

Neural Networks Lecture 7: Self Organizing Maps

H.A Talebi Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

	Winter 2011	∢ □ ▶	▲圖 ▶ ★ 国 ▶ ★ 国 ▶	≡ ∽∢⊘
H. A. Talebi, Farzaneh Abdollahi	Neural Networks	Lecture 7		1/58

Hamming Net and Maxnet Hamming Network

Unsupervised Learning of Clusters Kohonen network (Kohonen 1988) Winner Take-All Learning

Self Organizing Feature Map

LVQ

CPN

ART ART1

- In this lecture we want to explore the unsupervised training algorithms of neural networks where their weights can adapt by self-organization algs.
- ▶ Both inputs and their probability density will affect the training.
 - Rare inputs will have less impact for learning than those occurring frequently.
- In the absence of target responses or guidelines provided directly by the teacher, the network can build classification / recognition /mapping performance based on competitive learning.
 - The winning output node will receive the only reward during learning
 - Sometimes, the extension of rewards for the node's neighborhood will also be allowed.

4/58

Hamming Net and Maxnet (Lippmann 1987) It is a two-layer bipolar classifier

1. First Layer:Hamming Network

- It is feedforward type the classifier.
- It classifies based on minimum Hamming distance
- The strongest response of a neuron is indicative of the min HD value between the input and the class this neuron represents.
- The p-class Hamming network has p output neurons

2. Second Layer: MAXNET

- it operates as a recurrent recall network.
- It suppresses all the outputs except the initially max output

of the first laver H. A. Talebi, Farzaneh Abdollahi

Block diagram of the minimum HD classifier.

Hamming Network

- ► Consider the *n*-tuple prototype vector of the *m*'th class is s^(m), for m = 1, 2, ..., p
- the *n*-tuple input vector is *x*.
- ► The entries of the weight vector w_m = [w_{m1} w_{m2} ... w_{mn}]' connect inputs to the m'th neuron, which performs as the class indicator
- ► The network should be designed s.t. the *m*'th output is 1 iff x = s^(m).
- $\therefore w_m = s^{(m)}$ and the outputs: $x^T s^{(1)}, \dots, x^T s^{(m)}, \dots, x^T s^{(p)}$

伺下 イヨト イヨト

- ► $x = s^{(m)} \Rightarrow s^{(m)T} s^{(1)}, \ s^{(m)T} s^{(2)}, ..., s^{(m)T} s^{(m)}, ..., s^{(m)T} s^{(p)}$
- ► considering ±1 as input s^(m), only the mth output is n and others are less then n
- ► Total we can say:
 - ► The scalar product $x^T s^{(m)}$ of two bipolar vectors can be written as the total # positions in which they agree - # positions they differ. $x^T s^{(m)} = (n - HD(x^T, s^{(m)})) - HD(x^T s^{(m)})$ $\rightarrow \frac{1}{2} x^T s^{(m)} = (\frac{n}{2} - HD(x^T, s^{(m)}))$
 - $\frac{1}{2}$ is for convenient
- ► The weight matrix W_H of the Hamming network s defined s.t its rows are the prototypes $\begin{bmatrix} s_1^{(1)} & s_2^{(1)} & \dots & s_n^{(1)} \end{bmatrix}$

Adding the fixed bias value of ¹/₂ to the input of each neuron results:

$$net_m = \frac{1}{2}x^T s^{(m)} + \frac{n}{2} \\ = n - HD(x^T s^{(m)}) \\ for \ m = 1, 2, ..., p$$

• Activation function is defined as $f(net_m) = \frac{1}{n}net_m$ for m = 1, ..., p

•
$$0 \le net_m \le n \Rightarrow 0 \le f(net_m) \le 1$$
.

► ... The neurons need to perform only the linear scaling of activation function.

Lecture 7

- The more similar input vector to a prototype yields the smaller HD.
- A perfect match of input vector to class m: HD = 0 → f(net_m) = 1.
- ► The complement of the prototype of class m: f(net_m) = 0.
- The response of the network essentially terminates the classification in only the first layer.
- MAXNET is a recurrent processing to keep the max output neuron high and decay the remaining nodes to zero.
- ▶ It has pos. self-fb with weighting 1.
- and M-1 cross-fb with weighting

 $-\epsilon$

Lecture 7

► The weight matrix

$$\begin{bmatrix} 1 & -\epsilon & \dots & -\epsilon \\ -\epsilon & 1 & \dots & -\epsilon \\ \vdots & \vdots & \ddots & \vdots \\ -\epsilon & -\epsilon & \dots & 1 \end{bmatrix}$$

►
$$0 < \epsilon < \frac{1}{p}$$

- ► Considering the activation function shown in Fig. and the initializing vector condition 0 ≤ y_i⁰ ≤ 1 for i = 1, ..., p:
 - ► After a number of recurrences, the only unsuppressed node will be the one with the largest initializing entry y⁰_m
 - ... the only nonzero output response node is the node closest to the input vector argument in sense of HD.

Amirkabi

• Therefore, recurrent processing by MAXNET is expressed as $y^{k+1} = \Gamma[W_M y^k]$.

\triangleright Γ is a nonlinear diagonal matrix operator with entries

$$F(net) = \left\{ egin{array}{cc} 0 & net < 0 \ n & net \geq 0 \end{array}
ight.$$

- Example: Let us design an HD classifier for three characters C, I, and T
- The prototypes are

$$\begin{aligned} s^{(1)} &= [1 \ 1 \ 1 \ 1 \ -1 \ -1 \ 1 \ 1 \ 1] \\ s^{(2)} &= [-1 \ 1 \ -1 \ -1 \ 1 \ -1 \ 1 \ -1] \\ s^{(3)} &= [1 \ 1 \ 1 \ -1 \ 1 \ -1 \ 1 \ -1] \end{aligned}$$

Amirkabin

・ロト ・回ト ・ヨト ・ヨト

2

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

- Unsupervised classification is called clustering
- Clustering is considered as the grouping of similar objects and separating of dissimilar ones.
- Sometimes even number of clusters are not known a priori.
 - The clustering technique should
 - 1. identify # of classes according to a certain criterion
 - 2. assign the membership of the patterns in these classes.
- ▶ The clustering technique presented here, knows # of clusters a priori
- The input is required to be identifies as member of one of the possible clusters.

Measures of similarity for clustering data: (a) distance and (b) a normalized scalar product.

- ► Since it is unsupervised, criterion for similarity should be defined:
 - 1. Euclidean distance between two patterns x, for x_i : $||x - x_i|| = \sqrt{(x - x_i)^T (x - x_i)}$
 - 2. scalar product (cos of the angle between x and x_i): $\cos \psi = \frac{x' x_i}{\|x\| \|x_i\|}$. For $\cos \psi_2 > \cos \psi_1$: x is more similar to x_2 than x_1 .
- scalar product is simpler for implementation

► For normalaized vectors both method vield similar Tesults イミト き つくで I. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 7 14/58

Winner Take-All Learning

- Objective is learning the weights s.t. classifies input vectors into one of the specified number of *p* categories
- Training set $\{x_1, x_2, ..., x_N\}$.
- ► $y = \Gamma[Wx]$
- Γ is diagonal continuous activation function
- ► $W = [w_1^T \ w_2^T \ ... \ w_p^T]^T$, $w_i = [w_{i1} \ ... \ w_{in}] \ i = 1, ... p$
- Each neuron represent a cluster
- Winner take-all learning: Only the weight corresponding to the winner neuron is updated

(Adapted weights highlighted)

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Lecture 7

Amirkabin

- ► Before start learning all weights should be normalized $\hat{w}_i = \frac{w_i}{\|w_i\|}$ i = 1, ..., p
- For $x = s^m$, by selecting $w = s^m m$ th neuron will be max.

- But s^m . center of cluster is not known a priori
- Proper learning rule is required to find the centers
- The weight vectors should be modified accordingly so that they become more similar to the current input vector
- ► The winning neuron (the closest approximation of the current input x), to be updated is selected s.t. $||x - \hat{w}_m|| = (x^T x - 2\hat{w}_m^T x + 1)^{1/2} = \min_{i=1,\dots,p} \{||x - \hat{w}_i||\}$
- ► Searching for the min of p distances corresponds to finding the max among the p scalar products ŵ^T_mx = max_{i=1,..,p}(ŵ^T_ix)
- If the weights are not normalized the above statement is not always true

(1日) (1日) (日) (日) (日)

- ► After identifying the winning neuron, its weights must be adjusted s. t. the distance ||x - w_m|| is reduced.
- ▶ The wining weight is updated along the gradient direction in the weight space $\nabla_{w_m} ||x w_m||^2 = -2(x w_m)$
- ▶ ∴ Learning rule in *k*th step is

$$\hat{w}_m^{k+1} = \hat{w}_m^k + \alpha^k (x - \hat{w}_m^k)$$
$$\hat{w}_i^{k+1} = \hat{w}_i^k \quad i \neq m$$

- α^k : a suitable learning constant
- *m* is the winning neuron selected based on the scalar product comparison (largest *net_i*)
- During the learning the clusters are developed,
- ► The network weights acquire similarity to input data within clusters.
- To avoid unconstrained growth of weights, α is usually reduced monotonically and the learning slows down.

H. A. Talebi, Farzaneh Abdollahi

- Let us check the impact of the learning rule:
 - ► The rule should increase the chances of winning by the *m*'th neuron, if the same input pattern using the updated weights is repeated
- ► If so the following inequality should be valid $\hat{w}_m^T x < (\hat{w}_m^T + \triangle \ \hat{w}_m^T) x \rightarrow \triangle \ \hat{w}_m^T x > 0$
- ► Based on the learning rule : $x^T x - \hat{w}_m^T x > 0 \rightarrow \|x^T\| \|x\| \cos 0 - \|\hat{w}_m^T\| \|x\| \cos \phi > 0$
- Assuming all vectors are normalized: 1 − cosφ > 0 which is always true, (φ = ∠(x, ŵ_m^T))
- ► ∴ the winner-take-all learning rule produces an update of the weight vector in the proper direction.

▲圖▶ ▲ 国▶ ▲ 国▶

- Geometrical interpretation of the rule is shown in Fig.
- ► Assume that in this step x̂ is the normalized input vector of x and ŵ_m yield the maximum scalar product ŵ_m^Tx̂, for i = 1, 2, ..., p.
- ► To implement the rule for x = x̂, an increment of the weight vector is computed as a fraction of x̂ ŵ_m^T
- ► ∴ weight adjustment is the rotation of the weight vector ŵ_m toward the input vector without a significant length change.
- ► The adjusted weight vector w'm's length is below unity ~ for next step it should be renormalized

向下 イヨト イヨト

Lecture 7

Amirkabin

- ► (Simpson 1990) proposed a supervised Kohonen network:
 - $\alpha > 0$ for proper node responses
 - $\alpha < 0$ otherwise
- Another modification of the winner-take-all learning rule for the cases which clusters may be hard to distinguish named Leaky competitive learning
 - Both the winners' and losers' weights are adjusted in proportion to their level of responses.
- Recall Mode The network trained in the winner-take-all mode responds instantaneously during feedforward recall
- The response is $y = \Gamma[Wx]$
- ► The layer now performs as a filter of the input vectors such that the largest output neuron is found as y_m = max(y₁,...,y_p)

・ 同 ト ・ ヨ ト ・ ヨ ト

Weight Initializing

- Random initial weight vectors should be selected s.t. uniformly distributed on the unity hypersphere in *n*-dimensional pattern space.
- ► Self-organization of the network suffers from some limitations:
 - Because of its single-layer architecture, linearly nonseparable patterns cannot be efficiently handled by this network.
 - The network training may not always be successful even for linearly separable patterns.
- The weights may get stuck in isolated regions without forming adequate clusters.
- In such cases the training must be reinitialized with new initial weights,
- After the weights have been trained to provide coarse clustering, the learning constant α should be reduced

・ 同 ト ・ ヨ ト ・ ヨ ト

- The simple winner-take-all training alg can be modified, for K winners in the competition
 - Such learning is called multiple-winner unsupervised learning.(Hecht-Nielsen 1987).
 - ► The winning K neurons would be the ones best matching the input vector, instead of a single one as in the winnertake- all mode.
 - The outputs of winning neurons can be set so that they sum to unity.

Example

- Consider the normalized patterns for training: $\{x_1, x_2, x_3, x_4, x_5\} = \{ \begin{bmatrix} 0.8\\ 0.6 \end{bmatrix}, \begin{bmatrix} 0.1736\\ -0.9848 \end{bmatrix}, \begin{bmatrix} 0.707\\ 0.707 \end{bmatrix}, \begin{bmatrix} 0.342\\ -0.9397 \end{bmatrix}, \begin{bmatrix} 0.6\\ 0.8 \end{bmatrix} \}$
- # of clusters: 2, and $\alpha = 1/2$
- ▶ The normalized initial weights: $w_1^0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, w_2^0 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$
- ► The inputs are submitted in ascending sequence and recycled
- ► The first neuron won all of the first six competitions in a row → the first weight is only updated.
- ► In the second training cycle, x₂ and x₄ has been detected by the second neuron.
- After 20 steps the weights are adjusted properly and index the center of clusters.

(1日) (1日) (日)

Example Cont'd

(a) training patterns and weight as-

signments and (b) weight learning, Steps 1 through 20.

H. A. Talebi, Farzaneh Abdollahi

Neural Networks

Lecture 7

2

< 2 > < 2 >

Self Organizing Feature Map

- The feature mapping alg converts patterns of arbitrary dimensionality into the responses of one-or two-dimensional arrays of neurons
- It is assumed there are P clusters in a one-or- two dimensional array
- Like the previous network the weights of each neuron should point to the center of the cluster
- Learning within self-organizing feature maps results in finding the best matching neuron cells which also activate their spatial neighbors to react to the same input.

Amirkabi

- After learning, each input causes a localized response having a position on the neurons' array that reflects the dominant feature characteristics of the input.
- Input x is applied simultaneously to all nodes.
- The best matching neuron to the input is announced as winner
- The weights affecting the currently winning node and its neighborhood undergo adaptation at the current learning step, other weights remain unaffected.
- Consider the winning neuron by: #
- Rectangular and hexagonal neighboring is * shown in Fig Neural Networks Lecture

Lecture 7

- Neighboring in one dimension neuron is shown in Fig.
- ► The best matching neuron *m* is defined as ||*x* - *w_m*|| = min_i{||*x* - *w_i*||}
- ► The radius of neighboring N_m should be decreasing as the training progresses, N_m(t₁) > N_m(t₂) > N_m(t₃)..., where t_l < t₂ < t₃, ...
- The weight updating rule for self-organizing feature maps is defined: △w_i(t) = α(N_i, t)[x(t) - w_i(t)] for i ∈ N_m(t)
- $\blacktriangleright \ \alpha$ is positive valued learning function
- ► a can be expressed as a function of the neighborhood radius
- The initial weights are defined randomly

▲□ ▶ ▲ □ ▶ ▲ □ ▶

27/58

Defining Neighboring Sets

- 1. In defined neighboring set, all weights are updated with similar rate
- 2. All weights of the network is updated properly with different rate
 - The rate for the winning neuron weight is max
 - ► The closer neuron to the winner updates with higher rate
- ► In the first type the radius of the neighboring set in decreasing in time
- ▶ In the second type, the learning rate is decreasing in time
- In the first type there is significant difference on the edge of neighboring set
- ► The first type is faster since *#* of weights of be updated is less

< 同 > < 三 > < 三 >

Example

H. A. Talebi

- Let us investigate the effect of topological structure in updating the weights.
- Objective: Clustering input patterns representing letters in three different fonts
- ► Initial number of neurons(Maximum of possible clusters): 25
- ► Learning rate is reduced linearly from 0.6 to 0.01.
- Three topology is considered:
 - 1. No structure (only the winner is updated)

	NEURON	PATTERNS		
	3	C1,C2,C3		
	13	B1,B3,D1,D3,E1,K1,K3,E3	3	
	16	A1,A2,A3		
	18	J1,J2,J3		
	24	B2,D2,E2,K2	<ロ> (四) (四) (主) (主) 王	୬୯୯
arzan	eh Abdollahi	Neural Networks Le	ecture 7	29/5

Example

- 2. Linear structure (R=1)
 - If Neuron J is the winner, the neurons $J \pm 1$ are also updated

NEURON	PATTERNS
6	K2
10	J1,J2,J3
14	E1,E3
16	K1,K3
18	B1,B3,D1,D3
20	C1,C2,C3
22	D2
23	B2,E2
25	A1,A2,A3

3. Diamond Structure

▶ If Neuron X_{IJ} wins then neurons $X_{I\pm 1J}$, $X_{IJ\pm 1}$ also update

$i \setminus j$	1	2	3	4	5
1 2	C1,C2,C3	J1,J2,J3	D2 D1.D3		B2 E2
3 4		B1	K2 E1,E3,B3		A3
5		K1,K3		A1,A2	

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Amirkabir

Example: Character Recognition

H. A. Talebi, Farzaneh Abdollahi

Neural Networks

э

SOM

H. A. Talebi, Farzaneh Abdollahi

33/58

æ

Summary of SOM Algorithm

- Includes one layer of a lattice neurons which defines a discrete output space
- ► A time varying neighborhood function N_m is defined around a winning neuron m
- ► A learning rate parameter *a* is defined that also can be considered decreasing in time gradually
- The algorithm includes five main steps:
 - 1. Initialization Choose random values for the initial weight vectors $W_j(0)$. Keep the magnitude of the weights small and different from each other
 - 2. Sampling Draw a sample x from input space. It is applied to the lattice.
 - 3. Similarity Matching Find the winner neuron *m*th, based on Euclidean distance criterion
 - 4. Updating Adjust the weights of the winner and its neighbors based on $\triangle w_i(t) = \alpha(N_i, t)[x(t) w_i(t)]$ for $i \in N_m(t)$
 - 5. Continuation Continue with step 2 until no noticeable changes in the feature map is observed

H. A. Talebi, Farzaneh Abdollahi

Properties of Feature Map

- Let X: Input space; A: Discrete output space; Φ : X → A a nonlinear transformation called feature map represented by weight vectors {w_i}
- ▶ P1:Approximation of Input Space: SOM alg. stores a large set of input vectors x ∈ X by finding a smaller set of prototypes w_j ∈ A
 - It is useful for dimension reduction or data compression

Outline Hamming Net and Maxnet Unsupervised Learning of Clusters Self Organizing Feature Map LVQ CPN ART

- ▶ **P2: Topological Ordering**: By approximating the input space \mathcal{X} in the form of weights w_j , Φ provides a faithful representation of the important features that characterize the input vector $x \in \mathcal{X}$ in terms of a certain criterion.
- ▶ P3: Density Matching: The input vectors *x* with higher probability of occurrence are mapped into larger domain of the output space with better resolution
- P4: Feature Selection: SOM selects the best features for approximating the underlying distribution

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

- Consider SOM with 100 neurons in 1 dimension; x in two dimetions:
 0 ≤ x₁ ≤ 1; 0 ≤ x₂ ≤ 1
- The initial weights are chosen randomly

(a) Two-dimensional input data distribution. (b) Initial condition of the one-dimensional lattice. (c) Condition of the lattice at the end of the ordering phase. (d) Condition of the lattice at the end of the convergence phase.

Learning Vector Quantization (LVQ) (Kohonen 1990)

- It is a supervised pattern classification
- Each output represents a particular class
- The weights of each neuron represents the center of the corresponding class
- It has similar structure of Kohonen
- ▶ the only difference is in training which is supervised
- First the wining neuron is found
- Since it is supervised, it can be verified whether or not the winner is chosen correctly
 - The correct chosen winner is updated toward input vector
 - ► The wrong chosen winner is updated in away form the input vector

- ► x: training vector
- ► T: correct category or class for training vector
- C_j : the winner neuron
- $\alpha > 0$: learning rate
- ► After finding the winner neuron based on Euclidean distance

• If
$$T = C_j W_j(k+1) = W_j(k) + \alpha(x - W_j(k))$$

• If
$$I \neq C_j$$
 $W_j(k+1) = W_j(k) - \alpha(x - W_j(k))$

Amirkabir Usiweity of Technology

Counterpropagation Network (CPN)

- CPN is a two-layer network consisting of two feedforward layers.
- ▶ It was introduced by Hecht-Nielsen (1987, 1988).
- Considering the vector pairs (x₁, z₁), ..., (x_r, z_r), CPN can map z = Φ(x)
 - relates x_i to z_i based in $\Phi(.)$
- If the inverse of ϕ exist, CPN can also learn inverse mapping $x = \Phi^{-1}(z)$
- Similar to hetro-associative memories, it relates input vector to output vector
- Compared to bidirectional associative memory , there is no feedback and delay activated during the recall operation mode.
 - ... it can be trained to perform associative mappings much faster than a typical two-layer network.
- CPN is useful in pattern mapping and associations, data compression, and classification.

H. A. Talebi, Farzaneh Abdollahi

- It has two layers similar to ff networks
- BUT it has different learning strategy

A E > A E >

• Consider the r pairs of training data $(x_1, z_1^d), ..., (x_r, z_r^d)$

▶ The first layer is Kohonen Layer

- The training is unsupervised; winner take-all mode
- ► For example, if by applying *x_i* the *m*th neuron wins:
 - The weights of the *m*th neuron is updated as $w_m^{k+1} = w_m^k + \alpha^k (x_i - w_m^k)$
 - α^k may be reduced at each iteration
- The training is continued by applying the next training data and updating the weights of the winner neuron
- ▶ When training is terminated, the output of this layer, y represents an input cluster
- ► Therefore in recall mode, if the input x_i belongs to mth cluster, the output vector y_i of the Kohonen layer becomes

$$y_i = [0 \ 0 \ \dots \ 1 \ \dots \ 0]$$
 (1)

回下 くほう くほう

► The second layer is Grossberg Layer

- It has outstar learning mode which is a supervised learning
- Activation fcn is sgn(.)
- By applying x_i , the weights are updated as : $\Delta v_m = \beta (z_i^d v_m)$
 - β : learning rate can be reduced gradually
 - z_i^d : desired output of x_i
 - *v_m*: Weight vector Output layer
- The training is continued by applying the next training data and updating the weights of the corresponding neuron
- If E = ∑^r_{i=1}(z^d_i − z_i) > E_{max}, the training data is resubmitted to the network and weight matrix V is updated
- After the training is ceased, in recall mode $z = \Gamma[Vy]$, where $V = [v_1 \ v_2 \ ... v_p]$ is the weight matrix
- Considering (1) as input of Gorssberg layer $\rightsquigarrow z = \Gamma[v_m]$

→ (□) → (□) → (□) → (□)

- ► After training first layer, p clusters are formed among sample input x; each w_k; k = 1, ..., p(p : # of first layer neurons) is a representative of a cluster (average).
- ► After training the second layer, cluster k is mapped to an output vector z, which is the average of φ(x); x ∈ cluster k
- ▶ It can be shown that after training $w_k \rightarrow < x >, v_k \rightarrow < \phi(x) >$
 - < x > is the mean of all training samples that make the *k*th neuron win
- CPN works like a look-up of math table.
- For any input x, finds a region where x falls (represented by the wining y node);
- Then uses the region as the index to look-up the table for the function value.
- ► The more cluster nodes *y*, the more accurate mapping is achieved.

ロト 不得下 不良下 不良下

Full CPN

- If both z = Φ(x) and x = Φ⁻¹(z) exist, we can establish bi-directional approximation
- Two pairs of weights matrices should be trained:
 - W(x to y) and V(y to z) for approx. map x to $z = \Phi(x)$
 - U(z to y) and T(y to x) for approx. map z to $x = \Phi^{-1}(z)$
- ▶ When training sample (x_i, z_i) is applied, they may separately determine the winner y_{m(x)} or y_{m(z)}

・ 戸 ト ・ ヨ ト ・ ヨ ト

Adaptive Resonance Theory (ART)

- ▶ It is developed by Carpenter and Grossberg (1987-1988)
- Motivations: In Previous networks:
- Number of class nodes is pre-determined and fixed.
 - Under- and over- classification may result from training
 - Some classes may have empty members.
 - ► There is no control on similarity degree of inputs grouped in one class.
- Training is non-incremental:
 - Adding new samples often requires re-train the network with the enlarged training set until a new stable state is reached.

ART

- It is applied for cluster discovery
- ► The network learns the clusters in an unsupervised mode.
- The novelty of ART: It can accommodate new clusters without affecting the stored clusters
- The network produces the cluster by itself without a priori knowledge info about the possible number of and type of clusters
- There are three types of ART:
 - 1. ART1: for binary data [?],[?]
 - 2. ART2: for continuous data [?],[?]
 - 3. ART3: for hybrid data

Amirkabi

- Art gets its name from the way it learns or recall
- In physics, resonance occurs when a small-amplitude vibration of a proper freq. causes large-amplitude vibration
- If the proper patterns develop, a stable oscillation ensues, which is the NN equivalent of resonance.
- When an input vector is presented:
 - If the network has learned it previously, a resonant state is achieved quickly.
 - Otherwise, it searches to the stored patterns for a match.
 - If no match is found, a new pattern is stored.
- ▶ The previously learned patterns remains without change

4 1 1 1 4

How ART Performs

- Suppose the input samples have been appropriately classified into k clusters (by a competitive learning).
- ► The weight vector of *j*th neuron, *w_j*, is a representative (average) of all samples in that cluster.
- When a new input vector x arrives
- ▶ Find the winner *j* among all *k* cluster nodes
- ► Compare, *w_j* with x
 - ▶ If they are sufficiently similar then update w_i properly
 - Otherwise, find/create a free class node and make x as its first member.
- ► To Design ART, we need:
 - 1. A mechanism to determine (dis)similarity between x and w_j
 - 2. A control for finding/creating new class nodes.
 - 3. All operations to be implemented by units of local computation.

・ 同 ト ・ ヨ ト ・ ヨ ト

ART Architecture

- x: Input vector
- ► y: Output vector (classes)
- w_{ji} : Bottom-Top weights from x_i to y_j
- v_{ji} : Top-Bottom weights from y_j to x_i
- ρ : vigilance parameter for similarity comparison (0 < ρ < 1)

ART1

- 1. Bottom-top processing
 - It functions like Hamming net MAXNET
 - Finds the best match and winner neuron of output (e.x. *m*th cluster)

Amirkabin

50/58

ART1

2. Top-Bottom Processing

- Checks how much similar x and cluster m is
- $\blacktriangleright~0<\rho<1$ is the threshold for vigilance test
- ► If it is similar both *W* and *V* are updated properly
- Otherwise a new cluster is added then the weights are updated

∃ ► < ∃ ►</p>

ART1 Algorithm

- 1. Set vigilance threshold $0 < \rho < 1$; for *n*-tuple input vectors, and (m = 1)-tuple output vectors. Input $\mathbf{x} = [x_i]$ is assumed binary unipolar.
- 2. Initialize the Bottom-top weight matrix, $W_{n \times m}$, and Top-bottom weight matrix, $V_{n \times m}$: $w_{ij} = \frac{1}{1+n}$, $v_{ji} = 1$
- 3. Hamming net-MAXNET
 - Find all matching score: $y_r^0 = \sum_{i=1}^n w_{ir} x_i$ for r = 1, ..., m
 - Then find the best matching cluster, $j: y_j^0 = max_{r=1,...,m}(y_r^0)$
- 4. Check the similarity test for the winning neuron *j*: $\frac{1}{\|x\|} \sum_{i=1}^{n} v_{ij}x_i > \rho$; where $\|x\| = \sum_{i=1}^{n} |x_i|$
 - If the test is passed go to the next step;
 - Otherwise if the only top layer has more than a single active node left goes to step 6;
 - Otherwise add new cluster in output $m = m \pm 1$ and go to the next step.

- 5. The weights of the winner cluster or newly created one, j, is updated : $w_{ij} = \frac{v_{ij}(t)x_i}{0.5 + \sum_{i=1}^{n} v_{ij}(t)x_i}, v_{ij}(t+1) = x_i v_{ij}(t)$
- 6. The node j is deactivated by setting y_j to 0. So this mode will not participate in current cluster search. Now go back to step 3

・回 と くほ と くほと

- The vigilance threshold ρ indicates how close an input must be to a stored cluster prototype for a desirable match.
- If *rho* is closed to $1 \rightarrow a$ close match is required;
- Smaller ρ indicates a poorer match is acceptable. → a smaller number of clusters being discovered by the ARTI network.
- In recall Mode:
 - Similar to learning mode
 - But the vigilance test is always passed and no weight updates

4 1 1 1 4

Example

- ► Consider four patterns with 25-dimensional vector with 0 and 1 entries
- ▶ Learn with two different vigilance factors: $\rho_1 = 0.7, \rho_2 = 0.3$
- ▶ Initialized weights: $w_{ij} = \frac{1}{26}, v_{ij} = 1, i = 1, ..., 25, j = 1$
- Present pattern A
- The vigilance test is unconditionally passed

• If
$$x_i = 1$$
 then $w_{i1} = \frac{2}{11}$; $v_{i1} = 1$,

- $w_{1,1} = w_{7,1} = w_{13,1} = w_{19,1} = w_{25,1} = \frac{2}{11}$, other $w_{i1} = 0$
- ► $v_{1,1} = v_{7,1} = v_{13,1} = v_{19,1} = v_{25,1} = 1$, other $v_{i1} = 0$

(1日) (1日) (日)

Example Cont'd

► Present pattern B

- The vigilance test: $\frac{1}{\|x\|} \sum_{i=1}^{25} v_{i1}x_i = \frac{5}{9} < 0.7$
- The test is failed ~ new neuron is added to to top layer
- $w_{1,2} = w_{5,2} = w_{7,2} = w_{9,2} = w_{13,2} = w_{17,2} = w_{19,2} = w_{21,2} = w_{25,2} = \frac{2}{19}$, other $w_{i2} = 0$
- ▶ $v_{1,2} = v_{5,2} = v_{7,2} = v_{9,2} = v_{13,2} = v_{17,2} = v_{19,2} = v_{21,2} = v_{25,2} = 1$, other $v_{i2} = 0$

Present Pattern C

- $y_1^0 = 5(\frac{2}{11}) + 8(\frac{1}{26}) = 1.217, y_2^0 = 9(\frac{2}{19}) + 4(\frac{1}{26}) = 1.101$
- Neuron 1 is winner
- The vigilance test: $\frac{5}{13} < 0.7 \rightarrow$ it fails
- ► Node 1 is disabled, only 1 neuron is remained
- The vigilance test for neuron 2: $\frac{9}{13} < 0.7 \rightarrow$ it fails
- Add new neuron and update the wights accordingly

▲□ → ▲ 三 → ▲ 三 → …

Amirkal

0000000

4 1 1 1 4

Amirkahi

Example Cont'd

- Present pattern D
 - Neuron 3 is the winner and passes the vigilance test.
- By $\rho_1 = 0.7$ the patterns are classified in three classes
- repeat this example for $\rho_2 = 0.3$ classifies the patterns in two classes only

Example Cont'd

H. A. Talebi, Farzaneh Abdollahi

Neural Networks

Lecture 7

э

Amirkabir