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Stability of Perturbed Systems
» Consider the system: % = f(t,x) + g(t, x) (1)

where f: [0,00) x D — R", g: [0,00) x D — R" are p.c. in
t and locally Lip. in x on [0,00) x D, D € R".
» The system can be regarded as a perturbation of:

X = f(t, x) (2

» The perturbation could result from modeling error, aging, or uncertainties
and disturbances.

> Generally, g(t, x) is not exactly known, rather some info. like an upper
bound is known

» Uncertainties that do not change the order of the system can always be
represented in additive form

» Now suppose the origin of nominal system (2) is u.a.s.

» what can be said about the stability of the perturbed system (1)?

» Use the Lyap. fcn of the nominal system for perturbed system
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Vanishing Perturbation
» The conclusion depends on whether g(t, x) is vanishing at the origin.

» If g(t,0) =0, the perturbed system has an Equ. pt. at the origih —
we study the stability of the Equ. pt. (origin)

» If g(t,0) # 0, the origin will not be an Equ. pt. == we study ultimate
boundedness of the solution

» Vanishing Perturbation

» Let g(t,0) =0, so x =0 is an Equ. pt. of the perturbed as well as the
nominal system.
> Let V(t,x) is a Lyap. fcn satisfying:
a x|* < V(tx) < o |x|?

v oV ,
< =
W Hex < —al
oV
™ < clx]| V(t,x) € [0,00) x D,

for some pos. const. ¢, ..., ¢4 for the nominal system.
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Vanishing Perturbation

> Let the perturbation satisfies the linear growth bound:
lg(t, x)[| < ~(t) Ix]|| V&t = 0, Vx € D,

where v: R — R is nonnegative and p.c. t > 0.

» Use V(t, x) to study the stability of x = 0 as an Equ. pt. for the
perturbed system. We have:

ov 8V ov
Vitx) = S0+ axf( ) (1)
V(tx) < —alxlP + 1 92 s(e

IN

2 2
—csl|x]| +C4'7( )1

» If v(t) is small enough to satisfy the bound
W(t) <5 < a/a Vi =20 (3)

then V(t,x) < —(c—7a)lx|? <0, (c3=7c) >0
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Vanishing Perturbation

» Theorem: Let x =0 be an e.s. Equ. pt. of the nominal system. Let
V(t,x) be a Lyap. fcn of the nominal system satisfying the above 3
inequalities in [0,00) x D, D ={x € R"| ||x|| < r}. Suppose the
perturbation term satisfies the growth condition. Then x =0 is an e.s.
Equ. pt. of the perturbed system.

» Moreover, if the assumption holds globally, then the origin is g.e.s.

> . e.s. is robust w.r.t. a class of perturbation (note that we do not need
to know V/(t, x) explicitly.
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Example 6.1 for Vanishing Perturbation
» Consider
x = Ax + g(t, x)
» where A is Hurwitz and ||g(t, x)|| < 7 ||x|| Yt > 0
» Let Q = QT > 0 and solve Lyap. Equ. ATP + PA= —Q for P.

» Ais Hurwitz = 3P = PT > 0. and V(x) = xT Px satisfying the 3
inequalities, i.e.
Am;n(P)leHz < V(x) < Amax(P)|x]1?
7AX_ - TQX < _)\mm(Q)
H wll = 12xTPI| < 2Xmax(P) 1]

» Then V along the trajectories of perturbed system:
Vo< = Amin(@Q) [IX11 + 2Amax(P) 71X

> ox=0ises. if5 < Amin(Q)/2Amax(P)
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Example 6.2 for Vanishing Perturbation

» Consider X1 = xo

X = —4xq —2x2+ﬂx23, 6 > 0 unknown

v

Define f(x) = Ax = [ _04 _12 ] [ 2 ] and g(x) = { P }
MA} = —14jV3 = Ais Hurwitz

v

o 32 18
» L ATP+PA=—-] = P= [1/8 5/16]
» 5 V(x)=xTPx = =1, c4 = 2\max(P) = 3.026
> g(x) satisfies [[g(x)[| = BIx3| < Bk3|x| < BK3[IX|| Vx| < ko
» Hence, V(x) < —|x||*+3.06 k3| x|
» Visnd. if < ==L

3.026 k3
To estimate the bound ks, let Q. = {x € R?| V(x) < c}.

v
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Example 6.2 for Vanishing Perturbation

>

>

The boundary of . is the Lyap. surface:

3 1 5
V(X) = *X12 + —=Xx1X0 +

2 _
21T} 1627 ¢

The largest value of |xz| can be obtained by differentiating w.r.t.

x1 — 3x1 + %XQ =0.

The extreme values of x» are obtained by intersecting x; = _1—;2 with
V=c

The largest value of x2 in V = cis 629c Thus all pts. inside €2, satisfy
the bound [xo| < ko where k3 = ¢

if B < sooeages ® 22 = Visnd. in Qc and x = 0 is e.s with Q. as

an estimate of the RoA.

The above inequality shows a trade of between the upper bound of § and
the estimate of the region of attraction.

The smaller the upper bound, the larger the RoA.
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Vanishing Perturbation

» The results above can be extended to a.s.

» However, the growth bound on perturbation would depend on the nature
of the Lyap. fcn of the nominal system.

ov oV
- - < =
Bt + e f(t,x) < Ws(x) V (t,x) € [0,00) x D,

where W3 is p.d. and cont.

» Therefore for perturbed system:

. av oV ov ov
= — —_— — < — R
V(t,x) 5r T oy [(BX)+ 5 o8(tx) = = Walx) + [ 5 -g(t, )|

» Our task is to show H%—Zg(t,x)” < Ws(x)
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Vanishing Perturbation

» One class of Lyap. fcn for which the analysis is simple when
V(t,x) is p.d., decresent, and satisfies:

e = s < - i)

H H < ag(x) V(t,x) € [0,00) x D,

where ¢ : R" — R is p.d. and cont.
» A lyap. fcn satisfying above conditions is called quadratic-type Lyap. fcn.
» Then f turbed
en for perturbe Sﬁ/em Y,

V(t x) = B +8 f(t,x )+8—g(t,x) < —C3q§2(x)

+ ad(x)|g(t )|

» Suppose ||g(t,x)|| < v é(x), v < c3/c4, then
V(t,x) < —(c3—cay)p?(x) ~ Vis n.d. = the system is g.a.s.
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Example 6.3 for Vanishing Perturbation

X = *X3 +g(t,X)

» The nominal system x = —x3 has a g.a.s. Equ. pt. at x = 0.
» However, it is not e.s. since no Lyap. fcn. exist that satisfies the 3
inequalities for linearized model.
» Let V(x) = x*, the above conditions are satisfied with
d(x) = |x]3, ;3 =4,c1 =4
> Let |g(t,x)| < yIx]}, Vxwithy <1 = V < —4(1—~)¢?
» . x=0is g.a.s.

Farzaneh Abdollahi Nonlinear Control Lecture 6 12/17
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Nonvanishing Perturbation

» The general case when g(0,t) # 0 shall be treated differently since
x = 0 is no longer an Eq. pt.

» The best we can hope is to expect x(t) is ultimately bounded with a
small bound if g(t, x) is small in some sense.

> Start with the case when the origin of the nominal system is e.s.

» Lemma: Let x =0 be an e.s Eq. pt. of X = f(t,x) (nominal system).
Let V(t,x) be a Lyap. fcn. of the nominal system satisfying the 3
inequalities in [0,00) x D, where D = {x € R"|||x|| < r}. Let the
perturbation term satisfies

e EHthzo, Vx € D, 0 <0 <1

t < 4§ <
lg (e e

then V|[x(to)|| < |/, the sol. of the perturbed system satisfies
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Example for Nonvanishing Perturbation

X1 = X
o = —4x—20+8x+d(t), B >0

where 3 > 0 is unknown & d(t) is unif. bounded disturbance s.t.
|d(t)] < 6vt > 0.

3/2 1/8
1/8 5/16

» 3x3 is vanishing and d(t) is nonvanishing perturbation.

» V =xTPx with P = { ] is a Lyap. fcn for nominal system.

. 1 5 1 5
2 2 (L
vV = lIx]|5 4+ 206x3 <8xlxz + — 16 > + 2d(t) ( X1+ 16X2>

IN

—[lx3 + ﬂkz\l B+ Y22 x

where the inequality |2x7 + 5x| < ||x||lv4 +25 &|x5| <= ko.
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Example for Nonvanishing Perturbation
» Suppose 3 < 4(1—-()/3ks, 0 <( <1 =

: V296
vV < —CHXH2+THXH

299
_—O)CIxI? Vx| > u_@ 0 < <1

IN

» We saw earlier that |x;|? is bounded on Q. by % = if
B < 4(1—C)/canddissosmall = B, C Q. and all trajectories

starting inside €. remain for all future time in €.

» The conditions of the theorem is satisfied in Q. = Sol. of the
perturbed system is u.u.b. with bound

b_\@a Amax(P)
—8¢0 \| Amin(P)
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Nonvanishing Perturbation
» The following lemma provides conditions for u.a.s rather than e.s of origin
» Lemma: Let x =0 be u.a.s Equ. pt of the nominal system (X = f(t,x)). Let

V(t,x) be a Lap fcn. of he nominal systemthat satisfies:
ov oV oV
ar([Ixll) < V(t,x) < aa(llxl), - + 5 (8, x) < —as(lxll), [ 51 < eu(lix]])
in [0,00) x D, where D = {x € R"|||x|| < r}, and o, i =1,...,4 are class K
fcns. Suppose the perturbation term satisfies
Oas(0; " (0n(r)))

t,x))] < § <« —2 2717

etz o

then V||x(to)|| < a; *(a1(r)), the sol. of the perturbed system satisfies
Xl < BIx(0)ll, t —to)to < t <to+ T
& |Ix(B)] < p(6) YVt > to+T

vVt > 0, Yvx € D, 0 <0 <1

for some finite time T , and class KCL fcn (3, where p is class IC fcn of §:
p(8) = o H(az(az ' (2%1)))
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Nonvanishing Perturbation

» Note that there is no counterpart for more general case than u.a.s.
> In the case of e.s., upper bound of perturbation term: § < 2, /20r
2\ @

» § so0asr— oo
» . for all unifobounded disturbance, the solution of perturbed system is
uniformly bounded
fas(; *(ea(r)))
o (r)
» No prediction on limit of § as r — oo without further info about class K
fcns.

» In the case of a.s., upper bound of perturbation term: § <
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