

Computational Intelligence Lecture 7: Fuzzifiers and Defuzzifiers

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

通 ト イヨ ト イヨト

Outline	Fuzzifiers	Defuzzifier	Amirkabin Uterentiy of Technolog

Fuzzifiers

Defuzzifier

・ロト ・回ト ・ヨト ・ヨト

≡ ∽∢⊘

Outline	Fuzzifiers	Defuzzifier	Amirkabir
Fuzzifiers			

<ロト < 回 > < 回 > < 回 > < 回 > <

E ∽ < (~

- Fuzzification is defined as a mapping from a real-valued point x^{*} ∈ U ⊂ Rⁿ to a fuzzy set A' ∈ U.
- ► Many crisp deterministic quantities are not deterministic in real world.
- If the form of uncertainty happens to due to imprecision, ambiguity, or vagueness, then the variable is probably fuzzy and can be represented by a membership function.
- In fuzzy control, the inputs generally originate from a piece of hardware, or a sensor
 - ► The measured input could be fuzzified in the rule-based system which describes the fuzzy controller.
- If the system to be controlled is not hardware based, e.g., an economic system or an ecosystem subjected to a toxic chemical, then the inputs could be scalar quantities of statistical sampling,
 - ► These scalar quantities could be translated into a membership function

The criteria in designing the fuzzifier

- 1. For crisp point x^* should have large membership value in fuzzy set A'
- 2. If the input of fuzzy system is corrupted by noise, then the fuzzifier should help to suppress the noise.
- 3. The fuzzifier should help to simplify the computations involved in the fuzzy inference engine.

Three Popular Fuzzifiers

- Singleton fuzzifier: $\mu_{A'}(x) = \begin{cases} 1 & \text{if } x = x^* \\ 0 & \text{otherwise} \end{cases}$
- Gaussian fuzzifier: $\mu_{A'}(x) = e^{-(\frac{x_1-x_1^*}{a_1})^2} \star \ldots \star e^{-(\frac{x_n-x_n^*}{a_n})^2}$ where a_i is pos. const. and t-norm \star is usually algebraic product or min

► Triangular fuzzifier: $\mu_{A'}(x) = \begin{cases} (1 - \frac{|x_1 - x_1^*|}{b_1}) \star \dots \star (1 - \frac{|x_n - x_n^*|}{b_n}) & \text{if } |x_i - x_i^*| \ge b_i, i = 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$ where b_i is pos. const. and t-norm \star is usually algebraic product or

min

◆母 → ◆ 臣 → ◆ 臣 → ◆ ⑤ ◆

Fuzzifiers

- Consider the product inf. eng., where $\mu_{A_i^l} = e^{-(\frac{x_i \bar{x}_i^l}{\sigma_i^l})^2}$, \bar{x}_i^l, σ_i^l conts., $i = 1, ..., n, \ l = 1, ..., M$
- ► Use Gaussian fuzzifier with algebric prod. as t-norm: $\mu_{B'}(y) = \max_{l=1}^{M} [\prod_{i=1}^{n} e^{-\left(\frac{x_{iP}^{l} - \bar{x}_{i}^{l}}{\sigma_{i}^{l}}\right)^{2}} e^{-\left(\frac{x_{iP}^{l} - \bar{x}_{i}^{*}}{a_{i}^{2}}\right)^{2}} \mu_{B'}(y)]$ where $x_{iP}^{l} = \frac{a_{i}^{2} \bar{x}_{i}^{l} + (\sigma_{i}^{l})^{2} x_{i}^{*}}{a_{i}^{2} + (\sigma_{i}^{l})^{2}}$
- Assume x_i^* is corrupted by noise: $x_i^* = x_{i-}^* + n_i^*$, $(n_i : noise)$
 - $\therefore x_{iP}^{l} = \frac{a_{i}^{2} \bar{x}_{i}^{l} + (\sigma_{i}^{l})^{2} x_{i0}^{*}}{a_{i}^{2} + (\sigma_{i}^{l})^{2}} + \frac{(\sigma_{i}^{l})^{2}}{a_{i}^{2} + (\sigma_{i}^{l})^{2}} n_{i}^{*}$
 - the noise is suppressed by $\frac{(\sigma_i')^2}{a_i^2 + (\sigma_i')^2} n_i^*$
 - The larger a_i than σ_i^l , the more suppressed n_i^*
- Exercise: Show that the triaggular fuzzifier has the same capability.

- Consider the min inf. eng., where $\mu_{A_i^l} = e^{-(\frac{x_i \bar{x}_i^l}{\sigma_i^l})^2}$, \bar{x}_i^l, σ_i^l conts., $i = 1, ..., n, \ l = 1, ..., M$
- ► Use Gaussian fuzzifier with min as t-norm: $\mu_{B'}(y) = \max_{l=1}^{M} [\min(e^{-(\frac{x_{lM}^l - \bar{x}_l^l}{\sigma_l^l})^2}, \dots, e^{-(\frac{x_{nM}^l - \bar{x}_n^*}{\sigma_n^l})^2}\mu_{B'}(y)]$ where $x_{iM}^l = \frac{a_i^2 \bar{x}_i^l + \sigma_i^l x_i^*}{a_i^2 + \sigma_i^l}$
- As a conclusion
 - ► The singleton fuzzifier simplifies the computation involved in the fuzzy inference engine for any type of membership functions
 - ► The Gaussian / triangular fuzzifiers also simplify the computation in the fuzzy inference engine, if the membership functions in the IF-THEN rules are Gaussian/triangular.
 - ► The Gaussian and triangular fuzzifiers can suppress noise in the input, but the singleton fuzzifier cannot.

<ロ> <回> <回> <三</p>

mirkah

ヘロト 人間ト 人団ト 人団ト

- Defuzzification a mapping from fuzzy set B' ∈ V ⊂ R (the output of the fuzzy inference engine) to crisp point y* ∈ V.
- ▶ It is specifying a point in V as best representative of the fuzzy set B'.
- For example, in classification and pattern recognition a fuzzy partition or pattern should be transformed to a crisp partition or pattern
- In control a single-valued input should be given to a semiconductor device instead of a fuzzy input command.

The criteria in designing the defuzzifier

- 1. Plausibility: The point y^* should represent B' from an intuitive point of view; e.g., it may lie approximately in the middle or hight of the support of B'
- 2. Computational simplicity: It is important for real-tim systems such as fuzzy control.
- 3. Continuity: A small change in B' should not result in a large change in y^* .

• = • •

1. Centriod method or Center of Gravity: [?], [?]: $y^* = \frac{\int_V y \mu_{B'}(y) dy}{\int_V u_{B'}(y) dy}$

where \int_{V} is the conventional integral.

- Assuming µ'_B(y) as the probability density function of a random variable, → centriod defuzzifier gives the mean value of the random variable
- ► Some times, it is desired to eliminate too small membership fuc. of $B' \rightsquigarrow$ define α -cut set $V_{\alpha} = \{y \in V | \mu'_B(y) \ge \alpha\}$

$$y^* = \frac{\int V_{\alpha} \, \mathcal{P}_{B'}(y) \, dy}{\int_{V_{\alpha}} \mu_{B'}(y) \, dy}$$

- Advantages: It is intuitively plausible
- ► Disadvantages: It is computationally intensive. specifically when μ_{B'} is irregular.

Some Popular Defuzzifiers

2. Center Average Defuzzifier or Weighted average method Considering B' is the union or intersection of M fuzzy sets $y^* = \frac{\sum_{l=1}^{M} \bar{y}^l \mu(\bar{y}^l)}{\sum_{l=1}^{M} \mu(\bar{y}^l)}$

where \bar{y}^{l} is center of *l*th fuzzy set

- It is the most popular diffuzifier is fuzzy systems and control
- ► Advantages: It is intuitively plausible and computationally simple; small changes in y
 [†] and µ(y
 ⁱ) result in small changes in y*
- Disadvantages: It is usually acceptable for symmetric output membership functions

向下 イヨト イヨト

Outline Fuzzifiers Defuzzifier 3. Waximum Defuzzifier: Choose the point in V corresponding to the height of $\mu_{B'}(y)$:

 $hgt(B') = \{y \in V | \mu_{B'}(y) = \sup_{y \in V} \mu_{B'}(y)\}$

hgt(B'): can be a set of points with max memb. fcn.

- If hgt(B') is a single point $\rightsquigarrow y^* = hgt(B')$
- Otherwise one of the following definitions can be used:
 - smallest of maxima defuzzifier: $y^* = \inf\{y \in hgt(B')\}$
 - ▶ largest of maxima defuzzifier: $y^* = \sup\{y \in hgt(B')\}$
 - mean of maxima defuzzifier: $y^* = \frac{\int_{hgt(B')} ydy}{\int_{hot(B')} dy} \left(\int_{hgt} \text{ is usual integration if} \right)$ hgt(B') is continuous, it is summation if hgt(B') is discrete)
- Advantages: intuitively plausible, computationally simple
- Disadvantages: small changes in B' may result in large changes in y^* (if the memb. fcn $\mu_{B'}$ is nonconvex)

Example

- A railroad company intends to lay a new rail line in a particular part of a county.
- The area new line is passing must be purchased for right-of-way considerations.
- ▶ There are three surveys in right-of-way widths, in meters
- But the info are not precise since
 - some of the land along the proposed railway route is already public domain and will not need to be purchased.
 - The original surveys are so old that some ambiguity exists on boundaries and public right-of-way for old utility lines and old roads.
- ► The three fuzzy sets B₁, B₂, B₃ represent the uncertainty in each survey as to the membership of right-of-way width, in meters, in privately owned land.
- We need to find the single most nearly representative right-of-way width (z) to purchase

<ロ> <同> <同> < 同> < 同>

æ

Example Cont'd: Centriod method:

Outline	Defuzzifier	Amirkabin Distances of Technology
	$(0.3 \times 2.5) + (0.5 \times 5) + (1 \times 6.5)$	F 44

Comparison of Defuzzifiers

	center of gravity	center average	maximum
plausibility	yes	yes	yes
computational simplicity	no	yes	yes
continuity	yes	yes	no

イロト イポト イヨト イヨト