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CT Fourier Transform

I Fourier series was defined for periodic signals

I Aperiodic signals can be considered as a periodic signal with fundamental
period ∞!

I T0 →∞ ω0 → 0
I The harmonics get closer
I summation (

∑
) is substituted by (

∫
)

I Fourier series will be replaced by Fourier transform
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Example:

I Consider a periodic square wave:

x(t) =

{
1 |t| < T1

0 T1 < |t| < T0/2

I The fourier series coefficient:
ak = 2sin(kω0T1)

kω0T0
 

T0ak = 2sin(ωT1)
ω |ω=kω0

I T0 ↑ (ω0 ↓) number of samples ↑
I T0 →∞ the Fourier series

coefficients approaches the envelop
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Fourier Transform (FT)

x(t) =
1

2π

∫ ∞
−∞

X (jω)e jωtdω

X (jω) =

∫ ∞
−∞

x(t)e−jωtdt

I Convergence of CT FT
I x(t) should be square integrable

∫∞
−∞ |x(t)|2dt <∞

I Let us define the Fourier representation of x(t) by x̂(t) =
∫∞
−∞ X (jω)e jωtdω

I ∴ the above condition can guarantee the energy of the error
(e(t) = x(t)− x̂(t)) is zero, except some individual values of t

I i.e.
∫∞
−∞ |e

2(t)|dt <∞

Farzaneh Abdollahi Signal and Systems Lecture 5 5/34



Outline CT Fourier Transform DT Fourier Transform

Convergence of CT FT
I To ensure x(t) = x̂(t) for any t (except discontinuities which will be the

average value of discontinuity) the following Dirichlet conditions should
be satisfied:

1. Absolute integrality of x(t):
∫∞
−∞ |x(t)|dt <∞

2. Within any finite interval x(t) should have finite max and min points
3. Within any finite interval x(t) should have finite discontinuities; the

discontinuities should be finite.

I Exercise: Does Gibbs phenomena applicable for FT?

I Note that: Dirichlet conditions are sufficient conditions for FT
convergence

I If impulse function is permitted in transform
I Periodic signals which are neither absolute integrable nor square integrable

over infinite interval has FT
I Of course in a finite interval (a period) they should be integrable and

square integrable)

I Hence FT and Fs can be considered in a common framework;)
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I For impulse fcn:
I X (jω) =

∫∞
−∞ δ(t)e−jωtdt = 1

I δ(t) = 1
2π

∫∞
−∞ e jωtdω

I x(t) = δ(t − t0) X (jω) = e−jωt0

I FT for Periodic Signals
I X (jω) = 2πδ(ω − ω0) x(t) = e jω0t

I Now for X (jω) =
∑∞

k=−∞ 2πakδ(ω − kω0) x(t) =
∑∞

k=−∞ ake
jkω0t

(which is Fourier series representation of a periodic signal)
I Therefore

I By having ak , X (jω) is obtained: X (jω) =
∑∞

k=−∞ 2πakδ(ω − kω0)
I By having X (jω), ak is obtained: ak = 1

T
X (jω)|ω=kω0
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Some CT FT Properties

I Linearity: ax(t) + by(t)⇔aX (jω) + bY (jω)

I Time Shifting: x(t − t0)⇔e−jωt0X (jω)
I No change in amplitude: |e−jωt0X (jω)| = |X (jω)|
I Linear change in phase: ]e−jωt0X (jω) = ]X (jω)− ωt0

I Integration and Differentiation:
I

dx(t)
dt ⇔jωX (jω)

I
∫ t

−∞ x(τ)dτ⇔ 1
jωX (jω) + πX (0)δ(jω)

I Time/Frequency Scaling: x(at)⇔ 1
|a|X ( jω

a )

I F{e−atu(t)} = 1
a+jω = 1

a
1

1+j(ωa )

Farzaneh Abdollahi Signal and Systems Lecture 5 8/34



Outline CT Fourier Transform DT Fourier Transform

I Conjugate and Conjugate Symmetry: x∗(t)⇔X ∗(jω)
I Real x(t)⇔X (−jω) = X ∗(jω)

I Polar representation X (jω) = |X (jω)|e j]X (jω)

I|X (−jω)| = |X (jω)| (even fcn)
I]X (−jω) = −]X (jω) (odd fcn)

I Rectangular representation X (jω) = Re{X (jω)}+ jIm{X (jω)}
IRe{X (−jω)} = Re{X (jω)} (even fcn)
IIm{X (−jω)} = −Im{X (jω)} (odd fcn)

I Real and even x(t) = x(−t)⇔X (jω) = X (−jω) = X ∗(jω) (real and even
X (jω))

I Real and odd x(t) = −x(−t)⇔X (−jω) = −X (jω) = −X ∗(jω) (purely
imaginary and odd X (jω)),

I Even part of x(t)⇔Re{X (jω)} (show it!)
I Odd part of x(t)⇔jIm{X (jω)} (show it!)
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Example
I F{e−atu(t)} = 1

a+jω , a > 0
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I Duality:
I Reconsider TF:

x(t) =
1

2π

∫ ∞
−∞

X (jω)e jωtdω

X (jω) =

∫ ∞
−∞

x(t)e−jωtdt

I They are similar But not quite identical!
I We can find a duality relation between them

I Example:
I

dx(t)
dt ⇔jωX (jω)

I −jtx(t)⇔ dX (jω)
dω
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Duality: Example
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Some CT FT Properties

I Parseval’s Relation:
∫∞
−∞ |x(t)|2dt = 1

2π

∫∞
−∞ |X (jω)|2dω

I Total energy in obtained by
I computing energy per unit time then integrating over all time OR
I computing energy per unit frequency and integrating over all frequencies

I |X (jω)|2 is called energy-density spectrum.

I Convolution: y(t) = x(t) ∗ h(t)⇔Y (jω) = H(jω)X (jω)
I This property can be used for filtering input signal in frequency domain.
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FT for LTI Systems

I FT of impulse response, H(jω),is called Frequency Response of the
system

I Plays a key role in LTI system analyzing
I Convergence Condition of FT in LTI Systems

I The LTI system should be stable
I i.e., impulse response should be absolute integrable:

∫∞
−∞ |h(t)|dt <∞

I Note that this is one of Drichlet’s conditions.
I Assume other two Drichlet’s conditions are satisfied (This happens for all

practical systems)
I ∴ Only stable LTI systems can be analyzed by FT
I Question: How can we analyze unstable LTI systems?
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FT for LTI Systems

I The overall Freq. Res. (Frequency Response) of two cascade system is
product of individual Freq. responses:

I Example: Consider h(t) = δ(t − t0)⇔H(jω) = e−jωt0

I Y (jω) = H(jω)X (jω) = e−jωt0X (jω)⇔y(t) = x(t − t0)
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FT for LTI Systems

I Example: y(t) = dx(t)
dt ⇔Y (jω) = jωX (jω)

I H(jω) = jω
I Differentiating system increases the magnitude by ω, and increase the

phase by π/2, (j = e j π2 )
I d

dt sinω0t = ω0cos(ω0t) = ω0sin(ω0t + π
2 )

I Example: Consider x(t) = e−atu(t), h(t) = e−btu(t)
I X (jω) = 1

a+jω ,H(jω) = 1
b+jω

I Y (jω) = 1
(a+jω)(b+jω) = 1

(b−a)(a+jω) + 1
(a−b)(b+jω)

I y(t) = 1
b−a{e

−atu(t)− e−btu(t)}
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FT Properties
I Multiplication: r(t) = s(t)p(t)⇔R(jω) = 1

2π [S(jω) ∗ P(jω)]
I Multiplication of two signals is using one signal to scale (modulate) the

amplitude of another one.
I ∴ Multiplication of two signals is called amplitude modulation.
I Example: p(t) = cos(ω0)t⇔P(jω) = πδ(ω − ω0) + πδ(ω + ω0)

I r(t) = s(t)p(t)⇔R(jω) = 1
2
S(j(ω − ω0)) + 1

2
S(j(ω + ω0))

I signal of s(t) is preserved by multiplying it by sinusoidal signal, its
information is only shifted to the higher frequency.(sinusoidal amplitude
modulation).
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DT Fourier Transform

I Similar to CT, aperiodic signals for DT can be considered as a periodic
signal with fundamental period (N →∞):

I Consider x [n] is aperiodic and has values for −N1 ≤ n ≤ N2

I Define a periodic signal x̃ [n] with fundamental period N which is identical
to x [n] in −N1 : N2 interval

I as N →∞ x [n] = x̃ [n]
I x̃ [n] =

∑
k=<N> ake

jk(2π/N)n, ak = 1
N

∑
n=<N> x̃ [n]e−jk(2π/N)n

I ak = 1
N

∑N2

n=−N1
x̃ [n]e−jk(2π/N)n = 1

N

∑∞
n=−∞ x [n]e−jk(2π/N)n

I Now define X (e jω) =
∑+∞

n=−∞ x [n]e−jωn ak = 1
N X (e jkω0)

I also 1
N = ω0

2π
I ∴x̃ [n] = 1

2π

∑
k=<N> X (e jω0)e jω0nω0

I N↑ ω0↓
I When N→∞ summation (

∑
) is substituted by (

∫
)

I Moreover, X (e jω) and e jωn are periodic with period 2π
I ∴N →∞ x [n] = 1

2π

∫
2π

X (e jω)e jωndω

Farzaneh Abdollahi Signal and Systems Lecture 5 18/34



Outline CT Fourier Transform DT Fourier Transform

DT Fourier Transform

x [n] =
1

2π

∫
2π

X (e jω)e jωndω

X (e jω) =
∞∑

n=−∞
x [n]e−jωn

I The main differences between CT and DT fourier transforms:

1. In DT, X (e jω) is periodic
2. In DT, the integral of the synthesis equation is finite.

I These properties are similar to DT Fourier Series and they are due to the
fact that DT complex exponentials are periodic with 2π
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I Reminder: For e jωn, ω = 0 and ω = 2π leads to the same signal

I Signals at frequencies near even multiple of π are slowly varying

I Signals at frequencies near odd multiple of π are fast varying
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Example

I Consider a rectangular pulse: x [n] =

{
1 |n| ≤ N1

0 |n| > N1

I For N1 = 2 : X (e jω) =
∑N1

n=−N1
e−jωn

I Using Euler rule and doing some manipulations yield to

X (e jω) =
sinω(N1+

1
2 )

sin(ω/2) (Show it!)
I This is DT counterpart of sinc function that is obtained from FT of CT

rectangular pulse signal
I The main difference is that the sinc function in DT is periodic but in CT it

is aperiodic
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Example Cont’d
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Convergence of DT FT

I To derive DT FT we considered a x [n] with finite duration.

I BUT DT FT is valid for signals with infinite duration as well (such as unit
step and etc.)

I The conditions on x [n] to guarantee convergence of
X (jω) =

∑+∞
n=−∞ x [n]e−jωn is similar to CT FT:

I x [n] has finite energy:
∑+∞

n=−∞ |x [n]|2 <∞
I OR x [n] is absolute summable:

∑+∞
n=−∞ |x [n]| <∞
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Convergence of DT FT

I To derive DT FT we considered a x [n] with finite duration.

I BUT DT FT is valid for signals with infinite duration as well (such as unit
step and etc.)

I The conditions on x [n] to guarantee convergence of
X (jω) =

∑+∞
n=−∞ x [n]e−jωn is similar to CT FT:

I x [n] has finite energy:
∑+∞

n=−∞ |x [n]|2 <∞
I OR x [n] is absolute summable:

∑+∞
n=−∞ |x [n]| <∞

I However No convergence condition is required regarding the synthesis
equation x [n] = 1

2π

∫
2π X (e jω)e jωndω

I Since the integral is over a finite interval
I This property is similar to DT Fourier series
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Convergence of DT FT

I To derive DT FT we considered a x [n] with finite duration.

I BUT DT FT is valid for signals with infinite duration as well (such as unit
step and etc.)

I The conditions on x [n] to guarantee convergence of
X (jω) =

∑+∞
n=−∞ x [n]e−jωn is similar to CT FT:

I x [n] has finite energy:
∑+∞

n=−∞ |x [n]|2 <∞
I OR x [n] is absolute summable:

∑+∞
n=−∞ |x [n]| <∞

I However No convergence condition is required regarding the synthesis
equation x [n] = 1

2π

∫
2π X (e jω)e jωndω

I Since the integral is over a finite interval
I This property is similar to DT Fourier series

I We would expect No Gibbs phenomenon behavior for DT FT
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Example

I Consider x [n] = δ[n]

I X (e jω) = 1

I FT of impulse response provides equal contribution at all frequencies

I We can also define x̂ [n] = 1
2π

∫W
−W e jωndω = sinWn

πn

I and obtain x [n] by increasing W to π
I We can see

I similar to CT, W ↑ oscillation ↑
I despite of CT, W ↑ the amplitude of x̂ [0] ↑ and amplitude of oscillations
↓

I ∴ There is no Gibbs phenomenon
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Example Cont’d
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DT FT For Periodic signals
I Similar to CT, DT FT of x [n] = e jω0n is a signal of impulse function

I Since DT FT is periodic, DT FT of x [n] should have impulses at
ω0, ω0 ± 2π, ω0 ± 4π and so on:

X (e jω) =
+∞∑

l=−∞
2πδ(ω − ω0 − 2πl)

I ∴ DT FT of x [n] =
∑

k=<N> ake jk(2π/N)n is:

X (e jω) =
+∞∑

l=−∞

∑
k=<N>

2πakδ(ω − 2kπ

N
− 2πl)

I ak is periodic, a0 = aN , a1 = aN+1, ... the equation can be simplified to

X (e jω) =
+∞∑

k=−∞
2πakδ(ω − 2πk

N
)

I ∴ FT of a periodic Signal can be obtained from its FS coefficients :)
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Example

I Consider x [n] = sinω0n = 1
2j e

jω0n − 1
2j e
−jω0n with ω0 = 2π

7

I ∴ X (e jω0) =
∑+∞

l=−∞
π
j δ(ω − 2π

7 − 2πl)−
∑+∞

l=−∞
π
j δ(ω + 2π

7 − 2πl)
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Some DT FT Properties

I Periodicity: DT FT is always periodic in ω with period 2π:
X (e jω0) = X (e jω0 + 2π)

I Linearity: ax [n] + by [n]⇔aX (e jω) + bY (e jω)

I Time/Frequency Shifting:
x [n − n0]⇔e−jωn0X (e jω)
e−jω0nx [n]⇔X (e j(ω−ω0))

I Differencing and Summation:
I x [n]− x [n − 1]⇔(1− e−jω)X (e jω)
I
∑n

m=−∞ x [m]⇔ 1
1−e−jωX (e jω) + πX (e j0)

∑+∞
k=−∞ δ(ω − 2πk)

I Time Reversal: x [−n]⇔X (e−jω)
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Some DT FT Properties

I Time Expansion:
I For x [an], a should be integer
I Therefore, a < 1 does not necessarily make the signal slow down
I To speed up the original signal we cannot use a > 1 since it does not keep

all the original signal elements
I For instance for a = 2, x [2n] just keeps the even samples of x [n]
I So let us define signal

x(k)[n] =

{
x [n/k] if n=r k, where r,k are integer

0 otherwise
I Therefore by placing k − 1 zeros between successive samples of original

signal, a kind of slowing down signal is defined
I X(k)(e

jω) =
∑+∞

n=−∞ x(k)[n]e−jωn =
∑+∞

r=−∞ x(k)[rk]e−jωrk

I x(k)[rk] = x [r ] X(k)(e
jω) = X (e jkω)

I ∴x(k)[n]⇔X (e jkω)
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Example
I For a rectangular pulse signal:
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I Conjugate and Conjugate Symmetry: x∗[n]⇔X ∗(e−jω)
I Real x [n]⇔X (e−jω) = X ∗(e jω)

I Polar representation X (e jω) = |X (e jω)|e j]X (ejω)

I|X (e−jω)| = |X (e jω)| (even fcn)
I]X (e−jω) = −]X (e jω) (odd fcn)

I Rectangular representation X (e jω) = Re{X (e jω)}+ jIm{X (e jω)}
IRe{X (e−jω)} = Re{X (e jω)} (even fcn)
IIm{X (e−jω)} = −Im{X (e jω)} (odd fcn)

I Real and even x [n] = x [−n]⇔X (e jω) = X (e−jω) = X ∗(e jω) (real and even
X (e jω))

I Real and odd x [n] = −x [−n]⇔X (e−jω) = −X (e jω) = −X ∗(e jω) (purely
imaginary and odd X (e jω)),

I even part of x [n]⇔Re{X (e jω)} (show it!)
I Odd part of x [n]⇔jIm{X (e jω)} (show it!)
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Some DT FT Properties

I Differentiation in Frequency: nx [n]⇔j dX (e jω)
dω

I Parseval’s Relation:
∑+∞

n=−∞ |x [n]|2 = 1
2π

∫
2π |X (e jω)|2dω

I Convolution: y [n] = x [n] ∗ h[n]⇔Y (e jω) = H(e jω)X (e jω)
I This property can be used for filtering input signal in frequency domain.

I Multiplicity: y [n] = x1[n]x2[n]⇔Y (e jω) = 1
2π

∫
2π X1(e jθ)X2(e j(ω−θ))dθ

I The left side equation is called periodic convolution
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Dualities
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FT for DT LTI Systems

I A DT LTI system can be expressed as:∑N
k=0 aky [n − k] =

∑M
k=0 bkx [n − k]

I Now take DT FT:
∑N

k=0 ake−jkωY (e jω) =
∑M

k=0 bke−jkωX (e jω)

I Frequency response H(e jω) = Y (e jω)
X (e jω)

=
∑M

k=0 bke−jkω∑N
k=0 ake−jkω
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