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Outline Introduction p N of Dynamic Example 2 Exam

» Engineers desired to model the systems by mathematical models.
» This model can expressed by operator f from input space u into an output space
y.
» System ldentification problem: is finding f which approximates f in desired
sense.
> |dentification of static systems: A typical example is pattern recognition:
> Compact sets u; € R" are mapped into elements y; € R"™ in the output
» |dentification of dynamic systems: The operator f is implicitly defined by
I/O pairs of time function u(t),y(t),t € [0, T] or in discrete time:

y(k + 1) = f(.y(k)7.y(k - 1)7 7y(k - n)7 u(k)7 ey U(k - m))7 (1)
» In both cases the objective to determine fis
|7 = yll = |If = f|| < e, for some desirede > 0.
» Behavior of systems in practice are mostly described by dynamical models.
» . Identification of dynamical systems is desired in this lecture.
» In identification problem, it is always assumed that the system is stable
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Representation of Dynamical Systems by Neural Networks

1. Using Static Networks: Providing the
dynamics out of the network and apply static
networks such as multilayer networks (MLN).

» Consists of an input layer, output layer
and at least one hidden layer

> In fig. there are two hidden layers with  *
three weight matrices Wy, W5 and W5 .
and a diagonal nonlinear operator I with
activation function elements.

» Each layer of the network can be
represented by N;[u] = I[W,u].

» The |/O mapping of MLN can be
represented by y = N[u] =
I'[W3I'[W2F[W1u]]] = N3N2N1[U]

» The weights W, are adjusted s.t min a
function of the error between the

network output y and desired output y4.
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Using Static Networks

» The universal approximation theorem shows that a three layers NN with a
backpropagation training algorithm has the potential of behaving as a
universal approximator

» Universal Approximation Theorem: Given any ¢ > 0 and any L,
function f : [0,1]" € R" — R™, there exists a three-layer

backpropagation network that can approximate f within ¢ mean-square
error accuracy.
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Using Static Networks

» Providing dynamical terms to inject to
static networks:
1. : Consider (1)
for identification (/0 Model)
y(k+1) = f(y(k),y(k=1),....y(k = n),
u(k),...,u(k — m)),

» Dynamical terms u(k — j),y(k — i) for

uln-gq+2)

\ Mulilaser

i=1,...n,j=1,..,mis made by . TI;,_‘ parepion

Output
ynt 1)

|,
del I ts out of th twork and i
elay elements out of the network an R ‘

injected to the network as input. - le—f'l | |

» The static network is employed to a2y |

approximate the function f ! |

» . The model provided by the network Y- |
will be

Pk +1) = FG(R). 9k — 1), .
3k = 1), (k). u(k — ).
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Using Static Networks

» Considering State Space model:

x(k+1) = f(x(k),x(k—1),...,x(k — n),u(k), ..., u(k — m)),
y(k) = (k)

Bank of

q )]
unit delays |

[
x(n) LT Nonlinear Linear } Y+ 1)
Input u(n) ! hidden output [~ >
s e layer lyer 1
i
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Using Static Networks

» in continuous-time networks the
delay operator can be shown by
integrator.
» The dynamical model can be
represented by an MLN , N[], + a - v
transfer matrix of linear function,
W(S) (a) (b)

» For example:

x(t) = f(x, u)+Ax,

» where A is Hurwitz. Define
g(x,u) = f(x,u) — Ax
x = g(x,u) + Ax
Fig, shows 4 configurations using
filter.
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Representation of Dynamical Systems by Neural Networks

2. Using Dynamic Networks: Time-Delay
Neural Networks (TDNN) [?] , Recurrent
networks such as Hopfield:

z)(k) {usg} 2y (k + 1)
» Consists of a single layer network N,
included in feedback configuration and a k) ® .=z(*+l)
time delay
» Can represent discrete-time dynamical
system as : Ealk) :n(k+1)
x(k+1) = M[x(k)], x(0) =x & |
» If Np is suitably chosen, the solution of the ﬁa
NN converge to the same equilibrium
point of the system.
> In continuous-time, the feedback path has ﬂ
a diagonal transfer matrix with 1/(s — «) —
in diagonal. g
> .. the system is represented by The Hopfield network.

x=ax+ Ny[x] +/
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Neural Networks ldentification Model

» Two principles of identification problems:

1. ldentification model
2. Method of adjusting its parameters based on
identification error e(t)

» ldentification Model
1. Direct modeling: Forward model

> it is applicable for control, monitoring, u
simulation, signal processing

> The objective: output of NN ¥ converge to
output of the system y(k)

> .. the signal of target is output of the system ‘v“
Identification error e = y(k) — §(k) can be
used for training.

» The NN can be a MLN training with BP, such
that minimizes the identification error.

» The structure of identification shown in Fig
named Parallel Model
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Direct Modeling

» Drawback of parallel model:
There is a feedback in this .
model which some times
makes convergence difficult
or even impossible.
2. Series-Parallel Model
> In this model the

output of system is
fed to the NN
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Inverse Modeling

» It is employed for the control
techniques which require inverse Ipveme meds]
. .
dynamic u . - y
» Objective is finding f~1, i.e.,
y —u &

» Input of the plant is target, u _ 1

» Error identification is defined
e=u—1u
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Example 1: Using Filtering
» Consider the nonlinear system
x = f(x,u) (2)
» u € R™: input vector, x € R™: state vector, f(.): an unknown function.
» Open loop system is stable.
» Objective: Identifying f
» Define filter: . . _
» Adding Ax to and subtracting from (2), where A is an arbitrary Hurwitz

matrix x = Ax+g(x,u) (3)

where g(x, u) = f(x, u) — Ax.

» Corresponding to the Hurwitz matrix A, M(s) := (sl — A)~1 is an n x n matrix
whose elements are stable transfer functions.

System +1 .

F V & M(s) i
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» The model for identification purposes:
X = A%+ g(x,0)

» The identification scheme is based on the parallel configuration

» The states of the model are fed to the input of the neural network.
» an MLP with at least three layers can represent the nonlinear function g as:

g(x,u) = Wo(VX)

v

W and V are the ideal but unknown weight matrices

» x=[x u],

> o(.) is the transfer function of the hidden neurons that is usually considered
as a sigmoidal function:

_ 2
oilVi%) = T g avin —

» where V; is the ith row of V,
> oi(Vix) is the ith element of o(VX).
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> g can be approximated by NN as

g(%u) = Wo(V%)
» The identifier is then given by
%(t) = AR+ Wa(VX) +e(x)

> ¢(x) < ey is the neural network's bounded approximation error

» the error dynamics:

» X = x — X: identification error

» W=W-W, w(t) = W[o(Vx) — a(VX)] — €(x) is a bounded
disturbance term, i.e, ||w(t)|| < w for some pos. const. w, due to the
sigmoidal function.

» Objective function J = 2(x %
H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8
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» Training:
» Updating weights: ' )
W = —Ul(m) - Pl||>~<||W

o0J N
= — — ) — X||V
n(o5) — el

<

» Therefore:

net, = \A/)_?
net, = Wo(VX).
a4
W 5o can be computed according to
oJ 0J Onety,
oW  Onet; oW
oJ _  0J Onety
v Onety” gV
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0 _0J 0% 0% 5 0%
Onet; 0% 0% Onety "Onety,
oJ _0J ox 0% T 15
Onet,  Ox 0% Onety "Onety
» and 8neAt|;., = g(\A/S“()
ow
Onety N
— = X
ov
ox(t) A ox o0g
Onet; Onet;  Onety,
ox(t) 0% . Ok
Onet, Onet, Onety

» Which is dynamic BP. Modify BP algorithm s.t. the static

approximations of 2% — and aﬁ;(t (% =0)
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» Thus, ox

1s |dentification Model Example 1 Example 2 Example 3

Onety,
0% _ —ATTW (I = N(VX))
Onet,

where

NVX) = diag{c?(Vi%)},i =1,2,....m

» Finally .
W = —qnTA YT (o(VR)T
— &IV
Vo= —p&T AW - A(VR)TRT
— Pl

» W =W — W and \7:V—\7,
» It can be shown that X, |7V and V € Lo

» The estimation error and the weights error are all ultimately bounded-[?].
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» Series-Parallel Identifier

» The function g can be approximated
byg(x u) = Wo(Vx)
» Only X is changed to X.
» The error dynamlcs
%(t) = A% + Wo(VX) + w(t) where
w(t) = W[o(VR) — o(VX)] + e(x)
» only definition of w(t) is changed.
» Applying this change, the rest remains
the same

H. A. Talebi, Farzaneh Abdollahi Neural Networks
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Using Dynamic BP Without Statlc ApprOX|mat|on

oW 9% 0% Onety, oW '8netw'0
oJ 0J 9x 0% Onety T 0x g
oV~ 0% 0% Onet,” oV "Onet;
_ 0x(1)
> and D = Onety,
. OX(t) 08
= = Ad, = Ad,, +1 4
o Onety, dw + Onety, A + (4)
_0X(t)
d = Onety
. 0x(t) 08 5 .o
d, = Dnet; Ad, + Onety Ad, + W(I = A(VX)) (5)
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Using Dynamic BP Without Static Approximation

> Finally

W= m(x"dn) (a(VR))" — pr|I%IIW

V o= mnx"d)TXT — pa| x|V

» In learning rule procedure, first (4) and (5) should be solved then the
weights W and V is updated
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Case Study: Simulation Results on SSRMS

» The Space Station Remote Manipulator System (SSRMS) is a 7 DoF
robot which has 7 revolute joints and two long flexible links (booms).

» The SSRMS have no uniform mass and stiffness distributions. Most of its
masses are concentrated at the joints, and the joint structural flexibilities
contribute a major portion of the overall arm flexibility.

» Dynamics of a flexible—link manipulator

M(q)d + h(q,q) + Kg+ Fg=u
> u=[r" O1xm]T. q=1[07 67]7,
0 is the n x 1 vector of joint variables
0 is the m x 1 vector of deflection variables

h = [h1(q,q) h2(q, g)]": including gravity, Coriolis, and centrifugal forces;
M is the mass matrix,

vV vy VvYy

\4

0 0 . . .
K= [ nxn nXm s the stiffness matrix,

Oan Kme

» F = diag{F1, F2}: the viscous friction at the hub and in the structure,

> T: input torque.
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Case Study: Simulation Results on SSRMS

http://english.sohu.com/20050729/n226492517.shtml
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Case Study: Simulation Results on SSRMS

» A joint PD control is applied to stabilize the closed-loop system ~~
boundedness of the signal x(t) is assured.
» For a two link flexible manipulator
> x = [01... 07 01..07 611 612 G21 622 G11 012 O21 O22) T
> The input: u=[r, ..., 7]
> Ais defined as A = —2/ € R??*??
> Reference trajectory: sin(t)

» The identifier:

» Series-parallel
> A three-layer NN network: 29 neurons in the input layer, 20 neurons in the
hidden layer, and 22 neurons in the output layer.
» The 22 outputs correspond to
> 7 joint positions
> 7 joint velocities
> 4 in-plane deflection variables
> 4 out-of plane deflection variables

» The learning rates and damping factors: =1, =0.1. p;y = p» =0.001%
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Case Study: Simulation Results on SSRMS

» Simulation results for the SSRMS: (a-g) The joint positions, and (h-n)
the joint velocities.

H. A. Talebi, Farzaneh Abdollahi
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Example 2: TDL

» Consider the following nonlinear
system

1 Example 2 Example 3

Nonlinear

y(k) = f(y(k=1),...,y(k — n))
+bou(k) + ... + bmu(k — m)
» u: input, y:output, f(.): an
unknown function.
» Open loop system is stable.
» Objective: Identifying f

» Series-parallel identifier is applied.
> 5 = [bOa blv"',bm]
» Cost function: J = %e? where

€& =Y —Ynm

H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 8
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» Consider Linear in parameter MLP
» In sigmoidal function.o, the weights of first layer is fixed V = [:

oi(x) = ﬁ -1
» Updating law: Aw = —n(82)

c 04 _ 0 0 _ _ o ON()
ccow T Oej Ow T I ow

> aév—vs‘) is obtained by BP method.

» Numerical Example: Consider a second order system
Yplk+1) = flyp(k), yp(k —1)] + u(k)

K)yp(k—Dlyp(k
where [y, (k), yp(k —1)] = y"(liyﬁ((k)ﬂi"((k .

After checking the stability system

Apply series-parallel identifier
u is random signal informally is distributed in [-2, 2]
n=0.25
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Numerical Example Cont'd

» The outputs of the plant and the model after the identification procedure

T T T T

= win{2r k/25]

—a L N L L

o 20 0 L [ 100
Outputs of the plant and the identification model.
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Example 3 [?]

» A gray box identification,( the system model is known but it includes
some unknown, uncertain and/or time-varying parameters) is
proposed using Hopfield networks

» Consider

= A(x, u(t))(8n + (1))

= X

» y is the output,

» @ is the unknowntime-dependantdeviation from the nominal values
» A is a matrix that depends on the input v and the state x

» y and A are assumed to be physically measurable.

> estimating 0 (i.e. min the estimation error: § = 0 — 0).
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» At each time interval assume time
is frozen so that
Ac = A(x(t), u(t)), ye = y(t)

» Recall Gradient-Type Hopefield
Ce = Wy(t)+ I

» the weight matrix and the bias
vector are defined:
W=—-ATA., I =AlA0,—Aly.

» The convergence of the identifier is
proven using Lyapunov method

. . . . Single link manipulator.
> It is examined for an idealized

single link manipulator
X = —&sinx — Yz x + /2”
» assume A = (sinx, X, u) and
1
Op+60=(-% — %, —z)

ml2> ml?
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