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Outline Stability of Perturbed Systems

Stability of Perturbed Systems
I Consider the system: ẋ = f (t, x) + g(t, x) (1)

where f : [0,∞) × D −→ Rn, g : [0,∞) × D −→ Rn are p.c. in
t and locally Lip. in x on [0,∞) × D, D ∈ Rn.

I The system can be regarded as a perturbation of:

ẋ = f (t, x) (2)

I The perturbation could result from modeling error, aging, or uncertainties
and disturbances.

I Generally, g(t, x) is not exactly known, rather some info. like an upper
bound is known

I Uncertainties that do not change the order of the system can always be
represented in additive form

I Now suppose the origin of nominal system (2) is u.a.s.
I what can be said about the stability of the perturbed system (1)?
I Use the Lyap. fcn of the nominal system for perturbed system
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Outline Stability of Perturbed Systems

Vanishing Perturbation
I The conclusion depends on whether g(t, x) is vanishing at the origin.

I If g(t, 0) = 0, the perturbed system has an Equ. pt. at the origin =⇒
we study the stability of the Equ. pt. (origin)

I If g(t, 0) 6= 0, the origin will not be an Equ. pt. =⇒ we study ultimate
boundedness of the solution

I Vanishing Perturbation
I Let g(t, 0) = 0, so x = 0 is an Equ. pt. of the perturbed as well as the

nominal system.
I Let V (t, x) is a Lyap. fcn satisfying:

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2

∂V

∂t
+
∂V

∂x
f (t, x) ≤ − c3‖x‖2

∂V

∂x
≤ c4‖x‖ ∀(t, x) ∈ [0,∞) × D,

for some pos. const. c1, ..., c4 for the nominal system.
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Outline Stability of Perturbed Systems

Vanishing Perturbation
I Let the perturbation satisfies the linear growth bound:

‖g(t, x)‖ ≤ γ(t) ‖x‖ ∀t ≥ 0, ∀ x ∈ D,

where γ : R −→ R is nonnegative and p.c. t ≥ 0.

I Use V (t, x) to study the stability of x = 0 as an Equ. pt. for the
perturbed system. We have:

V̇ (t, x) =
∂V

∂t
+
∂V

∂x
f (t, x) +

∂V

∂x
g(t, x)

V̇ (t, x) ≤ −c3‖x‖2 + ‖∂V

∂x
‖‖g(t, x)‖

≤ −c3‖x‖2 + c4γ(t)‖x‖2

I If γ(t) is small enough to satisfy the bound
γ(t) ≤ γ̄ ≤ c3/c4 ∀t ≥ 0 (3)

then V̇ (t, x) ≤ −(c3 − γ̄c4)‖x‖2 ≤ 0, (c3 − γ̄c4) > 0
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Outline Stability of Perturbed Systems

Vanishing Perturbation

I Theorem: Let x = 0 be an e.s. Equ. pt. of the nominal system. Let
V (t, x) be a Lyap. fcn of the nominal system satisfying the above 3
inequalities in [0,∞) × D, D = {x ∈ Rn| ‖x‖ < r}. Suppose the
perturbation term satisfies the growth condition. Then x = 0 is an e.s.
Equ. pt. of the perturbed system.

I Moreover, if the assumption holds globally, then the origin is g.e.s.

I ∴ e.s. is robust w.r.t. a class of perturbation (note that we do not need
to know V (t, x) explicitly.
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Example 6.1 for Vanishing Perturbation
I Consider

ẋ = Ax + g(t, x)

I where A is Hurwitz and ‖g(t, x)‖ ≤ γ̄ ‖x‖ ∀t ≥ 0

I Let Q = QT > 0 and solve Lyap. Equ. AT P + PA = −Q for P.

I A is Hurwitz =⇒ ∃P = PT > 0. and V (x) = xT Px satisfying the 3
inequalities, i.e.

λmin(P)‖x‖2 ≤ V (x) ≤ λmax(P)‖x‖2
∂V
∂x Ax = −xT Qx ≤ − λmin(Q)

‖∂V
∂x ‖ = ‖2xT P‖ ≤ 2λmax(P)‖x‖

I Then V̇ along the trajectories of perturbed system:

V̇ ≤ − λmin(Q) ‖x‖2 + 2λmax(P)γ̄‖x‖2

I ∴x = 0 is e.s. if γ̄ < λmin(Q)/2λmax(P)
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Outline Stability of Perturbed Systems

Example 6.2 for Vanishing Perturbation

I Consider ẋ1 = x2

ẋ2 = −4x1 − 2x2 + βx3
2 , β ≥ 0 unknown

I Define f (x) = Ax =

[
0 1
−4 −2

] [
x1

x2

]
and g(x) =

[
0
βx3

2

]
I λ{A} = −1± j

√
3 =⇒ A is Hurwitz

I ∴ AT P + PA = −I =⇒ P =

[
3/2 1/8
1/8 5/16

]
I ∴ V (x) = xT Px =⇒ c3 = 1, c4 = 2λmax(P) = 3.026
I g(x) satisfies ‖g(x)‖ = β|x3

2 | ≤ βk2
2 |x2| ≤ βk2

2‖x‖ ∀|x2| ≤ k2.
I Hence, V̇ (x) ≤ − ‖x‖2 + 3.06 βk2

2‖x‖2
I V̇ is n.d. if β < 1

3.026 k2
2

.

I To estimate the bound k2, let Ωc = {x ∈ R2| V (x) ≤ c}.
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Outline Stability of Perturbed Systems

Example 6.2 for Vanishing Perturbation
I The boundary of Ωc is the Lyap. surface:

V (x) =
3

2
x2
1 +

1

4
x1x2 +

5

16
x2
2 = c

I The largest value of |x2| can be obtained by differentiating w.r.t.
x1 =⇒ 3x1 + 1

4x2 = 0.

I The extreme values of x2 are obtained by intersecting x1 = −x2
12 with

V = c .

I The largest value of x2
2 in V = c is 96

29c . Thus all pts. inside Ωc satisfy
the bound |x2| ≤ k2 where k2

2 = 96c
29 .

I if β < 29
3.026×96c ≈ 0.1

c =⇒ V̇ is n.d. in Ωc and x = 0 is e.s with Ωc as
an estimate of the RoA.

I The above inequality shows a trade of between the upper bound of β and
the estimate of the region of attraction.

I The smaller the upper bound, the larger the RoA.
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Outline Stability of Perturbed Systems

Vanishing Perturbation

I The results above can be extended to a.s.

I However, the growth bound on perturbation would depend on the nature
of the Lyap. fcn of the nominal system.

∂V

∂t
+
∂V

∂x
f (t, x) ≤ −W3(x) ∀ (t, x) ∈ [0,∞)× D,

where W3 is p.d. and cont.

I Therefore for perturbed system:

V̇ (t, x) =
∂V

∂t
+
∂V

∂x
f (t, x) +

∂V

∂x
g(t, x) ≤ −W3(x) + ‖∂V

∂x
g(t, x)‖

I Our task is to show ‖∂V
∂x g(t, x)‖ < W3(x)
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Outline Stability of Perturbed Systems

Vanishing Perturbation
I One class of Lyap. fcn for which the analysis is simple when

V (t, x) is p.d., decresent, and satisfies:

V̇ (t, x) =
∂V

∂t
+
∂V

∂x
f (t, x) ≤ − c3φ

2(x)

‖∂V

∂x
‖ ≤ c4φ(x) ∀ (t, x) ∈ [0,∞)× D,

where φ : Rn −→ R is p.d. and cont.

I A lyap. fcn satisfying above conditions is called quadratic-type Lyap. fcn.

I Then for perturbed system:

V̇ (t, x) =
∂V

∂t
+
∂V

∂x
f (t, x) +

∂V

∂x
g(t, x) ≤ − c3φ

2(x)

+ c4φ(x)‖g(t, x)‖

I Suppose ‖g(t, x)‖ ≤ γ φ(x), γ < c3/c4, then

V̇ (t, x) ≤ −(c3 − c4γ)φ2(x)  V̇ is n.d. =⇒ the system is g.a.s.
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Example 6.3 for Vanishing Perturbation

ẋ = −x3 + g(t, x)

I The nominal system ẋ = −x3 has a g.a.s. Equ. pt. at x = 0.

I However, it is not e.s. since no Lyap. fcn. exist that satisfies the 3
inequalities for linearized model.

I Let V (x) = x4, the above conditions are satisfied with
φ(x) = |x |3, c3 = 4, c4 = 4.

I Let |g(t, x)| ≤ γ|x |3, ∀ x with γ < 1 =⇒ V̇ ≤ − 4(1− γ)φ2

I ∴ x = 0 is g.a.s.
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Nonvanishing Perturbation
I The general case when g(0, t) 6= 0 shall be treated differently since

x = 0 is no longer an Eq. pt.

I The best we can hope is to expect x(t) is ultimately bounded with a
small bound if g(t, x) is small in some sense.

I Start with the case when the origin of the nominal system is e.s.

I Lemma: Let x = 0 be an e.s Eq. pt. of ẋ = f (t, x) (nominal system).
Let V (t, x) be a Lyap. fcn. of the nominal system satisfying the 3
inequalities in [0,∞)× D, where D = {x ∈ Rn|‖x‖ < r}. Let the
perturbation term satisfies

‖g(t, x)‖ ≤ δ <
c3

c4

√
c1

c2
θr ∀t ≥ 0, ∀x ∈ D, 0 < θ < 1

then ∀‖x(t0)‖ <
√

c1
c2r

, the sol. of the perturbed system satisfies

‖x(t)‖ ≤ ke−γ(t−t0)‖x(t0)‖, ∀ t0 ≤ t < t0 + T

& ‖x(t)‖ ≤ b ∀ t ≥ t0 + T

for some finite time T where k =
√

c1
c2

γ = (1−θ)c3

2c2
, b = c4

c3

√
c2
c1

δ
θ
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Outline Stability of Perturbed Systems

Example for Nonvanishing Perturbation

ẋ1 = x2

ẋ2 = −4x1 − 2x2 + βx3
2 + d(t), β ≥ 0

where β ≥ 0 is unknown & d(t) is unif. bounded disturbance s.t.
|d(t)| ≤ δ ∀ t ≥ 0.

I V = xT Px with P =

[
3/2 1/8
1/8 5/16

]
is a Lyap. fcn for nominal system.

I βx3
2 is vanishing and d(t) is nonvanishing perturbation.

V̇ = −‖x‖22 + 2βx2
2

(
1

8
x1x2 +

5

16
x2
2

)
+ 2d(t)

(
1

8
x1 +

5

16
x2

)
≤ −‖x‖22 +

3

4
βk2

2‖x‖22 +

√
29δ

8
‖x‖2

where the inequality |2x1 + 5x2| ≤ ‖x‖
√

4 + 25 &|x2| ≤ k2.
Farzaneh Abdollahi Nonlinear Control Lecture 6 14/17



Outline Stability of Perturbed Systems

Example for Nonvanishing Perturbation
I Suppose β ≤ 4 (1− ζ)/3k2

2 , 0 < ζ < 1 =⇒

V̇ ≤ −ζ ||x‖2 +

√
29δ

8
‖x‖

≤ −(1− θ)ζ‖x‖2 ∀‖x‖ ≥ µ =

√
29δ

8ζθ
0 < θ < 1

I We saw earlier that |x2|2 is bounded on Ωc by 96c
29 =⇒ if

β ≤ .4(1− ζ)/c and δ is so small =⇒ Bµ ⊂ Ωc and all trajectories
starting inside Ωc remain for all future time in Ωc .

I The conditions of the theorem is satisfied in Ωc =⇒ Sol. of the
perturbed system is u.u.b. with bound

b =

√
29δ

8ζθ

√
λmax(P)

λmin(P)
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Nonvanishing Perturbation
I The following lemma provides conditions for u.a.s rather than e.s of origin
I Lemma: Let x = 0 be u.a.s Equ. pt of the nominal system (ẋ = f (t, x)). Let

V (t, x) be a Lap fcn. of he nominal systemthat satisfies:

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖), ∂V

∂t
+
∂V

∂x
f (t, x) ≤ −α3(‖x‖), ‖∂V

∂x
‖ ≤ α4(‖x‖)

in [0,∞)× D, where D = {x ∈ Rn|‖x‖ < r}, and αi , i = 1, ..., 4 are class K
fcns. Suppose the perturbation term satisfies

‖g(t, x)‖ ≤ δ <
θα3(α−1

2 (α1(r)))

α4(r)
∀t ≥ 0, ∀x ∈ D, 0 < θ < 1

then ∀‖x(t0)‖ < α−1
2 (α1(r)), the sol. of the perturbed system satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0)t0 ≤ t < t0 + T

& ‖x(t)‖ ≤ p(δ) ∀ t ≥ t0 + T

for some finite time T , and class KL fcn β, where p is class K fcn of δ:

p(δ) = α−1(α2(α−1
3 ( δα4(r)

θ )))
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Outline Stability of Perturbed Systems

Nonvanishing Perturbation

I Note that there is no counterpart for more general case than u.a.s.

I In the case of e.s., upper bound of perturbation term: δ < c3
c4

√
c1
c2
θr

I δ →∞ as r →∞
I ∴ for all unifobounded disturbance, the solution of perturbed system is

uniformly bounded

I In the case of a.s., upper bound of perturbation term: δ <
θα3(α

−1
2 (α1(r)))
α4(r)

I No prediction on limit of δ as r →∞ without further info about class K
fcns.
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