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I Engineers desired to model the systems by mathematical models.

I This model can expressed by operator f from input space u into an output space
y .

I System Identification problem: is finding f̂ which approximates f in desired
sense.

I Identification of static systems: A typical example is pattern recognition:
I Compact sets ui ∈ Rn are mapped into elements yi ∈ Rm in the output

I Identification of dynamic systems: The operator f is implicitly defined by
I/O pairs of time function u(t), y(t), t ∈ [0,T ] or in discrete time:

y(k + 1) = f (y(k), y(k − 1), ..., y(k − n), u(k), ..., u(k −m)), (1)

I In both cases the objective to determine f̂ is

‖ŷ − y‖ = ‖f̂ − f ‖ ≤ ε, for some desiredε > 0.

I Behavior of systems in practice are mostly described by dynamical models.

I ∴ Identification of dynamical systems is desired in this lecture.

I In identification problem, it is always assumed that the system is stable
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Representation of Dynamical Systems by Neural Networks
1. Using Static Networks: Providing the

dynamics out of the network and apply static
networks such as multilayer networks (MLN).

I Consists of an input layer, output layer
and at least one hidden layer

I In fig. there are two hidden layers with
three weight matrices W1,W2 and W3

and a diagonal nonlinear operator Γ with
activation function elements.

I Each layer of the network can be
represented by Ni [u] = Γ[Wiu].

I The I/O mapping of MLN can be
represented by y = N[u] =
Γ[W3Γ[W2Γ[W1u]]] = N3N2N1[u]

I The weights Wi are adjusted s.t min a
function of the error between the
network output y and desired output yd .
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Using Static Networks

I The universal approximation theorem shows that a three layers NN with a
backpropagation training algorithm has the potential of behaving as a
universal approximator

I Universal Approximation Theorem: Given any ε > 0 and any L2

function f : [0, 1]n ∈ Rn → Rm, there exists a three-layer
backpropagation network that can approximate f within ε mean-square
error accuracy.
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Using Static Networks

I Providing dynamical terms to inject to
static networks:

1. Tapped-Delay-Lines (TDL): Consider (1)
for identification (I/O Model)

y(k + 1) = f (y(k), y(k − 1), ..., y(k − n),

u(k), ..., u(k −m)),

I Dynamical terms u(k − j), y(k − i) for
i = 1, ..., n, j = 1, ...,m is made by
delay elements out of the network and
injected to the network as input.

I The static network is employed to
approximate the function f

I ∴ The model provided by the network
will be
ŷ(k + 1) = f̂ (ŷ(k), ŷ(k − 1), ...,

ŷ(k − n), u(k), ..., u(k −m)),
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Using Static Networks

I Considering State Space model:

x(k + 1) = f (x(k), x(k − 1), ..., x(k − n), u(k), ..., u(k −m)),

y(k) = Cx(k)
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Using Static Networks

2 Filtering
I in continuous-time networks the

delay operator can be shown by
integrator.

I The dynamical model can be
represented by an MLN , N1[.], + a
transfer matrix of linear function,
W (s).

I For example:

ẋ(t) = f (x , u)±Ax ,

I where A is Hurwitz. Define
g(x , u) = f (x , u)− Ax

I ẋ = g(x , u) + Ax
I Fig, shows 4 configurations using

filter.
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Representation of Dynamical Systems by Neural Networks
2. Using Dynamic Networks: Time-Delay

Neural Networks (TDNN) [?] , Recurrent
networks such as Hopfield:

I Consists of a single layer network N1,
included in feedback configuration and a
time delay

I Can represent discrete-time dynamical
system as :
x(k + 1) = N1[x(k)], x(0) = x0

I If N1 is suitably chosen, the solution of the
NN converge to the same equilibrium
point of the system.

I In continuous-time, the feedback path has
a diagonal transfer matrix with 1/(s − α)
in diagonal.

I ∴ the system is represented by
ẋ = αx + N1[x ] + I
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Neural Networks Identification Model

I Two principles of identification problems:

1. Identification model
2. Method of adjusting its parameters based on

identification error e(t)

I Identification Model
1. Direct modeling:

I it is applicable for control, monitoring,
simulation, signal processing

I The objective: output of NN ŷ converge to
output of the system y(k)

I ∴ the signal of target is output of the system
I Identification error e = y(k)− ŷ(k) can be

used for training.
I The NN can be a MLN training with BP, such

that minimizes the identification error.
I The structure of identification shown in Fig

named Parallel Model
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Direct Modeling

I Drawback of parallel model:
There is a feedback in this
model which some times
makes convergence difficult
or even impossible.

2. Series-Parallel Model
I In this model the

output of system is
fed to the NN
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Inverse Modeling

I It is employed for the control
techniques which require inverse
dynamic

I Objective is finding f −1, i.e.,
y → u

I Input of the plant is target, u

I Error identification is defined
e = u − û
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Example 1: Using Filtering
I Consider the nonlinear system

ẋ = f (x , u) (2)
I u ∈ Rm: input vector, x ∈ Rn: state vector, f (.): an unknown function.
I Open loop system is stable.
I Objective: Identifying f

I Define filter:
I Adding Ax to and subtracting from (2), where A is an arbitrary Hurwitz

matrix ẋ = Ax + g(x , u) (3)

where g(x , u) = f (x , u)− Ax .

I Corresponding to the Hurwitz matrix A, M(s) := (sI − A)−1 is an n × n matrix
whose elements are stable transfer functions.
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I The model for identification purposes:

˙̂x = Ax̂ + ĝ(x̂ , u)

I The identification scheme is based on the parallel configuration
I The states of the model are fed to the input of the neural network.
I an MLP with at least three layers can represent the nonlinear function g as:

g(x , u) = Wσ(V x̄)

I W and V are the ideal but unknown weight matrices
I x̄ = [x u]T ,
I σ(.) is the transfer function of the hidden neurons that is usually considered

as a sigmoidal function:

σi (Vi x̄) =
2

1 + exp−2Vi x̄
− 1

I where Vi is the ith row of V,
I σi (Vi x̄) is the ith element of σ(V x̄).
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I g can be approximated by NN as

ĝ(x̂ , u) = Ŵσ(V̂ ˆ̄x)

I The identifier is then given by

˙̂x(t) = Ax̂ + Ŵσ(V̂ ˆ̄x) + ε(x)

I ε(x) ≤ εN is the neural network’s bounded approximation error

I the error dynamics:

˙̃x(t) = Ax̃ + W̃σ(V̂ ˆ̄x) + w(t)

I x̃ = x − x̂ : identification error
I W̃ = W − Ŵ , w(t) = W [σ(V x̄)− σ(V̂ ˆ̄x)]− ε(x) is a bounded

disturbance term, i.e, ‖w(t)‖ ≤ w̄ for some pos. const. w̄ , due to the
sigmoidal function.

I Objective function J = 1
2 (x̃T x̃)
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I Training:
I Updating weights:

˙̂W = −η1(
∂J

∂Ŵ
)− ρ1‖x̃‖Ŵ

˙̂V = −η2(
∂J

∂V̂
)− ρ2‖x̃‖V̂

I Therefore:

netv̂ = V̂ ˆ̄x

netŵ = Ŵσ(V̂ ˆ̄x).

I ∂J
∂Ŵ

and ∂J
∂V̂

can be computed according to

∂J

∂Ŵ
=

∂J

∂netŵ
.
∂netŵ

∂Ŵ
∂J

∂V̂
=

∂J

∂netv̂
.
∂netv̂

∂V̂
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∂J

∂netŵ
=
∂J

∂x̃
.
∂x̃

∂x̂
.
∂x̂

∂netŵ
= −x̃T .

∂x̂

∂netŵ
∂J

∂netv̂
=
∂J

∂x̃
.
∂x̃

∂x̂
.
∂x̂

∂netv̂
= −x̃T .

∂x̂

∂netv̂

I and
∂netŵ

∂Ŵ
= σ(V̂ ˆ̄x)

∂netv̂

∂V̂
= ˆ̄x

∂ ˙̂x(t)

∂netŵ
= A

∂x̂

∂netŵ
+

∂ĝ

∂netŵ

∂ ˙̂x(t)

∂netv̂
= A

∂x̂

∂netv̂
+

∂ĝ

∂netv̂
.

I Which is dynamic BP. Modify BP algorithm s.t. the static
approximations of ∂x̂

∂netŵ
and ∂x̂

∂netv̂
( ˙̂x = 0)
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I Thus, ∂x̂

∂netŵ
= −A−1

∂x̂

∂netv̂
= −A−1Ŵ (I − Λ(V̂ ˆ̄x))

where
Λ(V̂ ˆ̄x) = diag{σ2

i (V̂i ˆ̄x)}, i = 1, 2, ...,m.

I Finally
˙̂W = −η1(x̃TA−1)T (σ(V̂ ˆ̄x))T

− ρ1‖x̃‖Ŵ
˙̂V = −η2(x̃TA−1Ŵ (I − Λ(V̂ ˆ̄x)))T ˆ̄xT

− ρ2‖x̃‖V̂

I W̃ = W − Ŵ and Ṽ = V − V̂ ,

I It can be shown that x̃ , W̃ , and Ṽ ∈ L∞
I The estimation error and the weights error are all ultimately bounded [?].
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I Series-Parallel Identifier
I The function g can be approximated

byĝ(x , u) = Ŵσ(V̂ x̄)
I Only ˆ̄x is changed to x̄ .
I The error dynamics

˙̃x(t) = Ax̃ + W̃σ(V̂ x̄) + w(t) where
w(t) = W [σ(V x̄)− σ(V̂ x̄)] + ε(x)

I only definition of w(t) is changed.
I Applying this change, the rest remains

the same
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Using Dynamic BP Without Static Approximation

∂J

∂Ŵ
=

∂J

∂x̃
.
∂x̃

∂x̂
.
∂x̂

∂netŵ
.
∂netŵ

∂Ŵ
= −x̃T .

∂x̂

∂netŵ
.σ(V̂ ˆ̄x)

∂J

∂V̂
=

∂J

∂x̃
.
∂x̃

∂x̂
.
∂x̂

∂netv̂
.
∂netv̂

∂V̂
= −x̃T .

∂x̂

∂netv̂
ˆ̄x

I and dw =
∂x̂(t)

∂netŵ

˙dw =
∂ ˙̂x(t)

∂netŵ
= Adw +

∂ĝ

∂netŵ
= Adw + 1 (4)

dv =
∂x̂(t)

∂netv̂

ḋv =
∂ ˙̂x(t)

∂netv̂
= Adv +

∂ĝ

∂netv̂
= Adv + Ŵ (I − Λ(V̂ ˆ̄x)) (5)
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Using Dynamic BP Without Static Approximation

I Finally

˙̂W = η1(x̃Tdw )T (σ(V̂ ˆ̄x))T − ρ1‖x̃‖Ŵ
˙̂V = η2(x̃Tdv ))T ˆ̄xT − ρ2‖x̃‖V̂

I In learning rule procedure, first (4) and (5) should be solved then the
weights W and V is updated
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Case Study: Simulation Results on SSRMS
I The Space Station Remote Manipulator System (SSRMS) is a 7 DoF

robot which has 7 revolute joints and two long flexible links (booms).

I The SSRMS have no uniform mass and stiffness distributions. Most of its
masses are concentrated at the joints, and the joint structural flexibilities
contribute a major portion of the overall arm flexibility.

I Dynamics of a flexible–link manipulator

M(q)q̈ + h(q, q̇) + Kq + F q̇ = u

I u = [τT 01×m]T , q = [θT δT ]T ,
I θ is the n × 1 vector of joint variables
I δ is the m × 1 vector of deflection variables
I h = [h1(q, q̇) h2(q, q̇)]T : including gravity, Coriolis, and centrifugal forces;
I M is the mass matrix,

I K =

[
0n×n 0n×m

0m×n Km×m

]
is the stiffness matrix,

I F = diag{F1,F2}: the viscous friction at the hub and in the structure,
I τ : input torque.
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Case Study: Simulation Results on SSRMS

http://english.sohu.com/20050729/n226492517.shtml
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Case Study: Simulation Results on SSRMS
I A joint PD control is applied to stabilize the closed-loop system  

boundedness of the signal x(t) is assured.
I For a two link flexible manipulator

I x = [θ1... θ7 θ̇1...θ̇7 δ11 δ12 δ21 δ22 δ̇11 δ̇12 δ̇21 δ̇22]T

I The input: u = [τ1, ..., τ7]
I A is defined as A = −2I ∈ R22×22

I Reference trajectory: sin(t)

I The identifier:
I Series-parallel
I A three-layer NN network: 29 neurons in the input layer, 20 neurons in the

hidden layer, and 22 neurons in the output layer.
I The 22 outputs correspond to

I 7 joint positions
I 7 joint velocities
I 4 in-plane deflection variables
I 4 out-of plane deflection variables

I The learning rates and damping factors: η1 = η2 = 0.1, ρ1 = ρ2 = 0.001.
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Case Study: Simulation Results on SSRMS
I Simulation results for the SSRMS: (a-g) The joint positions, and (h-n)

the joint velocities.
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Example 2: TDL

I Consider the following nonlinear
system
y(k) = f (y(k − 1), ..., y(k − n))

+b0u(k) + ...+ bmu(k −m)
I u: input, y :output, f (.): an

unknown function.
I Open loop system is stable.
I Objective: Identifying f

I Series-parallel identifier is applied.

I β = [b0, b1, ..., bm]

I Cost function: J = 1
2e2

i where
ei = y − yh,

H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8 26/32



Outline Introduction Representation of Dynamical Systems Identification Model Example 1 Example 2 Example 3

I Consider Linear in parameter MLP,
I In sigmoidal function.σ, the weights of first layer is fixed V = I :
σi (x̄) = 2

1+exp−2x̄ − 1

I Updating law: 4w = −η( ∂J
∂w )

I ∴ ∂J
∂w = ∂J

∂ei

∂ei
∂w = −ei

∂N(.)
∂w

I ∂N(.)
∂w is obtained by BP method.

I Numerical Example: Consider a second order system

yp(k + 1) = f [yp(k), yp(k − 1)] + u(k)

where f [yp(k), yp(k − 1)] =
yp(k)yp(k−1)[yp(k)+2.5]

1+y2
p (k)+y2

p (k−1)
.

I After checking the stability system

I Apply series-parallel identifier

I u is random signal informally is distributed in [−2, 2]

I η = 0.25
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Numerical Example Cont’d

I The outputs of the plant and the model after the identification procedure
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Example 3 [?]

I A gray box identification,( the system model is known but it includes
some unknown, uncertain and/or time-varying parameters) is
proposed using Hopfield networks

I Consider

ẋ = A(x , u(t))(θn + θ(t))

y = x

I y is the output,
I θ is the unknowntime-dependantdeviation from the nominal values
I A is a matrix that depends on the input u and the state x
I y and A are assumed to be physically measurable.

I Objective: estimating θ (i.e. min the estimation error: θ̃ = θ − θ̂).
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I At each time interval assume time
is frozen so that
Ac = A(x(t), u(t)), yc = y(t)

I Recall Gradient-Type Hopefield
C du

dt = Wv(t) + I

I the weight matrix and the bias
vector are defined:
W = −AT

c Ac , I = AT
c Acθn−AT

c yc

I The convergence of the identifier is
proven using Lyapunov method

I It is examined for an idealized
single link manipulator
ẍ = −g

l sinx − v
ml2 ẋ + 1

ml2 u

I assume A = (sinx , ẋ , u) and
θn + θ = (−g

l , −
v

ml2 ,
1

ml2 )
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