hat{x} + \hat{W}\sigma(\hat{V}\hat{x}) + \epsilon(x)$$

ϵ(*x*) ≤ *ϵ_N* is the neural network's bounded approximation error

 the error dynamics:

$$\dot{\tilde{x}}(t) = A\tilde{x} + \tilde{W}\sigma(\hat{V}\hat{x}) + w(t)$$

x̃ = x − x̂: identification error
 W̃ = W − Ŵ, w(t) = W[σ(Vx̄) − σ(V̂x̄)] − ε(x) is a bounded disturbance term, i.e, ||w(t)|| ≤ w̄ for some pos. const. w̄, due to the sigmoidal function.

Lecture 8

Networks

向下 イヨト イヨト

• Objective function
$$J = \frac{1}{2}(\tilde{x}^T \tilde{x})$$

H. A. Talebi, Farzaneh Abdollahi Neural

- ► Training:
 - Updating weights:

$$\dot{\hat{W}} = -\eta_1(\frac{\partial J}{\partial \hat{W}}) - \rho_1 \|\tilde{x}\| \hat{W} \dot{\hat{V}} = -\eta_2(\frac{\partial J}{\partial \hat{V}}) - \rho_2 \|\tilde{x}\| \hat{V}$$

Therefore:

$$net_{\hat{v}} = \hat{V}\hat{\bar{x}}$$
$$net_{\hat{w}} = \hat{W}\sigma(\hat{V}\hat{\bar{x}}).$$

• $\frac{\partial J}{\partial \hat{W}}$ and $\frac{\partial J}{\partial \hat{V}}$ can be computed according to

$$\begin{array}{rcl} \frac{\partial J}{\partial \hat{W}} & = & \frac{\partial J}{\partial net_{\hat{w}}} \cdot \frac{\partial net_{\hat{w}}}{\partial \hat{W}} \\ \frac{\partial J}{\partial \hat{V}} & = & \frac{\partial J}{\partial net_{\hat{v}}} \cdot \frac{\partial net_{\hat{v}}}{\partial \hat{V}} \end{array}$$

H. A. Talebi, Farzaneh Abdollahi

Lecture 8

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Э

17/32

$$\frac{\partial J}{\partial net_{\hat{w}}} = \frac{\partial J}{\partial \tilde{x}} \cdot \frac{\partial \tilde{x}}{\partial \hat{x}} \cdot \frac{\partial \hat{x}}{\partial net_{\hat{w}}} = -\tilde{x}^{T} \cdot \frac{\partial \hat{x}}{\partial net_{\hat{w}}}$$
$$\frac{\partial J}{\partial net_{\hat{v}}} = \frac{\partial J}{\partial \tilde{x}} \cdot \frac{\partial \tilde{x}}{\partial \hat{x}} \cdot \frac{\partial \hat{x}}{\partial net_{\hat{v}}} = -\tilde{x}^{T} \cdot \frac{\partial \hat{x}}{\partial net_{\hat{v}}}$$

and

$$\begin{array}{rcl} \frac{\partial net_{\hat{w}}}{\partial \hat{W}} &=& \sigma(\hat{V}\hat{x})\\ \frac{\partial net_{\hat{v}}}{\partial \hat{V}} &=& \hat{x}\\ \frac{\partial \dot{\hat{x}}(t)}{\partial net_{\hat{w}}} &=& A\frac{\partial \hat{x}}{\partial net_{\hat{w}}} + \frac{\partial \hat{g}}{\partial net_{\hat{w}}}\\ \frac{\partial \dot{\hat{x}}(t)}{\partial net_{\hat{v}}} &=& A\frac{\partial \hat{x}}{\partial net_{\hat{v}}} + \frac{\partial \hat{g}}{\partial net_{\hat{v}}}. \end{array}$$

Which is dynamic BP. Modify BP algorithm s.t. the static approximations of ∂x ∂net_ŵ and ∂x ∂x ∂net_ŵ (x̂ = 0)

H. A. Talebi, Farzaneh Abdollahi

Lecture 8

Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3

► Thus,

$$\frac{\partial \hat{x}}{\partial net_{\hat{w}}} = -A^{-1}$$

$$\frac{\partial \hat{x}}{\partial net_{\hat{v}}} = -A^{-1}\hat{W}(I - \Lambda(\hat{V}\hat{x}))$$

$$\Lambda(\hat{V}\hat{\bar{x}}) = diag\{\sigma_i^2(\hat{V}_i\hat{\bar{x}})\}, i = 1, 2, ..., m.$$

Finally

$$\begin{aligned} \dot{\hat{W}} &= -\eta_1 (\tilde{x}^T A^{-1})^T (\sigma(\hat{V}\hat{x}))^T \\ &- \rho_1 \|\tilde{x}\| \hat{W} \\ \dot{\hat{V}} &= -\eta_2 (\tilde{x}^T A^{-1} \hat{W} (I - \Lambda(\hat{V}\hat{x})))^T \hat{x}^T \\ &- \rho_2 \|\tilde{x}\| \hat{V} \end{aligned}$$

• $ilde{W} = W - \hat{W}$ and $ilde{V} = V - \hat{V}$,

▶ It can be shown that \tilde{x} , \tilde{W} , and $\tilde{V} \in L_{\infty}$

► The estimation error and the weights error are all ultimately bounded [?]. H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 18/32

Series-Parallel Identifier

- ► The function g can be approximated by ĝ(x, u) = Ŵ σ(Ŷx̄)
- Only $\hat{\overline{x}}$ is changed to \overline{x} .
- ► The error dynamics $\dot{\tilde{x}}(t) = A\tilde{x} + \tilde{W}\sigma(\hat{V}\bar{x}) + w(t)$ where $w(t) = W[\sigma(V\bar{x}) - \sigma(\hat{V}\bar{x})] + \epsilon(x)$
- only definition of w(t) is changed.
- Applying this change, the rest remains the same

Using Dynamic BP Without Static Approximation

$$\frac{\partial J}{\partial \hat{W}} = \frac{\partial J}{\partial \tilde{x}} \cdot \frac{\partial \tilde{x}}{\partial \hat{x}} \cdot \frac{\partial \hat{x}}{\partial net_{\hat{w}}} \cdot \frac{\partial net_{\hat{w}}}{\partial \hat{W}} = -\tilde{x}^{T} \cdot \frac{\partial \hat{x}}{\partial net_{\hat{w}}} \cdot \sigma(\hat{V}\hat{x})$$

$$\frac{\partial J}{\partial \hat{V}} = \frac{\partial J}{\partial \tilde{x}} \cdot \frac{\partial \tilde{x}}{\partial \hat{x}} \cdot \frac{\partial \hat{x}}{\partial net_{\hat{v}}} \cdot \frac{\partial net_{\hat{v}}}{\partial \hat{V}} = -\tilde{x}^{T} \cdot \frac{\partial \hat{x}}{\partial net_{\hat{v}}} \hat{x}$$

$$d_{w} = \frac{\partial \hat{x}(t)}{\partial net_{\hat{w}}}$$

$$d_{w} = \frac{\partial \dot{\hat{x}}(t)}{\partial net_{\hat{w}}} = Ad_{w} + \frac{\partial \hat{g}}{\partial net_{\hat{w}}} = Ad_{w} + 1 \qquad (4)$$

$$d_{v} = \frac{\partial \hat{x}(t)}{\partial net_{\hat{v}}}$$

$$\dot{d}_{v} = \frac{\partial \dot{\hat{x}}(t)}{\partial net_{\hat{v}}} = Ad_{v} + \frac{\partial \hat{g}}{\partial net_{\hat{v}}} = Ad_{v} + \hat{W}(I - \Lambda(\hat{V}\hat{x})) \qquad (5)$$

Using Dynamic BP Without Static Approximation

Finally

$$\begin{aligned} \dot{\hat{W}} &= \eta_1(\tilde{x}^T d_w)^T (\sigma(\hat{V}\hat{x}))^T - \rho_1 \|\tilde{x}\| \hat{W} \\ \dot{\hat{V}} &= \eta_2(\tilde{x}^T d_v)) T \hat{x}^T - \rho_2 \|\tilde{x}\| \hat{V} \end{aligned}$$

In learning rule procedure, first (4) and (5) should be solved then the weights W and V is updated

- The Space Station Remote Manipulator System (SSRMS) is a 7 DoF robot which has 7 revolute joints and two long flexible links (booms).
- The SSRMS have no uniform mass and stiffness distributions. Most of its masses are concentrated at the joints, and the joint structural flexibilities contribute a major portion of the overall arm flexibility.
- Dynamics of a flexible–link manipulator

$$M(q)\ddot{q} + h(q,\dot{q}) + Kq + F\dot{q} = u$$

•
$$u = [\tau^T \ \mathbf{0}_{1 \times m}]^T$$
, $q = [\theta^T \ \delta^T]^T$,

- θ is the $n \times 1$ vector of joint variables
- δ is the $m \times 1$ vector of deflection variables
- $h = [h_1(q, \dot{q}) \ h_2(q, \dot{q})]^T$: including gravity, Coriolis, and centrifugal forces;
- M is the mass matrix,
- $K = \begin{bmatrix} 0_{n \times n} & 0_{n \times m} \\ 0_{m \times n} & K_{m \times m} \end{bmatrix}$ is the stiffness matrix,
- $F = diag\{F_1, F_2\}$: the viscous friction at the hub and in the structure,
- τ: input torque.

A (1) > A (1) > A

http://english.sohu.com/20050729/n226492517.shtml

H. A. Talebi, Farzaneh Abdollahi

Neural Networks

э

- ► A joint PD control is applied to stabilize the closed-loop system ~> boundedness of the signal x(t) is assured.
- ▶ For a two link flexible manipulator
 - $x = [\theta_1 ... \ \theta_7 \ \dot{\theta_1} ... \dot{\theta_7} \ \delta_{11} \ \delta_{12} \ \delta_{21} \ \delta_{22} \ \dot{\delta}_{11} \ \dot{\delta}_{12} \ \dot{\delta}_{21} \ \dot{\delta}_{22}]^T$
 - The input: $u = [\tau_1, ..., \tau_7]$
 - A is defined as $A = -2I \in \mathcal{R}^{22 \times 22}$
 - Reference trajectory: sin(t)
- The identifier:
 - Series-parallel
 - ► A three-layer NN network: 29 neurons in the input layer, 20 neurons in the hidden layer, and 22 neurons in the output layer.
 - The 22 outputs correspond to
 - 7 joint positions
 - 7 joint velocities
 - 4 in-plane deflection variables
 - 4 out-of plane deflection variables

• The learning rates and damping factors: $\eta_1 = \overline{\eta}_2 = 0.1$, $\overline{\rho}_1 = \overline{p}_2 = 0.00$ H. A. Talebi, Farzaneh Abdollahi Neural Networks

 Simulation results for the SSRMS: (a-g) The joint positions, and (h-n) the joint velocities.

25/32

Example 2: TDL

 Consider the following nonlinear system

$$y(k) = f(y(k-1), ..., y(k-n))$$

- $+b_0u(k) + ... + b_mu(k-m)$ \bullet u: input, y:output, f(.): an
- u: input, y:output, f(.): an unknown function.
- Open loop system is stable.
- Objective: Identifying f
- Series-parallel identifier is applied.
- $\blacktriangleright \beta = [b_0, b_1, ..., b_m]$
- Cost function: $J = \frac{1}{2}e_i^2$ where $e_i = y y_h$,

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3

- Consider Linear in parameter MLP,
 - ► In sigmoidal function. σ , the weights of first layer is fixed V = I: $\sigma_i(\bar{x}) = \frac{2}{1+exp^{-2\bar{x}}} - 1$
- Updating law: $\triangle w = -\eta(\frac{\partial J}{\partial w})$
- $\blacktriangleright :: \frac{\partial J}{\partial w} = \frac{\partial J}{\partial e_i} \frac{\partial e_i}{\partial w} = -e_i \frac{\partial N(.)}{\partial w}$
- $\frac{\partial N(.)}{\partial w}$ is obtained by BP method.
- ► Numerical Example: Consider a second order system

$$y_{\rho}(k+1) = f[y_{\rho}(k), y_{\rho}(k-1)] + u(k)$$

where $f[y_p(k), y_p(k-1)] = \frac{y_p(k)y_p(k-1)[y_p(k)+2.5]}{1+y_p^2(k)+y_p^2(k-1)}$.

- After checking the stability system
- Apply series-parallel identifier
- u is random signal informally is distributed in [-2, 2]
- ▶ η = 0.25

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

▶ The outputs of the plant and the model after the identification procedure

Example 3 [?]

- A gray box identification,(the system model is known but it includes some unknown, uncertain and/or time-varying parameters) is proposed using Hopfield networks
- Consider

$$\dot{x} = A(x, u(t))(\theta_n + \theta(t))$$

 $y = x$

- y is the output,
- $\blacktriangleright \ \theta$ is the unknowntime-dependant deviation from the nominal values
- A is a matrix that depends on the input u and the state x
- ▶ y and A are assumed to be physically measurable.
- Objective: estimating θ (i.e. min the estimation error: $\tilde{\theta} = \theta \hat{\theta}$).

(人間) トイヨト イヨト

Amirkabir

 At each time interval assume time is frozen so that

$$A_c = A(x(t), u(t)), \ y_c = y(t)$$

- Recall Gradient-Type Hopefield
 C du/dt = Wv(t) + I
- the weight matrix and the bias vector are defined:

$$W = -A_c^T A_c, \ I = A_c^T A_c \theta_n - A_c^T y_c$$

- The convergence of the identifier is proven using Lyapunov method
- It is examined for an idealized single link manipulator
 ü = ^B ciny
 V is 1⁻¹ ii

$$\ddot{x} = -\frac{g}{l}\sin x - \frac{v}{ml^2}\dot{x} + \frac{1}{ml^2}u$$

► assume $A = (sinx, \dot{x}, u)$ and $\theta_n + \theta = (-\frac{g}{l}, -\frac{v}{ml^2}, \frac{1}{ml^2})$

4 1 1 1 4

Single link manipulator.

H. A. Talebi, Farzaneh Abdollahi

Neural Networks

Lecture 8

≣ ৩৭়ে 31/32

 $\exists \rightarrow$

References

ヨトィヨト