Signals and Systems Lecture 5: Fourier Transform

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Winter 2012

CT Fourier Transform
Convergence of CT FT
CT FT Properties

DT Fourier Transform
Convergence of DT FT
DT Fourier Transform for Periodic Signals
DT FT Properties

CT Fourier Transform

- Fourier series was defined for periodic signals
- Aperiodic signals can be considered as a periodic signal with fundamental period ∞ !
- $T_{0} \rightarrow \infty \rightsquigarrow \omega_{0} \rightarrow 0$
- The harmonics get closer
- summation $\left(\sum\right)$ is substituted by (\int)
- Fourier series will be replaced by Fourier transform

Example:

- Consider a periodic square wave:

$$
x(t)=\left\{\begin{array}{cc}
1 & |t|<T_{1} \\
0 & T_{1}<|t|<T_{0} / 2
\end{array}\right.
$$

- The fourier series coefficient:

$$
\begin{aligned}
& a_{k}=\frac{2 \sin \left(k \omega_{0} T_{1}\right)}{k \omega_{0} T_{0}} \rightsquigarrow \\
& T_{0} a_{k}=\left.\frac{2 \sin \left(\omega T_{1}\right)}{\omega}\right|_{\omega=k \omega_{0}}
\end{aligned}
$$

- $T_{0} \uparrow\left(\omega_{0} \downarrow\right) \rightsquigarrow$ number of samples \uparrow
- $T_{0} \rightarrow \infty \rightsquigarrow$ the Fourier series coefficients approaches the envelop

(c)

Fourier coefficients and their envelope for the periodic squa wave: (a) $T_{0}=4 T_{1}$; (b) $T_{0}=8 T_{1}$; (c) $T_{0}=16 T_{1}$.

Fourier Transform (FT)

$$
\begin{aligned}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(j \omega) e^{j \omega t} d \omega \\
x(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
\end{aligned}
$$

- Convergence of CT FT
- $x(t)$ should be square integrable $\int_{-\infty}^{\infty}|x(t)|^{2} d t<\infty$
- Let us define the Fourier representation of $x(t)$ by $\hat{x}(t)=\int_{-\infty}^{\infty} X(j \omega) e^{j \omega t} d \omega$
- \therefore the above condition can guarantee the energy of the error $(e(t)=x(t)-\hat{x}(t))$ is zero, except some individual values of t
- i.e. $\int_{-\infty}^{\infty}\left|e^{2}(t)\right| d t<\infty$

Convergence of CT FT

- To ensure $x(t)=\hat{x}(t)$ for any t (except discontinuities which will be the average value of discontinuity) the following Dirichlet conditions should be satisfied:

1. Absolute integrality of $x(t): \int_{-\infty}^{\infty}|x(t)| d t<\infty$
2. Within any finite interval $x(t)$ should have finite max and min points
3. Within any finite interval $x(t)$ should have finite discontinuities; the discontinuities should be finite.

- Exercise: Does Gibbs phenomena applicable for FT?
- Note that: Dirichlet conditions are sufficient conditions for FT convergence
- If impulse function is permitted in transform
- Periodic signals which are neither absolute integrable nor square integrable over infinite interval has FT
- Of course in a finite interval (a period) they should be integrable and square integrable)
- Hence FT and Fs can be considered in a common framework;;)
- For impulse fcn:
- $X(j \omega)=\int_{-\infty}^{\infty} \delta(t) e^{-j \omega t} d t=1$
- $\delta(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{j \omega t} d \omega$
- $x(t)=\delta\left(t-t_{0}\right) \rightsquigarrow X(j \omega)=e^{-j \omega t_{0}}$
- FT for Periodic Signals
- $X(j \omega)=2 \pi \delta\left(\omega-\omega_{0}\right) \rightsquigarrow x(t)=e^{j \omega_{0} t}$
- Now for $X(j \omega)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right) \rightsquigarrow x(t)=\sum_{k=-\infty}^{\infty} a_{k} \mathrm{e}^{j k \omega_{0} t}$ (which is Fourier series representation of a periodic signal)
- Therefore
- By having $a_{k}, X(j \omega)$ is obtained: $X(j \omega)=\sum_{k=-\infty}^{\infty} 2 \pi a_{k} \delta\left(\omega-k \omega_{0}\right)$
- By having $X(j \omega), a_{k}$ is obtained: $a_{k}=\left.\frac{1}{T} X(j \omega)\right|_{\omega=k \omega_{0}}$

Some CT FT Properties

- Linearity: $a x(t)+b y(t) \Leftrightarrow a X(j \omega)+b Y(j \omega)$
- Time Shifting: $x\left(t-t_{0}\right) \Leftrightarrow e^{-j \omega t_{0}} X(j \omega)$
- No change in amplitude: $\left|e^{-j \omega t_{0}} X(j \omega)\right|=|X(j \omega)|$
- Linear change in phase: $\measuredangle e^{-j \omega t_{0}} X(j \omega)=\measuredangle X(j \omega)-\omega t_{0}$
- Integration and Differentiation:
- $\frac{d \times(t)}{d t} \Leftrightarrow j \omega X(j \omega)$
- $\int_{-\infty}^{t} x(\tau) d \tau \Leftrightarrow \frac{1}{j \omega} X(j \omega)+\pi X(0) \delta(j \omega)$
- Time/Frequency Scaling: $x(a t) \Leftrightarrow \frac{1}{|a|} X\left(\frac{j \omega}{a}\right)$
- $\mathcal{F}\left\{e^{-a t} u(t)\right\}=\frac{1}{a+j \omega}=\frac{1}{a} \frac{1}{1+j\left(\frac{\omega}{a}\right)}$
- Conjugate and Conjugate Symmetry: $x^{*}(t) \Leftrightarrow X^{*}(j \omega)$
- Real $x(t) \Leftrightarrow X(-j \omega)=X^{*}(j \omega)$
- Polar representation $X(j \omega)=|X(j \omega)| e^{j \measuredangle X(j \omega)}$
$\rightarrow|X(-j \omega)|=|X(j \omega)|$ (even fcn)
$-\measuredangle X(-j \omega)=-\measuredangle X(j \omega)$ (odd fcn)
- Rectangular representation $X(j \omega)=\mathcal{R e}\{X(j \omega)\}+j \mathcal{I} m\{X(j \omega)\}$
$-\operatorname{Re}\{X(-j \omega)\}=\operatorname{Re}\{X(j \omega)\}$ (even fcn)
$-\operatorname{Im}\{X(-j \omega)\}=-\mathcal{I} m\{X(j \omega)\}$ (odd fcn)
- Real and even $x(t)=x(-t) \Leftrightarrow X(j \omega)=X(-j \omega)=X^{*}(j \omega)$ (real and even $X(j \omega))$
- Real and odd $x(t)=-x(-t) \Leftrightarrow X(-j \omega)=-X(j \omega)=-X^{*}(j \omega)$ (purely imaginary and odd $X(j \omega)$),
- Even part of $x(t) \Leftrightarrow \mathcal{R} e\{X(j \omega)\}$ (show it!)
- Odd part of $x(t) \Leftrightarrow j \mathcal{I} m\{X(j \omega)\}$ (show it!)

Example

- $\mathcal{F}\left\{e^{-a t} u(t)\right\}=\frac{1}{a+j \omega}, \quad a>0$

- Duality:
- Reconsider TF:

$$
\begin{aligned}
x(t) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} x(j \omega) e^{j \omega t} d \omega \\
x(j \omega) & =\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t
\end{aligned}
$$

- They are similar But not quite identical!
- We can find a duality relation between them
- Example:
- $\frac{d \times(t)}{d t} \Leftrightarrow j \omega X(j \omega)$
- $-j t x(t) \Leftrightarrow \frac{d X(j \omega)}{d \omega}$

Duality: Example

Some CT FT Properties

- Parseval's Relation: $\int_{-\infty}^{\infty}|x(t)|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(j \omega)|^{2} d \omega$
- Total energy in obtained by
- computing energy per unit time then integrating over all time OR
- computing energy per unit frequency and integrating over all frequencies
- $|X(j \omega)|^{2}$ is called energy-density spectrum.
- Convolution: $y(t)=x(t) * h(t) \Leftrightarrow Y(j \omega)=H(j \omega) X(j \omega)$
- This property can be used for filtering input signal in frequency domain.

FT for LTI Systems

- FT of impulse response, $H(j \omega)$, is called Frequency Response of the system
- Plays a key role in LTI system analyzing
- Convergence Condition of FT in LTI Systems
- The LTI system should be stable
- i.e., impulse response should be absolute integrable: $\int_{-\infty}^{\infty}|h(t)| d t<\infty$
- Note that this is one of Drichlet's conditions.
- Assume other two Drichlet's conditions are satisfied (This happens for all practical systems)
- \therefore Only stable LTI systems can be analyzed by FT
- Question: How can we analyze unstable LTI systems?

FT for LTI Systems

- The overall Freq. Res. (Frequency Response) of two cascade system is product of individual Freq. responses:

(b)
- Example: Consider $h(t)=\delta\left(t-t_{0}\right) \Leftrightarrow H(j \omega)=e^{-j \omega t_{0}}$
- $Y(j \omega)=H(j \omega) X(j \omega)=e^{-j \omega t_{0}} X(j \omega) \Leftrightarrow y(t)=x\left(t-t_{0}\right)$

FT for LTI Systems

- Example: $y(t)=\frac{d x(t)}{d t} \Leftrightarrow Y(j \omega)=j \omega X(j \omega)$
- $H(j \omega)=j \omega$
- Differentiating system increases the magnitude by ω, and increase the phase by $\pi / 2,\left(j=e^{j \frac{\pi}{2}}\right)$
- $\frac{d}{d t} \sin \omega_{0} t=\omega_{0} \cos \left(\omega_{0} t\right)=\omega_{0} \sin \left(\omega_{0} t+\frac{\pi}{2}\right)$
- Example: Consider $x(t)=e^{-a t} u(t), h(t)=e^{-b t} u(t)$
- $X(j \omega)=\frac{1}{a+j \omega}, H(j \omega)=\frac{1}{b+j \omega}$
- $Y(j \omega)=\frac{1}{(a+j \omega)(b+j \omega)}=\frac{1}{(b-a)(a+j \omega)}+\frac{1}{(a-b)(b+j \omega)}$
- $y(t)=\frac{1}{b-a}\left\{e^{-a t} u(t)-e^{-b t} u(t)\right\}$

FT Properties

- Multiplication: $r(t)=s(t) p(t) \Leftrightarrow R(j \omega)=\frac{1}{2 \pi}[S(j \omega) * P(j \omega)]$
- Multiplication of two signals is using one signal to scale (modulate) the amplitude of another one.
- \therefore Multiplication of two signals is called amplitude modulation.
- Example: $p(t)=\cos \left(\omega_{0}\right) t \Leftrightarrow P(j \omega)=\pi \delta\left(\omega-\omega_{0}\right)+\pi \delta\left(\omega+\omega_{0}\right)$
- $r(t)=s(t) p(t) \Leftrightarrow R(j \omega)=\frac{1}{2} S\left(j\left(\omega-\omega_{0}\right)\right)+\frac{1}{2} S\left(j\left(\omega+\omega_{0}\right)\right)$
- signal of $s(t)$ is preserved by multiplying it by sinusoidal signal, its information is only shifted to the higher frequency.(sinusoidal amplitude modulation).

(a)

DT Fourier Transform

- Similar to CT, aperiodic signals for DT can be considered as a periodic signal with fundamental period $(N \rightarrow \infty)$:
- Consider $x[n]$ is aperiodic and has values for $-N_{1} \leq n \leq N_{2}$
- Define a periodic signal $\tilde{x}[n]$ with fundamental period N which is identical to $x[n]$ in $-N_{1}: N_{2}$ interval
- as $N \rightarrow \infty \quad x[n]=\tilde{x}[n]$
- $\tilde{x}[n]=\sum_{k=\langle N>} a_{k} e^{j k(2 \pi / N) n}, \quad a_{k}=\frac{1}{N} \sum_{n=\langle N\rangle} \tilde{x}[n] e^{-j k(2 \pi / N) n}$
- $a_{k}=\frac{1}{N} \sum_{n=-N_{1}}^{N_{2}} \tilde{x}[n] e^{-j k(2 \pi / N) n}=\frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-j k(2 \pi / N) n}$
- Now define $X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} X[n] e^{-j \omega n} \rightsquigarrow a_{k}=\frac{1}{N} X\left(e^{j k \omega_{0}}\right)$
- also $\frac{1}{N}=\frac{\omega_{0}}{2 \pi}$
- $\therefore \tilde{x}[n]=\frac{1}{2 \pi} \sum_{k=<N>} X\left(e^{j \omega_{0}}\right) e^{j \omega_{0} n} \omega_{0}$
- $N \uparrow \rightsquigarrow \omega_{0} \downarrow$
- When $N \rightarrow \infty \rightsquigarrow$ summation $\left(\sum\right)$ is substituted by (\int)
- Moreover, $X\left(e^{j \omega}\right)$ and $e^{j \omega n}$ are periodic with period 2π
- $\therefore N \rightarrow \infty \rightsquigarrow x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega$

DT Fourier Transform

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega \\
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
\end{aligned}
$$

- The main differences between CT and DT fourier transforms:

1. In DT, $X\left(e^{j \omega}\right)$ is periodic
2. In DT, the integral of the synthesis equation is finite.

- These properties are similar to DT Fourier Series and they are due to the fact that DT complex exponentials are periodic with 2π
- Reminder: For $e^{j \omega n}, \omega=0$ and $\omega=2 \pi$ leads to the same signal
- Signals at frequencies near even multiple of π are slowly varying
- Signals at frequencies near odd multiple of π are fast varying

(3)

(c)

(b)

(d)

Example

- Consider a rectangular pulse: $x[n]= \begin{cases}1 & |n| \leq N_{1} \\ 0 & |n|>N_{1}\end{cases}$
- For $N_{1}=2: \quad X\left(e^{j \omega}\right)=\sum_{n=-N_{1}}^{N_{1}} e^{-j \omega n}$
- Using Euler rule and doing some manipulations yield to $X\left(e^{j \omega}\right)=\frac{\sin \omega\left(N_{1}+\frac{1}{2}\right)}{\sin (\omega / 2)}$ (Show it!)
- This is DT counterpart of sinc function that is obtained from FT of CT rectangular pulse signal
- The main difference is that the sinc function in DT is periodic but in CT it is aperiodic

Example Cont'd

Convergence of DT FT

- To derive DT FT we considered a $x[n]$ with finite duration.
- BUT DT FT is valid for signals with infinite duration as well (such as unit step and etc.)
- The conditions on $x[n]$ to guarantee convergence of $X(j \omega)=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n}$ is similar to CT FT:
- $x[n]$ has finite energy: $\sum_{n=-\infty}^{+\infty}|x[n]|^{2}<\infty$
- OR $x[n]$ is absolute summable: $\sum_{n=-\infty}^{+\infty}|x[n]|<\infty$

Convergence of DT FT

- To derive DT FT we considered a $x[n]$ with finite duration.
- BUT DT FT is valid for signals with infinite duration as well (such as unit step and etc.)
- The conditions on $x[n]$ to guarantee convergence of $X(j \omega)=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n}$ is similar to CT FT:
- $x[n]$ has finite energy: $\sum_{n=-\infty}^{+\infty}|x[n]|^{2}<\infty$
- OR $x[n]$ is absolute summable: $\sum_{n=-\infty}^{+\infty}|x[n]|<\infty$
- However No convergence condition is required regarding the synthesis equation $x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega$
- Since the integral is over a finite interval
- This property is similar to DT Fourier series

Convergence of DT FT

- To derive DT FT we considered a $x[n]$ with finite duration.
- BUT DT FT is valid for signals with infinite duration as well (such as unit step and etc.)
- The conditions on $x[n]$ to guarantee convergence of $X(j \omega)=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n}$ is similar to CT FT:
- $x[n]$ has finite energy: $\sum_{n=-\infty}^{+\infty}|x[n]|^{2}<\infty$
- OR $x[n]$ is absolute summable: $\sum_{n=-\infty}^{+\infty}|x[n]|<\infty$
- However No convergence condition is required regarding the synthesis equation $x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega$
- Since the integral is over a finite interval
- This property is similar to DT Fourier series
- We would expect No Gibbs phenomenon behavior for DT FT

Example

- Consider $x[n]=\delta[n]$
- $X\left(e^{j \omega}\right)=1$
- FT of impulse response provides equal contribution at all frequencies
- We can also define $\hat{x}[n]=\frac{1}{2 \pi} \int_{-W}^{W} \mathrm{e}^{j \omega n} d \omega=\frac{\sin W n}{\pi n}$
- and obtain $x[n]$ by increasing W to π
- We can see
- similar to CT, $W \uparrow \rightsquigarrow$ oscillation \uparrow
- despite of CT, W $\uparrow \rightsquigarrow$ the amplitude of $\hat{x}[0] \uparrow$ and amplitude of oscillations \downarrow
- \therefore There is no Gibbs phenomenon

Example Cont'd

(b)

(c)

(e)
(b)

(d)

(1)

DT FT For Periodic signals

- Similar to CT, DT FT of $x[n]=e^{j \omega_{0} n}$ is a signal of impulse function
- Since DT FT is periodic, DT FT of $x[n]$ should have impulses at $\omega_{0}, \omega_{0} \pm 2 \pi, \omega_{0} \pm 4 \pi$ and so on:

$$
X\left(e^{j \omega}\right)=\sum_{I=-\infty}^{+\infty} 2 \pi \delta\left(\omega-\omega_{0}-2 \pi I\right)
$$

\therefore DT FT of $x[n]=\sum_{k=<N \vec{\infty}} a_{k} e^{j k(2 \pi / N) n}$ is:

$$
X\left(e^{j \omega}\right)=\sum_{I=-\infty}^{+\infty} \sum_{k=<N>} 2 \pi a_{k} \delta\left(\omega-\frac{2 k \pi}{N}-2 \pi I\right)
$$

- a_{k} is periodic, $a_{0}=a_{N}, a_{1}=a_{N+1}, \ldots \rightsquigarrow$ the equation can be simplified to

$$
x\left(e^{j \omega}\right)=\sum_{k=-\infty}^{+\infty} 2 \pi a_{k} \delta\left(\omega-\frac{2 \pi k}{N}\right)
$$

- \therefore FT of a periodic Signal can be obtained from its ES coefficients

Example

- Consider $x[n]=\sin \omega_{0} n=\frac{1}{2 j} e^{j \omega_{0} n}-\frac{1}{2 j} e^{-j \omega_{0} n}$ with $\omega_{0}=\frac{2 \pi}{7}$
$\therefore \therefore\left(e^{j \omega_{0}}\right)=\sum_{l=-\infty}^{+\infty} \frac{\pi}{j} \delta\left(\omega-\frac{2 \pi}{7}-2 \pi l\right)-\sum_{l=-\infty}^{+\infty} \frac{\pi}{j} \delta\left(\omega+\frac{2 \pi}{7}-2 \pi l\right)$

Some DT FT Properties

- Periodicity: DT FT is always periodic in ω with period 2π : $X\left(e^{j \omega_{0}}\right)=X\left(e^{j \omega_{0}}+2 \pi\right)$
- Linearity: $a x[n]+b y[n] \Leftrightarrow a X\left(e^{j \omega}\right)+b Y\left(e^{j \omega}\right)$
- Time/Frequency Shifting:

$$
\begin{aligned}
& x\left[n-n_{0}\right] \Leftrightarrow e^{-j \omega n_{0}} X\left(e^{j \omega}\right) \\
& e^{-j \omega_{0} n^{2}} x[n] \Leftrightarrow X\left(e^{j\left(\omega-\omega_{0}\right)}\right)
\end{aligned}
$$

- Differencing and Summation:
- $x[n]-x[n-1] \Leftrightarrow\left(1-e^{-j \omega}\right) X\left(e^{j \omega}\right)$
- $\sum_{m=-\infty}^{n} X[m] \Leftrightarrow \frac{1}{1-e^{-j \omega}} X\left(e^{j \omega}\right)+\pi X\left(e^{j 0}\right) \sum_{k=-\infty}^{+\infty} \delta(\omega-2 \pi k)$
- Time Reversal: $x[-n] \Leftrightarrow X\left(e^{-j \omega}\right)$

Some DT FT Properties

- Time Expansion:
- For $x[a n]$, a should be integer
- Therefore, $a<1$ does not necessarily make the signal slow down
- To speed up the original signal we cannot use $a>1$ since it does not keep all the original signal elements
- For instance for $a=2, x[2 n]$ just keeps the even samples of $x[n]$
- So let us define signal
$x_{(k)}[n]=\left\{\begin{array}{cc}x[n / k] & \text { if } \mathrm{n}=\mathrm{r} \mathrm{k}, \\ 0 & \text { where } \mathrm{r}, \mathrm{k} \text { are integer } \\ \text { otherwise }\end{array}\right.$
- Therefore by placing $k-1$ zeros between successive samples of original signal, a kind of slowing down signal is defined
- $X_{(k)}\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} X_{(k)}[n] e^{-j \omega n}=\sum_{r=-\infty}^{+\infty} X_{(k)}[r k] e^{-j \omega r k}$
- $x_{(k)}[r k]=x[r] \rightsquigarrow X_{(k)}\left(e^{j \omega}\right)=X\left(e^{j k \omega}\right)$
- $\therefore x_{(k)}[n] \Leftrightarrow X\left(e^{j k \omega}\right)$

Example

- For a rectangular pulse signal:

- Conjugate and Conjugate Symmetry: $x^{*}[n] \Leftrightarrow X^{*}\left(e^{-j \omega}\right)$
- Real $x[n] \Leftrightarrow X\left(e^{-j \omega}\right)=X^{*}\left(e^{j \omega}\right)$
- Polar representation $X\left(e^{j \omega}\right)=\left|X\left(e^{j \omega}\right)\right| e^{j \measuredangle X\left(e^{j \omega}\right)}$
$-\left|X\left(e^{-j \omega}\right)\right|=\left|X\left(e^{j \omega}\right)\right|$ (even fcn)
$-\measuredangle X\left(e^{-j \omega}\right)=-\measuredangle X\left(e^{j \omega}\right)$ (odd fcn)
- Rectangular representation $X\left(e^{j \omega}\right)=\operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}+j \operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\}$
$-\operatorname{Re}\left\{X\left(e^{-j \omega}\right)\right\}=\operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}$ (even fcn)
$-\operatorname{Im}\left\{X\left(e^{-j \omega}\right)\right\}=-\operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\}$ (odd fcn)
- Real and even $x[n]=x[-n] \Leftrightarrow X\left(e^{j \omega}\right)=X\left(e^{-j \omega}\right)=X^{*}\left(e^{j \omega}\right)$ (real and even $\left.X\left(e^{j \omega}\right)\right)$
- Real and odd $x[n]=-x[-n] \Leftrightarrow X\left(e^{-j \omega}\right)=-X\left(e^{j \omega}\right)=-X^{*}\left(e^{j \omega}\right)$ (purely imaginary and odd $X\left(e^{j \omega}\right)$),
- even part of $x[n] \Leftrightarrow \operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}$ (show it!)
- Odd part of $x[n] \Leftrightarrow j \mathcal{I} m\left\{X\left(e^{j \omega}\right)\right\}$ (show it!)

Some DT FT Properties

- Differentiation in Frequency: $n x[n] \Leftrightarrow j \frac{d X\left(e^{j \omega}\right)}{d \omega}$
- Parseval's Relation: $\sum_{n=-\infty}^{+\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{2 \pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega$
- Convolution: $y[n]=x[n] * h[n] \Leftrightarrow Y\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) X\left(e^{j \omega}\right)$
- This property can be used for filtering input signal in frequency domain.
- Multiplicity: $y[n]=x_{1}[n] x_{2}[n] \Leftrightarrow Y\left(e^{j \omega}\right)=\frac{1}{2 \pi} \int_{2 \pi} X_{1}\left(e^{j \theta}\right) X_{2}\left(e^{j(\omega-\theta)}\right) d \theta$
- The left side equation is called periodic convolution

Dualities

	CT		DT	
	Time Domain	Freq. Domain	Time Domain	Freq. Domain
FS	$x(t)=\sum_{k=-\infty}^{\infty} a_{k} e^{j k \omega_{0} t}$ Continuous time Periodic in time	$\begin{aligned} & a_{k} \\ & =\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-j k \omega_{0} t} d t \end{aligned}$ Discrete freq. Aperiodic in freq.	$x[n]=\sum_{k=<N>} a_{k} e^{j k\left(\frac{2 \pi}{N}\right) n}$ Discrete time Periodic in time	$a_{k}=\frac{1}{N} \sum_{n=<N>} x[n] e^{-j k\left(\frac{2 \pi}{N}\right) t}$ Discrete freq. Periodic in freq.
FT	$\begin{aligned} & x(t) \\ & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega \end{aligned}$ Continuous time Aperiodic in time	$X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$ Continuous freq. Aperiodic in freq.	$x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega$ Discrete time Aperiodic in time	$X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}$ Continuous freq. Periodic in Freq.

FT for DT LTI Systems

- A DT LTI system can be expressed as:
$\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]$
- Now take DT FT: $\sum_{k=0}^{N} a_{k} e^{-j k \omega} Y\left(e^{j \omega}\right)=\sum_{k=0}^{M} b_{k} e^{-j k \omega} X\left(e^{j \omega}\right)$
- Frequency response $H\left(e^{j \omega}\right)=\frac{Y\left(e^{j \omega}\right)}{X\left(e^{j \omega}\right)}=\frac{\sum_{k=0}^{M} b_{k} e^{-j k \omega}}{\sum_{k=0}^{N} a_{k} e^{-j k \omega}}$

