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Input-to-State Stablllty
» Consider the system x = f(t,x, u) (1)

where f :[0,00) X R™ — R" is piecewise continuous, bounded fcn
Vt> 0

» Suppose the Equ. pt. of the unforced system below is g.u.a.s.
x = f(t,x,0) (2)

» What can be said about the behavior of the forced system in the presence
of a bounded input u(t).

» For an LTI system: x = Ax + Bu

where A is Hurwitz, the solution satisfies:k|| ”
Ix(®)]] < ke 70 |ix(to) | + — suplu(7)l|
to<7t<t
» Zero-input response decays to zero

» Zero-state response remains bounded for bounded.input
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Input-to-State Stability
» Can this conclusion be extended to nonlinear system (1)7
» The answer in general is no, for instance:
x==3x+(1+2*)u

when u = 0, the origin is g.e.s
» However, with x(0) =2 and u(t) =1, x(t) = (3—e")/(3—2¢") is
unbounded and have a finite scape time.
» View the system x = f(t, x, u) as a perturbation of the unforced system
x = f(t, x,0).
> Suppose there exists a Lyap. fcn for the unforced system and calculate v
in the presence of u

» Since u is bounded, it may be possible to show that V is n.d. outside of
a ball with radius p where 11 depends on sup || u]|.

» This is possible, for instance if the function f(t, x, u) is Lip. in u, i.e.
1£(t,x, u) = £(t,x,0)[| < Lull
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Input-to-State Stablllty

» Having shown V' is negatlve outside of a ball, ultimate boundedness

theorem can be used
» |[x(t)]|| is bounded by a class KL fen B(||x(to)l|, t — to) over [to, to + T]

and by a class K fcn aY(an(p)) for t > to+ T
> Hence, [Ix(t)| < B(lIx(to)ll, t — to) + @~ az(u)) ¥Vt = to
» Definition: The system (1) is said to be input-to-state stable if there

exist a class L fcn [ and a class K fen 7 s.t. for any initial state x(tp)
and any bounded input u(t), the solution x(t) exists for all t > ty and

satisfies:
Xl < ﬁ(IIX(to)I,t—to)Jrv( up ||u<r))

<7<t

» If u(t) converges to zero as t — oo, so does x(t).
» with u(t) =0, the above equation reduces to:

Ix(®I < B(IIx(t)ll, t - to)

implying the origin of unforced system is g.u.a:s.
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Input-to-State Stability

» Sufficient condition for input-to-state stability:
» Theorem: Let V' : [0,00) x R" —— R be a cont. diff. fen. s.t.

ar([[x[) < V(t,x) < aaf[x]))
vV vV
W Wtnu) < —Ws(), VIl = plllul) >0
V(t,x,u) € [0,00) x R" x R™ where a1 and ay are class Ko fens and
W3(x) is a cont. p.d. fcn. on R". Then, the system (1) is input-to-state
stable with

’y:Oé110012Op
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Input-to-State Stablllty

» Lemma: Suppose f(t, x, u) is cont. diff. and globally Lip. in (x, u),
uniformly in t. If the unforced system has a globally exponentially
stable Equ. pt. at the origin, then the system (1) is input-to-state
stable (/SS).

» Proof:

» View the forced system as a perturbation to unforced system

» The converse theorem implies that the unforced system has a Lyap. fcn
satisfying the g.e.s conditions.

» The perturbation terms satisfies the Lip. cond. V t > 0 and V (x, u).

» Hence, V along the trajectories of forced system (1):

. ov oV ov
vV = e + — o f(t,x,O)—l—a[f(t,x,u)—f(t,X,O)]
—asl|x|1? + callx||Lull = —c3(1 = 0)[|x||> — cs0] x|

+ IA

callxlILlull, 0<0<1
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Input-to-State Stability

caLlull

Vo< — _ 2 >
B N R

, YV (t,x,u)

» The conditions of previous theorem are satisfied with:
ai(r) = ar?, a(r) = cr?, p(r) = (cal/c30)r

» . The system is input-to-state stable with vy(r) = \/c2/ci1(cal/c30)r
> The previous lemma relies on globally Lip. fcn f and global exponential
stability of the origin of the unforced system for ISS.
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Input-to-State Stability
» X = —3x + (14 x?)u does not satisfy the global Lip. cond.

» Example 7.1: = _ 1+ s tu= f(x, u)
has a globally Lip. f since gi = (11;(22)2 and % =1 and are globally
bounded.

> The origin of unforced system x = —175 is

. 2
g.as(V=x2/2 = v= — 15z h.d. for all x)
» The system is locally e.s because of the linearized system x = —x

» However, the system is not g.e.s
u=1f(xu) > 1/2 = x(t) > x(to) +t/2 Vt> ty

» If g.e.s. and globally Lip. conds. are not satisfied, then we can use
previous theorem to show ISS (i.e. find a region ||x||.> w.in which V < 0)
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Input-to-State Stability

» Example 7.2: x=—x>+u

has a g.a.s. Equ. pt. at the origin when u = 0.

> Let v = x2/2, then V can be written as:
V=-x*+ux = —(1-0)x*—0x*+xu

1/3
< —(1-0)x4 Vx| > (%) 0<6 <1

> The system is ISS with v(r) = (r/0)'/3

> Example 7.3: 5 = f(x,u) = —x — 2x> 4+ (1 + x?)u?
has a g.e.s. Equ. pt. at the origin when u = 0.

» However, f is not globally Lip. Let v = X2/2, then:
V=-x?-2*+x(1+x)? < —x* Vx| > 2

» The system is ISS with y(r) = r?
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Stability of Cascade System

> Consider the cascade system

x1 = f(t,x1,x), f: [0,00) x R™ x R — R™ (3)
X = fh(t,x), h: [0,00) X R? — R™ (4)

where fi and £ are p.c. in t and locally Lip. in x = [ il }
2

» Suppose x; = fi(t, x1,0) and (4) both have g.u.a.s. Equ. pt. at x; =0
and xo = 0.

» Under what condition the origin of the cascade system is also g.u.a.s.?
» The condition is that (3) should be ISS with x> viewed as input.

» Lemma: Under the assumption given above, if the system (3) with x> as
input, is 1SS and the origin of (4) is g.u.a.s., then the origin of the
cascade system (3) and (4) is g.u.a.s.
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Input-Output Stability
» The foundation of input-output (1/O) approaches to nonlinear systems
can be found in 1960's by Sandberg and Zames

» An input-output model relates output to input with no knowledge of the
internal structure (state equation).

y=Hu, u:[0,00) = R™

» The norm function ||u|| should satisfy the three properties
1. |lu]l = 0 iff u =0 and it is strictly positive otherwise
2. scaling property Va > 0, u = ||au| = a||u||
3. triangular inequality: Vuy, up, i + wof < |lun| + || u2]|

. ullgm = supllul| < oo
» Example: l[ulleg, s [ ul
o0
ullep = / uT (t)u(t)dt < oo
0
(oo}
lulley = [ul|Pdt)/P < 00, 1< p< oo

Q
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Input-Output Stability

» Stable system: any "well-behaved” input generate a "well-behaved”
output
» Extended space: LT = {u|u, € L™ VT € [0,00)}
u(t) 0<t<r
0 t>71
» |t allows us to deal with unbounded " ever-growing" signals
» Example: u(t) =t ¢ Lo but ur(t) € Looe

> where u; is a truncation of u: u,(t) =

» Casuality: mapping H : £ — L is causal if the output (Hu)(t) at any
time t depends only on the value of the input up to time t

(Hu)r = (Huz),
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Input-Output Stablllty
» Definition: A mapping H : L™ — L& is L stable if there exist a class K
function «, defined on [0,00) and a nonneg const. [3 s.t.

I(Hu)-lc < alllurlle) + 8, Vue L, 7 € [0,00) (5)
It is stable if there exist nonneg. const. v and 3 s.t.
I(Hu)rllc <2(lurlle) + 8, Vue L7 €0,00) (6)

» (3 is bias term ~~ allows Hu does not vanish at u =0
> In finite-gain £ stability , the smallest possible + is desired to satisfy (6)
> Lo stability is bounded-input-bounded-output stability.

» Example 7.4:

y(t) = h(u )—a+btanhcu—a+bzw+e . fora b,c>0

» using the fact: h(u) = ﬁ <bc, YuecR
lh(u) <a+belul, VueR
» it is finite gain L., stable with v = bc, B =a
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Input-Output Stability

» Example 7.5: y(t) = h(u) = u?
> supo [h(u(t))] < (sup,so [u(t)])?
> . itis Lo stable with =0, a(r) = r?
» But it is not finite-gain L., stable since h(u) can not be bounded by a
straight line of the form |h(u)| < ~|u|+ (B forall u € R
» Example 7.6: y =tanu
> y(t) is defined only for |u(t)| < 5, Vt > 0~ it is not L, stable
> If we restrict [u] < r < Zs|y| < (B20)[u
> it is small-gain L stable
» Definition: mapping H : LT — L& is small-signal £ stable /small-signal
finite-gain L stable if there exist r s.t. inequality (5)/(6) is satisfied for
all u € LT with supg<,<, [|ul| < r
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L Stability of State Models

» What can we say about 1/0O stability based o the formalism of Lyapunov
stability?

» Consider

f(t,x,u) (7)
h(t, x, u)

xeR™ yeR?

f:]0,00) x D x D, — R"is p.c. in t, locally Lipshitz in (x, u)
h:[0,00) x D x D, — R9 p.c. in t and cont. in (x, u)

D C R" is a domain containing x =0

D, C R™ is a domain containing u =0

Assume the unforced system x = f(t, x,0) is u.a.s (or u.e.s)

vV VY VY VY VY
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» Theorem: Consider the system (7) and take r,,r > 0 s.t. {||x|| <r} C D and
{|Jull € ry} C D,. Suppose that
» x=0isanes. Equ. point of x = f(t,x,0) and there is a Lyap. fcn
V(t,x) and positive const ¢;, i =1,...,4 that

6V ov
alxl? £ V(ex) < x5+ Sofex) < alxl?
ov
2 < alx W(t,x) € [0,00) x D,

» V(t,x,u) € [0,00) x D x D, and for some nonneg. const. L, 1y, and n,:
(£, x,u) = £(,x,0)[| < Lljull, [[A(t,x, u)|| < mllx]| + n2 ull

» Then for each ||xo|| < rv/c1/c, the system is small-signal finite-gain L, stable
for each p € [1,00]. In particular, for each u € Lpe with
SUPo<<, |lull < min{r,, cicsr/(cacal)} the output satisfies:

Iyrllzy < Allurlle, + 8, 7 €[0,00)

1 p =00
mecal _ o o )
y=m+ » B=mllxolly/ S p=19 (22y1/p
€163 a (?p) / , P& [1300)
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L Stability of State Models
» Theorem Cont'd. If the origin is g.e.s and all assumptions hold for
globally (with D = R" and D, = R™), then for each xo € R" the system
is finite-gain L, stable for each p € [1, ]
» Exercise: Provide similar conditions for finite-gain £, stability of LTI
system
x = Ax+ Bu
= (x+ Du

> E le 7.7:
rampre = —x—x>+u, x(0)=x

= tanhx+u
The origin of x = —x — x3 is g.e.s. (Use Lyap V(x) = x2/2)
a=6=1/2, a=a=1

The system is finite-gain L, stable

vV vVvYy
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L Stability of State Models

» Example 7.8: 3 = —x
Xo = —x1—xp— atanhx; +u, a>0
y = x

» For unforced system, take V(x) = x" Px = p11x¢ + 2p1oxixz + p22x3
V = —2p1o(x? + axitanhxy) + 2(p11 — p12 — P22)x1x2 — 2apaaxptanhxy —
2(pa2 — p12)%3

» To cancel the cross product term x;x», choose p11 = p12 + p22

» To make P p.d., choose py =2p1p =1

> Use the facts: x;tanhx; > 0,Vx; € R, |x1| > |tanh x¢|, and

¢ +x3 > 2alx||x]|

Vo= —x2 - x3 — axq tanh x; — 2ax; tanh x; < —||x|13 + 2ax|x1||x2|

sforalla< 1, V<0

¢1 = Amin(P), ¢2 = Amax(P), c3 =1—aand ¢c; = 2||P||2 = 2Amax(P)

L=m=1m=0

All conditions are satisfied globally ~~ system is finite-gain Lp stable

vV vy vV VvVYy
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L Stability of State Models

» Theorem: Consider the system (7) and take r,,r > 0 s.t. {||x|| <r}C D
and {||u|| < r,} C D,. Suppose that
» x =0 s an as. Equ. point of x = f(t,x,0) and there is a Lyap. fcn
V(t,x) and class K fens aj, i =1,...,4 that
ov oV
) < V(tx) < aslliel), Gp o+ SRR <~ as(lix)
oV
a0 = O‘4(||X||) V(t,X) € [0,00) x D,
Ox
» V(t,x,u) €[0,00) x D x D, and for some class K «;, i =5,..,7, nonneg

conts. 1:
1 (8, x, u) = £(t,x, 0)|| < as([lul]), [[A(t,x, u)] < as(lIx]]) + az(l[ull) +n

» Then for each ||xo|| < oy (1 (r)) the system is small-signal finite-gain
L~ stable
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L Stability of State Models

» Theorem: Consider the system (7) with D = R" and D, = R™. Suppose
that
» The system is ISS.
» for all (t,x,u) € [0,00) x R" x R™, some class K fcns a1, ap and a const.
n>0
[1h(t, x, ) || < as([Ix[]) + az([[ul]) +n

» Then for each xg € R", the system is L, stable.
» Example 7.9: X = —x=23+(1+x)
y = X+u

V =x2/2wV = —x% = 2x* + x(1 + x*)u? < —x* Vx| > u?
.. the system is ISS with v = r?

ag=r* az=randn=0

Therefore the system is L, stable

vV vy VvYyy
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L Stability of State Models

» Example 7.10:

x1 = —x$+g(t)x
x2 = —g(t)x1—x3+u
y = x1+x

g(t) is continuous and bounded for t > 0

V =x% + x2

V = —2x} — 2x2 + 2xu

2 +x3) 2 |[x[[4 and 0 < 0 < 1~ V < —(1 = O)||x]I3, V||| = (2)+/2
globally: i (r) = az(r) = 12, Wa(x) = —(1 — ) x||§ and p(r) = (2r/6)"/>
.. The system is globally ISS

globally: ag(r) = v2r, az(r) =0,and =0

Therefore the system is L., stable

vV VvV VvV VY VvV VY
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Absolute Stability

» Many nonlinear systems are composed of a
nonlinear element in feedback connection with a
linear system

» Examples include actuator/sensor saturation, O

relay, and other hard nonlinearities. it G(s) Y
» If the transfer fcn of the linear subsystem is B

positive real, (PR), it may lead to generation of

a Lyap. fcn for the whole system. w0

» After introducing positive real (PR) and strictly
positive real (SPR) functions, some
frequency-domain sufficient conditions will be
discussed for absolute stability in the form of
SPR of some transfer functions.

Feedback connection.
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Positive Real Systems

» Consider the ntr-order SISO system:

mS™ 4+ bp_15™ 1 4+ ...+ by

b
G(s) = s+ ap_1s" 14+ ...+ ag

) -

» Definition: A transfer function G(s) is positive real, if
Re[G(s)] > 0 for all Re[s] > 0

it is strictly positive real if G(s — ¢€) is positive for some ¢ > 0

» The condition means that G(s) maps every point in RHP of s-plane
(including the jw axis) to RHP of the G(s) plane.
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Positive Real Systems

» Example 7.11:

1
G(s) = T A>0
) 1 o+ A —jw
G = =
(o +jw) Trjot A (0L N2+ 2

> . Re[G(s)] >0if c >0 = G(s) is positive real.

> Itis also SPR, e.g. by selecting e = A/2
» It is not always easy to use the definition for higher order systems.
» Theorem: A transfer function G(s) is strictly positive real iff

1. G(s) is a strictly stable transfer function
2. The real part of G(s) is strictly positive along the jw axis, i.e
Yw > 0 Re[G(jw)] >0
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Positive Real Systems

» The theorem implies some necessary conditions:
» G(s) is a strictly stable
» The Nyq. plot lies entirely in RHP, the phase is always less than 90°
> G(s) has relative degree 0 or 1.
> G(s) is strictly minimum phase (all zeros are strictly in LHP)

a0 =
S = Tt

» Gj is not SPR since it is nonminimum phase, Gy is not SPR since it is
unstable, Gs is not SPR since its relative degree is 2,
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Positive Real Systems

jw+1
Gl) = iy
. 1

which shows that G4 is SPR since it is also strictly stable.

» The basic difference between PR and SPR functions is that PR fcns can
have poles on the jw axis while SPR fcns cannot. For instance
1 o — jw
s o024 w?

is clearly PR but not SPR.
» Theorem: A transfer function G(s) is positive real iff
1. G(s) is a stable transfer function

2. The poles of G(s) on the jw are simple and the associated residues are real

and non-negative.
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Positive Real Transfer Matrices

» The extension of positive real transfer functions for MIMO systems
» Definition: A p x p proper rational transfer function matrix G(s) is
called positive real if
1. Poles of all elements of G(s) are in Re[s] <0
2. G(jw) + GT(—jw) is positive semi-definite for any w > 0 s.t. jw is not a

pole of G(s).
3. The poles of G(s) on the jw are simple and the associated residue matrices

are positive semi-definite Hermitian.

It is SPR if G(s — ¢€) is PR for some € > 0
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Kalman-Yakubovich Lemma

» Many variations of Kalman-Yakubovich lemma exist:
» Kalman-Yakubovich (Positive Real) Lemma: Let
G(s) = C(sl —A)"*B+ D be a px p TF where (A, B) is controllable and
(C,A) is observable. Then G(s) is PR if and only if there exist matrices
P=PT >0, L, and W s.t.

PA+ATP = —LTL
PB = CT—-L™w
W'w = D+DT

» Kalman-Yakubovich-Popov Lemma: Let G(s) = C(sl — A)"'B + D be
a p x p TF where (A, B) is controllable and (C, A) is observable. Then
G(s) is SPR if and only if there exist matrices P = PT >0, L, and W,
and a positive constant € s.t.

PA+ATP = —LTL—¢P
PB = CT-LTw
w'w = D+DT
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» Consider the feedback system shown in Fig. and assume r = 0.

» The unforced system is represented by

x = Ax+ Bu
y = Cx+Du (8)
u = _¢(t7Y)

where

» x € R" u,y € RP, (A, B) is controllable,
> (A, C) is observable,

» ¢ [0,00) x RP — RP is a memoryless, possibly time-varying
nonlinearity, p.c. in t and locally Lip. in y.

» Assume the feedback system u = 1(t, Cx 4+ Du) has a unique solution u
for every (t, x) which is always the case when D = 0.

» Controllability and observability assumptions ensure that {A, B, C, D} is
a minimal realization.
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» The nonlinearity (., .) is required to satisfy a
sector condition:

» For a SISO system, ¢ : [0,00) xR — R
satisfies a sector condition if
Ja, 8, a& b(f>a, a<0<b)s.t.

[V(t,y) — ay][v(t,y) — By] <0, Vy € [a, b]

» If it holds Vy € [—o0, 0], the sector
condition holds globally.

» We also say ¥ belongs to a sector
[, 8], (. 8], [a, B), (a,8)

Pa(t, y1)
» For MIMO: ¢(t,y) = : where

/(/)P(t,yp)
;(t, y) satisfies the above sector condition
with a;, ﬂ,‘, aj, b;.

Farzaneh Abdollahi Nonlinear Control Lecture 7

By,

vy By

() (b)

(a) Global sector nonlinearities; (b) local sector nonlinearities

31/58



Outline  Input-to-State Stabilit Inpl t Stability ~ Absolute Stability
000800000000 0000000000000 C

Absolute Stability

» Taking Kmin = diag(ai, ..., &p), Kmax = diag(f1, ..., Bp), and
F={y € RP|a; < yi < bi}, then

[w(t?y)_Kminy]T[w(taY)_Kmax)/] < 0 Vvt > 0, VyG [

» Definition: A memoryless nonlinearity 1 : [0,00) x RP — RF is said
to satisfy the sector condition if:

[w(tvy)*Kmin}/]T[w(tay)*Kmax)/] <0 Vvt >0, VyG r

for some real matrices K, and Kmax where K = Kax — Kmin Is a
symmetric p.d. matrix and the interior of I' is connected and contains
the origin. If I = RP, then ) satisfies the sector condition globally in
which case v is said to belong to a sector [Kmin, Kmax| of (Kmin, Kmax)-

» The objective is to show that x = 0 is a.s. Eq. pt. for all nonlinearities in

the sector. Such system is said to be absolutely stable
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Absolute Stability

» Definition: Consider the system (9) where 1) satisfies the sector
condition. The system is absolutely stable if x =0 is g.u.a.s for any
nonlinearity in the given sector. It is absolutely stable with a finite
domain if the origin is u.a.s..

» Circle Criterion:
» Consider system (9) and let A be Hurwitz & 1 satisfies the sector condition
with Kpin =0, i.e

O(t,y) T (W(t,y) —Ky) < 0Vt > 0,Vye ICRP

» Let V(x) =x"Px, P=P" >0 to be chosen.

V =x"(PA+ ATP)x — 2x" PBiy(t,y)
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Circle Criterion

> Since =247 (p — Ky) > 0 ..
V< xT(PA+ATP)x = 2xT PBY(t,y) = 207 (t,y)(¥(t,¥) — Ky)
= x"(PA+ATP)x+2xT(CTK — PB)Y — 24T

» Suppose, there are matrices P = P’ > 0 & L and a constant € > 0 s.t.
PA+ATP = —LTL—eP, PB=CTK-V2LT

Vo< —exTPx—2xTLTIx+2vV2xT LTy — 29T

= —ex! Px —[Lx = V2¢]T[Lx — V2y] T

—ex'Px <0

IN

» Visn.d. if we can find P, L, , and ¢ satisfying above equations

> This is the case iff Z(s) = I + KC(sl — A)~!B is SPR, according to KYP
lemma. Since (A, C) is obs. = (A, KC) is obs. since K is nonsingular
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Circle Criterion

» Lemma: Consider system (9), where A is Hurwitz, (A, B) is controllable,
(A, C) is observable & 1) satisfies the sector condition globally, then the
system is absolutely stable if Z(s) = | + KC(sl — A)~1B is SPR.

» The condition on having A Hurwitz can be removed by applying the loop
transformation as shown in Fig.

+ + 6 (5) o
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Circle Criterion

» The new linear TF is:

Gr(s) = G(S)[I + KminG(s)]™* or, equivalently
¥ = (A= BKminC)x+ Bu
y = x with
Yr(t,y) = P(t,y) — Kminy

> Now, if ¢ satisfies the sector condition, then 11 satisfies the sector
condition with K = Kpax — Kmin-

(¢ - Kmin}/)T(d} - Kmax}/) < 0, Y=97+Kniny =
VT + (Kmin — Kmax)) = U7(v7 —K) < 0
> If (A — BKinC) is Hurwitz = system is absolutely stable if
Z7(s) =1+ KGr(s) is SPR.
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Circle Criterion

» Note that

Z7r(s) = [+ (Kmax — Kmin) G(s)(/ + KminG(s))_1
(I + Kmax G(s))(I + KminG(S))_1

» Theorem: Consider the system (9) where (A, B) is cont. and (A, C) is
obs. and ) satisfies the sector condition globally. Then, the system is
absolutely stable if

Gr(s) = G(S)/ + KminG(s)]

is Hurwitz and Z1(s) = (I + KmaxG(5))(I + KminG(s))~* is SPR.
» The theorem is known as multivariable circle criterion.
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Example 7.12
» Consider system (9). Let G(s) is Hurwitz and

7 = sUp Tmax[ G(jw)] = sup [[[GGW)I]

where 0.5 denotes the max. singular value, 1 is finite since G(s) is
Hurwitz.

» Suppose the nonlinearity satisfies
[0t ) < llyll, vt =0, Vy € R?.

then it satisfies the sector condition with Kyin = —72/ and Kipax = ¥21.

» We now need to show that

Gr(s) = G(s)[l —72G(s)]™* is Hurwitz and
Zr(s) = (I+7%G(s))(I —72G(s))! is SPR

Farzaneh Abdollahi Nonlinear Control Lecture 7 38/58



Outline  Input-to-State Stability it Stability

Example Cont'd

» We have det(G) #0 <= omin(G) >0

1

1 .

max = A~ f min
Tmax(G™ ) p— e if omin >0
Umin(/ + G) > 1- Umax(G)

Umax(Gl GZ) < Umax(Gl) O'max(GZ)

> L Omin[l —72G(Ww)]) =1 -2
> If 7172 <1 = the plot of det(/ — 2 G(jw)) does not go through
encircle the origin

» .. By Nyq. criterion, [I —2G(jw)] ™! is Hurwitz => Gt and Zt are
Hurwitz
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Examle Cont'd
» Now Z7(s) is SPR if
Zr(jw) + ZF (—jw) >0 Yw €R
Zr((jw) + ZF (—jw) = [ + 26 ()]l = 726 (w)]
+ 1= %6 T (—jw)] 7 + 26T (—jw)
= 1= %G ()] (21 = 29267 (=je) 6 () ) [ = 12 G ()] !

» Hence, Z7(jw) + ZT(—jw) is p.d. iff
Omin[l = 136G T (—jw)G(jw)] >0 VYw €R

Um,-,,[l—ﬁngT(—jw)G(jw)] > 1- 72‘7maX[G (—jw)lomax[G(jw)]
> 1-9i7% > 0

> Hence, we can conclude that the system is abs. stable if y372 < 1.
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Circle Criterion

> This shows that closing the loop around a Hurwitz TF with a nonlinearity
satisfying [|1]| < ~2||y|| with sufficiently small 42 does not destroy the
stability of the system (small gain theorem)
» In scalar case (p = 1), the conditions of the theorem can be verified
graphically by Nyq. plot of G(jw).
» The conditions of the theorem are
1. ) Gr(s) = 1+o¢2(s) is Hurwitz
2.) Zr(s) = fiagey is SPR
» To verify SPR condition, Z7(s) is SPR iff Z1(s) is Hurwitz and
Re |F2ed] >0 vw €R.
» We now consider different cases:
» First case B > a > 0:

> In this case, we have:

1/8+ G(jw)
e [1/a T 6(w)
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Circle Criterion

Dio.f) q

A } _
71Up \%\

Graphical representation of the circle criterion.

» For a point g on the Nyq. plot of G(jw), 1/8+ G(jw) & 1/a + G(jw) can be
represented by the line connecting g to —1/4 + 0 and —1/a + 0

» The real part of the ratio of two complex numbers is positive when the angle
difference is less than /2 = 6; — 6, < 7/2 when q is outside D(«, (3).

> Gr(s) is Hurwitz, implying that Z7(s) is Hurwitz, if from the Nyq. criterion, the
Nyq. plot of G(jw) does not intersect the point —1/« + jO and encircle it
exactly m times CCW where m is the # of poles of G in open RHP

> . Conditions of the theorem are satisfied if the Nyq. plot of G(jw) does not
enter the disk D(«, 3) and encircle it m times CCW,
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Circle Criterion

» Second case: >0, a=0

» The conditions of the theorem are: G(s) is Hurwitz and
Re[l+ B8G(jw)] >0, Vw € R

-1
Re[G(jw)] > 5 Yw € R.
> . Nyq. plot of G(s) lies to the right of s = _71 line
» Third case: a« <0 <3
» The conditions of the theorem are:

{Uﬂ + G(jw)

> .. Nyq. plot of G(s) must lie inside the disk D(«, 3) (prove it).

> Nygq. plot cannot encircle =! 4 j0 = G(s) must be Hurwitz for Gr(s) to
be so.
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Circle Criterion
» Theorem (Circle Criterion): Consider system (9) with p =1 and 1
satisfies the sector condition globally. The system is absolutely stable if
one of the following conditions are satisfied:
1. If0 < oo < 3, the Nyq. plot of G(jw) does not enter the disk D(«, ) and
encircles it m times in CCW.
2. If0=a < 3, G(s) is Hurwitz and the Nyq. plot of G(jw) lies to the right
of the line s = %1
3. Ifa <0<, G(s) is Hurwitz and the Nyq. plot of G(jw) lies inside
D(Oz7 3) 4

. G(s) =
» Example 7.13: (s) (s—i—l)(%s—l—l)(%s—kl)

» Since G(s) is Hurwitz, we can allow « to be negative & apply the 3™ case
of the circle criterion.

» We need D(«, 3) that encloses the Nyq. plot.(This is not unique).

> Select the disk D(—2,72) where 72 > 0 to be chosen

> If we set y; = sup |G(jw)| and then use vy < 1:
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Example 7.13 Cont'd

» Maximum occurs at w = 0 and

1=4 = v <025
.. System is absolutely stable V

nonlinearities in the sector
[-0.25 4+ ¢, 0.25 — €], where € > 0.

By locating the center at another point,
we may be able to obtain a disk that
encloses the Nyq. plot more tightly.

Let the center be at pt. 1.5+ 0. The
max distance to Nyq. plot is 2.834 ~~
radius could be 2.9 to ensure
D(—1/4.4,1/1.4) encloses the Nyq. plot.

System is absolutely stable V nonlinearity
in [—.227, .714].
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Example 7.13

> Alternatively, if we restrict o = 0 and apply the 2"¢ criterion, the Nyq.
plot lies to the right of s = —.857 = system is absolutely stable V
nonlinearity in [0, 1.166].

» For example, using a nonlinearity like a saturation, we conclude that since
1) belongs to [0, 1] sector = system is g.a.s. using 2"¢ condition.

» However, it fails the 3" criterion with [—.25, .25] or [—.227, .714]

sectors.
+ 4
G(s) = =G AT Al—-*
TsT1)(s/2 * (8/3+1)
_% \ 1 ‘
|‘ ( w(y)lT |
/ |
| S
s Feedback connection with saturation nonlinearity.
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Example 7.14
4

) == NIs+ s +1)

> G(s) is not Hurwitz, we must restrict o to be
positive & apply the 1% case

Nyt Disgrem

» The Nyq. plot must encircles the disk
D(«, 8) once in CCW. o

» A disk inside the right lobe is encircled
once in CW — no good.

» A disk in the left lobe is encircled once

Imagiary &

in CCW.

» Let us locate the center at —3.2+ 0 (=
half way between the two ends of the ST Tt e
lobe).

» Min. distance is .1688 = choosing the
radius .168 == system is abs. stable V
nonlinearity in [.2969, .3298].
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Example 7.15

s+2
G(S) = m and
ly) = sat(y)
» 1) belong to the sector [0, 1].

» Since G(s) is not Hurwitz, we
must apply the 15t case of the
circle criterion which requires the
sector cond. to hold with a
positive «

» We cannot apply this theorem to _ _ :
G(s) and conclude abs. stability. T S T R R R

» The best we can do is to show the
abs. stab. with a finite domain
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Example 7.15 Cont'd

» Now, v satisfies the sector

condition with o = %, & p=1.
on the interval [—a, a.

Nyq. plot of G(s) must encircle
the disk D(«, 1) once in CCW.

Condition is satisfied with
a > .5359.

Choosing o = .55 — sector
interval is [-1.818, 1.818] and the
Disk (.55, 1) is encircled once by
the Nyq. plot in the CCW —-
System is abs. stable with a finite
domain.

Farzaneh Abdollahi Nonlinear Control
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» To estimate ROA, we use Lyapunoeana|5|s Let V( )= x Px.
X1 = X2
% = x1+u u=-yY(y)
y = 2x1+x

» The loop transformation yields:

u = ay—9(y)=vr(y)

X = Arx+B(=¢r(y))
y =
Ar = [—0.1 —.155}’3_[(1)]’C_[21]'

» and 7 satisfies the sector condition with K =1 — a = .45.

» To find V, we need to find P, L, and C that satisfies KYP lemma
4946 4834

L e=.02, P= [ 4834 10774 ] L= .2946 —.4436 |.
where € is chosen s.t. Z7(s — .5¢) is PR and (5/ + Art) is Hurwitz.
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Example 7.15 Cont'd

» . V=x"Pxisa Lyap. fcn
for the system and

Q.={x € R?| V(x) < ¢} b
where os
c < min  V(x) = .3446 ’
{|y|=1.818} 05
to ensure that Q. is .
contained in the set s
{|-y‘ S 1818} 2 hs 06 04 02 0o 02 04 08 08 1

» . taking ¢ = .34 gives the
estimate of ROA.
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Popov Criterion
= Ax+ Bu
y = & )
u = _w(tay)
where x € R", u,y € RP, (A, B)is controllable, (A, C) is observable, and
Wi RP — RPw ¢T(— Ky) < 0 with K = diag(B1,..., 3,) in
N={y € RPFla; <y < b}
» We chose a Lure-type Lyapun}c/)v function

V(x) = x"Px+ 27]/ Y(o)Kdo, P=PT >0, n>0 to be chosen
0

V= xT(PA+ATP)x — 2xT PBy(y) + 21 4T (y)KC[Ax — By (y)]

V< xT(PA+ ATP)x —2x" PBy(y) + 29" (y)KC[Ax — By (y)]

— 20T (y)(W(y) - Ky)
= x"(PA+ATP)x —2x"(PB - C"K —nATCTK)y
— T (y)(2I +1KCB+nBT CTK)i(y)
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Popov Criterion
» Chose i s.t. 2/ +nKCB +1nBTCTK > 0 by setting 7 sufficiently small.

> Now, let 2/ + 7KCB +nBT CTK = WTW and suppose IP = PT > 0
and L and € > 0 s.t.
PA+ATP = —LTL—¢P
PB = CTK+nATCTK—LTW
» Then v —exT Px — [Lx — Wap(y)] T [Lx — Wap(y)]"

<
T
< —ex'Px <0

» Existence of L, P, and € can be verified from KYP lemma iff
Z(s) = 1+nKCB+ (KC 4 nKCA)(sl — A)"'B
= |4 (1 +n5)KG(s), is SPR. where Z(c0) + Z(c0) = WTW

» Suppose 7 is chosen s.t. (1 +n)\;) # 0 for all eig. of A, i.e. —1/n is not
an eig. of A~ (A, KC +nKCA) is observable since {A, c¢) is observable:
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Popov Criterion

» Multivariable Popov Criterion: Consider the system where A is Hurwitz
(A, B) is controllable, (C, A) is observable and 1) is time-invariant
decentralized nonlinearity satisfying the sector condition globally with a
diagonal matrix K. The, the system is absolutely stable if 3n > 0 with

—1/n not an eig. of A, s.t.
Z(s) = I+ (1+ns)KG(s)

is SPR.

» loop transformation can be applied for Popov criterion as well
» when p=1 = choose 5 s.t. Z(o0) > 0. Z(s) is SPR iff
Re[l+ (1 4+ jnw)kG(jw)] >0 Vw € R

% + Re[G(jw)] — nwIm[G(jw)] >0 Vw € R (10)

that is the plot of Re[G(jw)] vs. wlm[G(jw)] lies to the right of the line
crossing the point % + jO with the slope %
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Popov Criterion

» The plot is known as
Popov plot.

» For n = 0 condition
(10) reduces to circle
criterion

» .. Popov criterion
is weaker than
circle criterion

Farzaneh Abdollahi Nonlinear Control
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Example 7.16
X1 = X
x2 = —x2—h(y)
y = X1
> A= [ 8 _11 ] is no’F Hurwitz = use a loop transformation:
X1 = X
X2 = —xp—ay+ay—h(y)
y = X

>Now,takeA—[ 0 1 ]
—a —1

¥(y) = h(y) - ay, B—[(l)], c=[10]

» Assume h belongs to sector [a, (3], > a = 1 belongs to the sector
[0, K], K=8—«
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Example 7.15 cont'd

> Z(s) =14+ (1+ns)KG(s), G(s)=
C(sl —A)B, . Z(x)=1

» We have2 )
%—l—% >0, Yw € R

a—w?)2+w?

0.4 —

» Since k >0 = forp > 1 the i
. . . . - 2R
inequality is satisfied. ol
> Let -02]
_ 1 1—w?4nw? e
o = 1 = k + (170.)2)24’0.)2 > O “’4"'
. . -0.6 7
» Popov plot lies to the right of any M_‘/
: 08
line of slope < 1. R
» . System is abs. stable V h(.) in e
the sector [, (] with « sufficiently
small and (3 sufficiently large.
Farzaneh Abdollahi Nonlinear Control Lecture 7
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Example 7.15 cont'd

» To check the advantage of Popov criterion: n =0

> the system is abs. stable if Nyquist plot of G(jw) lies to right of vertical
line Re[s] =—-1/k

. k cannot be arbitrarily large
2
4 k+m>owk<l+2\/»
*. by circle criterion the system is abs stable when h(.) is in the sector
[a, 1+ 42/ — €] where ae > 0 and € > 0 is arbitrarily small
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