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Filtering

I Filtering: is a process to
I Change the relative frequency components
I Eliminate some frequency components

I The filters can be
I Frequency shape filter: changes the shape of spectrum
I Frequency selective filter: passes some frequencies and significantly

attenuate or eliminate others

I For LTI systems, we have: Y (jω) = H(jω)X (jω)

I Therefore for LTI systems filtering is defining proper frequency response
H(jω)
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Frequency Shaping Filters

I Example: In audio systems such filters
allow the listener to change the relative
amount of low frequency energy (bass)
and high frequency energy (treble).

I Example: a differentiator:
y(t) = dx

dt Y (jω) = jωX (jω)
I H(jω) = jω
I The larger ω the more amplification will

receive
I In control engineering such filter are

employed for improving transient
response or changing rapid variations
(Proportional Differentiators (PD))
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Example Cont’d

I Another application of differentiator filters
is to enhance edges in picture processing

I A black-wight picture has a two
dimensional signal in x and y directions

I It requires a two dimensional Fourier
series

I Abrupt changes of brightness across
edges leads to more concentration at
higher frequency

I Passing the signal from differentiator
enhance this concentration and make it
more clear
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Frequency Selective Filters

I This filters keep some band of frequencies and eliminate others.

I Example: If there is a noise in an audio recording in high frequency band,
it can be removed by such filters

I Example: In Amplitude Modulation (AM), information is transmitted
from different sources simultaneously s.t. each channel puts its
information in separate frequency band. At receiver (in home radio/TV)

I Frequency Selective Filters separate the individual channels
I Frequency Shaping Filters (like equalizer) adjust the quality of tone

I Based on the bound that the Frequency Selective Filters pass, these
filters can be categorized to

I Lowpass filters
I Highpass filters
I Bandpass filters
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Lowpass Filters
I They passes the lower freqs. ( freq. around ω = 0) and attenuate or

reject higher freqs.
I In CT

I In DT (Low freq. is at ω = 2kπ, k = 0,±1,±2, . . .)
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Highpass Filters

I They passes the high freqs. and attenuate or reject low freqs.
I In CT

I In DT (the highest freq. at DT is at ω = (k + 1)π, k = 0,±1,±2, . . .
since e jπn = (−1)n)
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Bandpass Filters
I They passes a band of freqs. and attenuate or reject low and high freqs.

I In CT

I In DT
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I Pass Band : The band of freq. that is passed through filter

I Stop Band: The band of freq that is rejected by filter

I Cutoff Freq.: The border between pass band and stop band
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Ideal Filters

I An ideal filter completely eliminates all signals info at stop band while
passing those in pass band unchanged:

I An ideal lowpass filter:
I In pass band : |H(jω)| = 1,]H(jω) = 0
I In stop band |H(jω)| = 0
I It is symmetric around ω = 0

I An ideal low-pass filter can be realized mathematically by multiplying a
signal by the rectangular function in the frequency domain

I H(jω) =

{
1 |ω| ≤ ωc

0 |ω| > ωc

I or, convolution with sinc function (its impulse response), in the time
domain

I Ideal filters are good for system analysis

I But they are not realizable and implementable in practice

Farzaneh Abdollahi Signal and Systems Lecture 6 11/71



Outline Filtering Magnitude and Phase of Fourier Transform Sampling

Ideal Filter, Example:

I Consider an ideal low pass filter:

I CT filter:H(jω) ={
1 |ω| ≤ ωc

0 |ω| > ωc
⇔ h(t) = sinωc t

πt

I DT filter:

H(e jω) =

{
1 |ω| ≤ ωc

0 ωc < |ω| ≤ π
⇔

h[n] = sinωcn
πn
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Ideal Filter, Example:
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Example Cont’d

I Lowpass filter is not casual (h(t)/h[n] is not zero for t < 0/n < 0)

I Therefore it is not implementable in real

I Moreover in some applications like suspension system oscillating behavior
of impulse response of the filter is not desirable.

I In freq. the width of pass band is proportional to ωc ; in time, the width
of the main lobe is proportional to 1

ωc

I To expand pass band in freq. impulse response of the filter should be
narrower

I Now let us study the step response of these filters

I Reconsider s(t) =
∫ t
−∞ h(τ)dτ/s[n] =

∑n
−∞ h[m]

I The step responses have overshoot comparing to the final value and they
have oscillating response, none of them are desirable
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Ideal Filter, Example:
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Phase shifting in Ideal Filters

I An ideal filter with linear phase (in pass band) results in a simple time
shifting the filter in time domain.
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Non Ideal Filters

I As we said the the ideal filters cannot be made in practice
I Moreover sometimes the sharp ending bandpass is not always desirable.

I For example, if the signals to be separated do not lie in totally disjoint
frequency bands.

I A typical situation to separating them is a gradual transition from passband
to stopband.

I The transition between passband and stop band is named transition band
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I A non-ideal low pass filter has three parts:
pass band, transition band, stop band

I Deviation from unity of ±δ1 is allowed in
the passband

I Deviation of δ2 from zero is allowed in the
stopband.

I passband ripple: The amount by which
the frequency response differs from unity
in the passband

I stopband ripple The amount by which it
deviates from zero in the stopband

I ωp: passband edge; ωs : stopband edge.

I transition band frequency range from ωp

to ωs

I Similar definitions are applicable for DT
non-ideal filters
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Non-Ideal Filters

I To control the behavior of the filter in time domain, step respond of the
filter in investigated.

I The most important and popular indices are:
I Rise time (tr ) the time for the signal to get to the final value for the first

time
I Overshoot the maximum value minus the step value divided by the step

value
I Settling time the time required for signal to reach and remain within a

given error band (5% or 2%) of its final value.
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Non-ideal Filters

I The ideal filters have great performance in freq. but not acceptable
performance in time, they are not implementable.

I Non-ideal filters intend to compromise between freq. performance and
time performance.

I A simple example of a non-ideal low pass filter: an RC circuit
I Input: Voltage source vs(t); Output: capacitor voltage

Vc(jω) = HL(jω)Vs(jω)

Farzaneh Abdollahi Signal and Systems Lecture 6 20/71



Outline Filtering Magnitude and Phase of Fourier Transform Sampling

A non-ideal low pass filter cont’d

I RC dvc (t)
dt + vc(t) =

vs(t)⇔Vc(jω)(RCjω + 1) =
Vs(jω)

I ∴
HL(jω) = Vc (jω)

Vs(jω) = 1
1+RCjω
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A non-ideal low pass filter cont’d

I h(t) = 1
RC e−

t
RC u(t)

I step response: s(t) = [1− e−
t

RC ]u(t)

I τ = RC

I To decrease the pass band in freq. RC↑ in step response, it takes
longer to get to the final value!
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A non-ideal high pass filter

I The same RC circuit But

I Voltage source vs(t); Output: resistor voltage VR(jω) = HH(jω)Vs(jω)

I vR = RC dvC
dt  HH(jω) = RCjω

1+jωRC = 1− HL(jω)
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A non-ideal high pass filter cont’d

I Magnitude and phase of freq. response
I It passes the signal which freq. |ω| ≥ 1

RC with min attenuation
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A non-ideal high pass filter cont’d

I Step response of the filter: s(t) = e−
t

RC u(t)
I By RC↑

I It takes longer time for step response to reach to the final value
I Pass band of filter is extended (cut of freq. is transferred to the lower freq.)
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Band Pass Filters

I Band pass filters can also be made by resistors, amplifiers, capacitors, and
etc.

I Designing a filter with variable center freq. is more challenging

I One method is designing a filter with fixed freq. and then take advantage
of sin amplitude modulation (product property)
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Band Pass Filters

I Y (jω) = δ(ω − ωc) ∗
X (jω) = X (j(ω−ωc))

I F (jω) =
δ(ω + ωc) ∗W (jω) =
W (j(ω − ωc))
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Band Pass Filters

I Now if we keep only real part of f , i.e. use cosωct instead of e−jωc t , we
get

I It is equivalent to a bandpass filter with center ωc
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DT Filters

I They are described by difference equations
I The two basic classes:

I With Recursive equations
I With Non-recursive equations (Moving Average Filters)
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Nonrecursive DT Filters

I Consider a Three moving average:

y [n] =
1

3
{x [n − 1] + x [n] + x [n + 1]}
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Nonrecursive DT Filters

I They have Finite Impulse Response (FIR)

I Their general form is: y [n] =
∑M

k=−N bkx [n − k]
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Nonrecursive DT Filters

I Example: M = N = 1
y [n] = 1

3 (x [n− 1] + x [n] + x [n + 1])

I It is a low pass filter
I H(e jω) = 1

3 (e jω + 1 + e−jω) =
1
3 (1 + 2cosω)

I By increasing number of
sentences, the obtained filter
shape is closer to the deal filter
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Nonrecursive DT Filters

I Example: Consider FIR filter : y [n] = 1
N+M+1

∑M
k=−N x [n − k]

I Its Freq. Response will be H(e jω) = 1
N+M+1

∑M
k=−N e−jωk

I Figs show |H(e jω)| for N = M = 16 and 32
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Nonrecursive DT Filters

I This is Freq. Response of a moving average filter with 256 weights
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Nonrecursive DT Filters

I Example: y [n] = x[n]−x[n−1]
2

I It is a high pass filter
I H(e jω) = 1

2 [1− e−jω] =

je−jω/2sinω/2
I To have causal filter N should be

negative

Farzaneh Abdollahi Signal and Systems Lecture 6 35/71



Outline Filtering Magnitude and Phase of Fourier Transform Sampling

Recursive DT Filters

I Their length of impulse response is infinite (Infinite Impulse Response
IIR).

I Their general formula is
∑N

k=0 aky [n − k] =
∑M

k=0 bkx [n − k]

I First order filter is y [n]− ay [n − 1] = x [n]
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Recursive DT Filters

I Example: y [n]− ay [n− 1] =
x [n] H(e jω) = 1

1−ae−jω

I h[n] = anu[n], s[n] = 1−an+1

1−a
I By choosing 0 < a < 1, a

low pass filter is obtained
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Recursive DT Filter Example Cont’d

I By choosing −1 < a < 0, a
high pass filter is obtained

I There is a trade off between
fast step response in time
domain and bandwidth of
filter in freq. domain

I a↓ pass band ↓ and
faster response

I Exercise: What will happen
if |a| > 1 is chosen?
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Non-Ideal Filters
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Non-Ideal Filters

I By increasing order of filter, sharper filter (from pass band to stop band)
with faster response is obtained.

I In designing a lowpass filter a trade of between pass band (freq. domain)
and settling time (time domain) can be considered

I Example: The fig. in next page shows a 5th ordered Butterworth filter
and a 5th ordered elliptic filter

I Transient band of elliptic filter is narrower (it is sharper) than Butterworth
filter

I The elliptic filter has more oscillations in step response and its settling time
is longer than butterworth filter
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Non-Ideal Filters
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Non-Ideal Filters

I To obtain sharper filter on can use cascade to identical filters

I H1(jω) = H2(jω) H(jω) = H1(jω)H2(jω) = H2
1 (jω)

Farzaneh Abdollahi Signal and Systems Lecture 6 42/71



Outline Filtering Magnitude and Phase of Fourier Transform Sampling

Magnitude and Phase of Fourier Transform

I Fourier Transform is complex in general , therefore it can be expressed in
polar representation:
X (jω) = |X (jω)|e]X (jω)

X (e jω) = |X (e jω)|e]X (e jω)

I Reconsider Parseval’s relation:
∫∞
−∞ |x(t)|2dt =

∫∞
−∞

1
2π |x(jω)|2dω

I |X (jω)|2 is energy density spectrum of x(t)
I |X (jω)| conveys information about relative magnitudes of the complex

exponential terms which build x(t)
I ]X (jω) convey information about relative phases of complex exponential

terms which build x(t) (phase distortion)
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Magnitude-Phase Representation for Freq. response of LTI
system

I In general, changes in phase function of X (jω) make changes in time
domain characteristics of signal x(t)

I The auditory system can tolerate phase changes relatively
I By mild phase distortion in individual sound, the speech is still

understandable
I But severe phase distortion may lead to loose intelligibility

I Example: playing a taped record backward
F{x(−t)} = X (−jω) = |X (jω)|e−j]X (jω) (change is only in phase)

Farzaneh Abdollahi Signal and Systems Lecture 6 44/71



Outline Filtering Magnitude and Phase of Fourier Transform Sampling

Example

I x(t) = 1 + 1
2sin(2πt + φ1) + sin(4πt + φ2) + 1

5cos(6πt + φ3)

−8 −6 −4 −2 0 2 4 6
t

φ1=φ2=φ3=0

−8 −6 −4 −2 0 2 4 6
t

φ1=4, φ2=12, φ3=6

−8 −6 −4 −2 0 2 4 6
t

φ1=−4, φ2=5, φ3=3
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Magnitude-Phase Representation for Freq. response of LTI
system

I In LTI systems we had: Y (jω) = H(jω)X (jω)/Y (e jω) = H(e jω)X (e jω)
I One can express them in magnitude and phase:

I |Y (jω)| = |H(jω)||X (jω)|
I ]Y (jω) = ]H(jω) + ]X (jω)
I (similar relation for DT)

I ∴ The effect of an LTI system on input signal is
I scaling its magnitude by |H(jω)| ( |H(jω)| is gain of the system)
I adding ]H(jω) to its phase (]H(jω) is phase shift of the system)

I By designing H(jω) properly one can modify the phase and magnitude of
input signals (idea of designing controller )
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Group Delay

I Consider an LTI system with freq. response: H(jω) = e−jωt0

I  |H(jω)| = 1, and]H(jω) = −ωt0

I It makes a time shifting or delay: y(t) = x(t − t0)

I A delay in time has negative slop of phase at freq.
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Log Magnitude and Bode plots

I To be able to express the magnitude relation of an LTI system by additive
terms (similar to phase)logarithmic amplitude can be used:
log |Y (jω)| = log |H(jω)|+ log |X (jω)|

I Logarithmic scale provides this opportunity to display the details in wider
dynamic range

I By logarithmic representation cascade of two LTI systems can be
expressed as:

I log |H(jω)| = log |H1(jω)|+ log |H2(jω)|
I ]H(jω) = ]H1(jω) + ]H2(jω)

I Since |H(jω)| = |H(−jω)| and ]H(jω) = −]H(−jω):
I For CT log representation is found for ω > 0
I For DT log representation is found for 0 < ω < π
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FLog Magnitude and Bode plots
I Unit of logarithm amplitude scale is 20log10 referred to 1 decibels (1 dB).

I The name is in honor of Graham Bell
I It is defined based on the power relation of system (10log10|H(jω)|2)
I Therefore:

|H(jω)| = 1→ 0dB

|H(jω)| =
√

2→ ∼ 3dB
|H(jω)| = 2→ ∼ 6dB
|H(jω)| = 10→ 20dB
|H(jω)| = 100→ 40dB

I In CT, the freq is also represented by log scale

I Bode plots: Plots of 20log10|H(jω)| and ]H(jω) versus log10ω

I In DT since the freq. axis is always between ω = 0 and ω = π freq. does
not required log scale.

I In some cases like ideal filters which amplitude is none zero only in a
limited range of freq. linear scale is more suitable.
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Sampling

I Due to significant development of digital technology, DT processors are
more flexible comparing to CT ones.

I We are looking to define a method to transfer CT signals to DT.

I A method is sampling from CT signals

I If we take samples with unified distance from a CT signal, can we always
retrieve it uniquely?
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Sampling

I Let us use impulse train to
take samples from x(t) in
identical distance.

I p(t) =
∑∞

n=−∞ δ(t −
nT ) P(jω) = 2π

T δ(ω−kωs)
(ωs = 2π

T : sampling freq.)

I Xp(jω) = 1
2π [X (jω) ∗ P(jω)]
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Sampling Effect in Freq.

I Xp(jω) =
1
T

∑∞
k=−∞ X (j(ω − kωs))

I Assume
ωM < ωs − ωM ωs > 2ωM

I ∴ there is no overlap
between the shifted replicas
of X (ω)
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Sampling Effect in Freq.

I If ωs < 2ωM

I if ωs > 2ωM , x(t) can be
exactly recovered from xp(t)
by employing a lowpass filter
with gain T and a cutoff
freq. ωM < ωc < ωs − ωm
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Sampling Theorem

I Let x(t) be a band limited signal with X (jω) = 0 for |ω| > ωM Then x(t)
is uniquely determined by its samples x(nT ), n = 0,±1,±2, ... if
ωs > 2ωM where ωs = 2π

T Given these samples, we can reconstruct x(t)
by generating a periodic impulse train in which successive impulses have
amplitudes that are successive sample values. This impulse train is then
processed through an ideal lowpass filter with gain T and cutoff frequency
ωM < ωc < ωs − ωm. The resulting output signal will exactly equal x(t).

I ωs is Nyquist freq.

I ωM is Nyquist rate
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Aliasing
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Signal Reconstruction (Interpolation)
I Bandlimited Interpolation: Assuming the signal is bandlimited.

I Interpolation is done by an ideal lowpass filter
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Signal Reconstruction: with Ideal Lowpass Filter

I In time domain:
xp(t) = x(t)

∑∞
n=−∞ δ(t − nT ) =∑∞

n=−∞ x(nT )δ(t − nT )

I

I
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Signal Reconstruction: with Ideal Lowpass Filter

I In time domain:
xp(t) = x(t)

∑∞
n=−∞ δ(t − nT ) =∑∞

n=−∞ x(nT )δ(t − nT )

I h(t) = Tω0
π sinc(ω0t

π )

I
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Signal Reconstruction: with Ideal Lowpass Filter

I In time domain:
xp(t) = x(t)

∑∞
n=−∞ δ(t − nT ) =∑∞

n=−∞ x(nT )δ(t − nT )

I h(t) = Tω0
π sinc(ω0t

π )

I xr (t) = xp(t) ∗ h(t) =∑∞
n=−∞ x(nT )h(t − nT )
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Zero order Hold (ZOH): A Staircase-Like Approximation
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First order Hold: A Linear Interpolation
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Signal Reconstruction
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Original Image

Prof. Alan V. Oppenheim lecture 17
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Sampled Image

Prof. Alan V. Oppenheim lecture 17
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Reconstructing by Zero-Order Hold

Prof. Alan V. Oppenheim lecture 17
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Reconstructing by First-Order Hold

Prof. Alan V. Oppenheim lecture 17
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DT Processing of CT Signals

I It is done in three

1. Continues to Discrete (C/D) Conversion
2. DT Processing
3. Discrete to Continues (D/C) Conversion
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C/D Converter

I It is done in two steps:

1. Sampling:
xp(t) = xc(t)

∑∞
n=−∞ δ(t − nT ) =

∑∞
n=−∞ xc(nT )δ(t − nT )

2. Conversion of impulse train to DT sequence:
I Take CT FT of xp: Xp(jω) =

∑∞
n=−∞ xc(nT )e−jnωT

I Take DT of x [n]: X (e jΩ) =
∑∞

n=−∞ x [n]e−jnΩ

I ∴X (e jΩ) = Xp(jω)|ωT=Ω
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Outline Filtering Magnitude and Phase of Fourier Transform Sampling

C/D Converter

Farzaneh Abdollahi Signal and Systems Lecture 6 67/71



Outline Filtering Magnitude and Phase of Fourier Transform Sampling

D/C Converter
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Outline Filtering Magnitude and Phase of Fourier Transform Sampling

DT Processing of CT Signals
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Outline Filtering Magnitude and Phase of Fourier Transform Sampling
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Outline Filtering Magnitude and Phase of Fourier Transform Sampling

DT Processing of CT Signals

I Hc(jω) =

{
Hd(e jω) |ω| < ωs/2

0 |ω| > ωs/2
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