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Outline Dynamic Memory Gradient-Type Hopfield Network

Hopfield Networks

I It is a special type of Dynamic Network that v0 = x0, i.e.,
vk+1 = M[vk ]

I It is a single layer feedback network which was first introduced by
John Hopfield (1982,1988)

I Neurons are with either a hard-limiting activation function or with a
continuous activation function

I In MLP:
I The weights are updated gradually by teacher-enforced which was

externally imposed rather than spontaneous
I The FB interactions within the network ceased once the training had

been completed.
I After training, output is provided immediately after receiving input

signal
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I In FB networks:
I The weights are usually adjusted spontaneously.
I Typically, the learning of dynamical systems is accomplished without a

teacher.
I i.e., the adjustment of system parameters does not depend on the

difference between the desired and actual output value of the system
during the learning phase.

I To recall information stored in the network, an input pattern is applied,
and the network’s output is initialized accordingly.

I Next, the initializing pattern is removed and the initial output forces
the new, updated input through feedback connections.

I The first updated input forces the first updated output. This, in turn,
produces the second updated input and the second updated response.

I The transition process continues until no new updated responses are
produced and the network has reached its equilibrium.

I ∴ These networks should fulfill certain assumptions that make the
class of networks stable and useful, and their behavior predictable in
most cases.
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Outline Dynamic Memory Gradient-Type Hopfield Network

I FB in the network
I allows for great reduction of the complexity.
I Deal with recalling noisy patterns

I Hopfield networks can provide
I associations or classifications
I optimization problem solution
I restoration of patterns
I In general, as with perceptron networks, they can be viewed as mapping

networks

I One of the inherent drawbacks of dynamical systems is:
I The solutions offered by the networks are hard to track back or to

explain.
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I wij : the weight value
connecting the output of the
jth neuron with the input of
the ith neuron

I W = {wij} is weight matrix

I V = [v1, ..., vn]T is output
vector

I net = [net1, .., netn]T = Wv

I vk+1
i = sgn(

∑n
j=1 wijv

k
j )
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Outline Dynamic Memory Gradient-Type Hopfield Network

I W is defined:

W =


0 w12 w13 . . . w1n

w21 0 w23 . . . w2n

w31 w32 0 . . . w3n
...

...
... . . .

...
wn1 wn2 wn3 . . . 0


I It is assumed that W is symmetric, i.e., wij = wji

I wii = 0, i.e., There is no self-feedback
I The output is updated asynchronously. This means that

I For a given time, only a single neuron (only one entry in vector V ) is
allowed to update its output

I The next update in a series uses the already updated vector V .
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Outline Dynamic Memory Gradient-Type Hopfield Network

I Example: In this example output vector is started with initial value
V 0, they are updated by m, p and q respectively:

V 1 = [v0
1 v0

2 . . . v1
m v0

p v0
q . . . v0

n ]T

V 2 = [v0
1 v0

2 . . . v1
m v2

p v0
q . . . v0

n ]T

V 3 = [v0
1 v0

2 . . . v1
m v2

p v3
q . . . v0

n ]T

I The vector of neuron outputs V in n-dimensional space.

I The output vector is one of the vertices of the n-dimensional cube
[−1, 1] in En space.

I The vector moves during recursions from vertex to vertex, until it is
stabilized in one of the 2n vertices available.
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Outline Dynamic Memory Gradient-Type Hopfield Network

I State transition map for a
memory network is shown

I Each node of the graph is
equivalent to a state and
has one and only one edge
leaving it.

I If the transitions terminate
with a state mapping into
itself, A, then the
equilibrium A is fixed point.

I If the transitions end in a
cycle of states, B, then we
have a limit cycle solution
with a certain period.

I The period is defined as
the length of the cycle.
(3 in this example)
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Stability Analysis
I To evaluate the stability property of the dynamical system of interest,

let us study a so-called computational energy function.

I This is a function usually defined in n-dimensional output space V
E = −1

2V TWV

I In stability analysis, by defining the structure of W ( symmetric and
zero in diagonal terms) and updating method of output
(asynchronously) the objective is to show that changing the
computational energy in a time duration is nonpositive

I Note that since W has zeros in its diagonal terms, it is sign indefinite
(its sign depend on the signs of vj and vi )  E does not have
minimum in unconstrained space

I However, the space vn is bounded within [−1, 1] hypercube,  E has
local minimum and showing E changes is nonpositive makes it a
Lyapunov function

H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 6 10/50
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I The Energy increment is: 4E = (∇E )′4v

I The energy gradient vector is :
∇E = −1

2 (W ′ + W )v = −Wv = −net (W is symmetric)

I Assume in asynchronous update at the kth instant ith node of output

is updated: 4v = vk+1 − vk =


0
...
4vi

...
0


I ∴4E = −neti4vi

H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 6 11/50
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I On the other hand output of the network vk+1 is defined based on

output of TLU: sgn(neti ) =

{
−1 neti < 0
1 neti ≥ 0

I Hence
I neti < 0 4vi ≤ 0
I neti > 0 4vi ≥ 0

I ∴4E is always neg.
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Outline Dynamic Memory Gradient-Type Hopfield Network

I Energy function was defined as E = −1
2vTWv

I In bipolar notation the complement of vector v is −v

I ∴E (−v) = −1
2vTWv

I E (v) = E (−v) min E (v) = min E (−v)

I The memory transition may end up to v as easily as −v

I The similarity between initial output vector and v and −v determines
the convergence.

I It has been shown that synchronous state updating algorithm may
yield persisting cycle states consisting of two complimentary patterns
(Kamp and Hasler 1990)
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Example

I A 10× 12 bit map of black
and white pixels representing
the digit 4.

I The initial, distorted digit 4
with 20% of the pixels
randomly reversed.
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I Example 2: Consider W =

[
0 −1
−1 0

]
, v0 =

[
−1
−1

]
I v1 = sgn(Wv) = sgn(

[
0 −1
−1 0

] [
−1
−1

]
) =

[
1
1

]
I v2 = sgn(Wv) = sgn(

[
0 −1
−1 0

] [
1
1

]
) =

[
−1
−1

]
I v0 = v1 It provides a cycle of two states rather than a fix point

I Example 3: Consider W =


0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0


I The energy function becomes

E (v) = − 1
2 [v1 v2 v3 v4]


0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0




v1

v2

v3

v4

 =

−v1(v2 + v3 − v4)− v2(v3 − v4) + v3v4
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Outline Dynamic Memory Gradient-Type Hopfield Network

I It can be verifying
that all possible
energy levels are
−6, 0, 2

I Each edge of the
state diagram shows
a single asynchronous
state transition.

I Energy values are
marked at cube
vertexes

I By asynchronous
updates, finally the
energy ends up to its
min value -6.
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I Applying synchronous update:
I Assume v0 = [1 − 1 1 1]T

I v1 = sgn(Wv0) = [−1 1 − 1 − 1]
I v2 = sgn(Wv1) = [1 − 1 1 1] = v0

I It gets neither to lower energy (both are 2) nor fixed point

I Storage Algorithm
I For bipolar prototype vectors: the weight is calculated:

W =
∑p

m=1 s(m)s(m)T − PI or wij = (1− δij)
∑p

m=1 s
(m)
i s

(m)
j

I δij is Kronecker function: δij =

{
1 i = j
0 i 6= j

I If the prototype vectors are unipolar, the memory storage alg. is

modified as wij = (1− δij)
∑p

m=1(2s
(m)
i − 1)(2s

(m)
j − 1)

I The storage rule is invariant with respect to the sequence of storing
pattern

I Additional patterns can be added at any time by superposing new
incremental weight matrices
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I In W =
∑p

m=1 s(m)s(m)T the diagonal terms are always positive and

mostly dominant (wii =
∑P

p=1 s
(p)
i s

(p)T
i )

I Therefore, for updating the output, in Wv the elements of input
vector v will be dominant and instead of the stored pattern

I ∴ To avoid the possible problem the diagonal terms of W are set to
zero.
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Performance Analysis of Recurrent Autoassociative
Memory

I Associative memories recall patterns that display a degree of
”similarity” to the search argument.

I Hamming Distance (HD) is an index to measure this ”similarity”
precisely:

I An integer equal to the number of bit positions differing between two
binary vectors of the same length.

HD(x , y) =
1

2

n∑
i=1

|xi − yi |

I MAX HD = n, it is between a vector and its component.

I The asynchronous update allows for updating of the output vector by
HD = 1 at a time.
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Example

I The patterns are
s(1) = [−1 − 1 1 1],
s(2) = [−1 1 1 − 1].

I The weight matrix is
0 0 −2 0
0 0 0 −2
−2 0 0 0
0 −2 0 0


I The energy function is

E (v) = 2(v1v3 + v2v4)

I Assume v0 = [−1 1 − 1 1],
update asynchronously in
ascending order
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Outline Dynamic Memory Gradient-Type Hopfield Network

v1 = [1 1 − 1 1]T

v2 = [1 − 1 − 1 1]T

v3 = v4 = ... = [1 − 1 − 1 1]T

I It converges to negative image of s(2)

I HD of v0 is 2 from each patterns  no particular similarity to any of
them

I Now assume v0 = [−1 1 1 1]: HD of v0 to each of them is 1

I by ascending updating order:

v1 = [−1 − 1 1 1]T

v2 = v3 = ... = v1

I It reaches to s(1)

I by descending updating order:
v1 = [−1 1 1 − 1]T

v2 = v3 = ... = v1
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Outline Dynamic Memory Gradient-Type Hopfield Network

I It has been shown that the energy is min along the following gradient
vector direction ∇vE (v) = −Wv = −(

∑P
p=1 s(p)s(p)T − PI )v =

−
∑P

p=1 s(p)s(p)T v + Pv

I Since scalar product of a and b is # of positions in which a and b are
agree minus # of positions in which they are different:
aTb = (n − HD(a, b))− HD(a, b) = n − 2HD(a, b)

I ∴ ∂E
∂vi

= −n
∑P

p=1 s
(p)
i + 2

∑P
p=1 s

(p)
i HD(s(p), v) + Pvi

I When bit i of the output vector, vi , is erroneous and equals - 1 and
needs to be corrected to + 1, the i’th component of the energy
gradient vector must be negative.

I Any gradient component of the energy function is linearly dependent
on HD , for p = 1, 2, ...,P.

I The larger the HD value, the more difficult it is to ascertain that the
gradient component indeed remains negative due to the large potential
contribution of the second sum term to the right side of expression
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Performance Analysis

I Assume there are P patterns

I v0 = s(m), where s(m) is one of the patterns

net = Ws(m) =
P∑

p=1

(s(p)s(p)T − PI )s(m)

= ns(m) − Ps(m) + η

η =
P∑

p 6=m

s(p)s(p)T s(m)

I Hint: Assume all elements of patterns are bipolar  s(m)T s(m) = n
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1. If the stored patterns are orthogonal: (s(p)T s(m) = 0; s(m)T s(m) = n)

net = Ws(m) = (n − P)s(m)

I ∴s(m) is an eigen vector of W and an equilibrium of network

E (v) = −1

2
vT (

P∑
p=1

(s(p)s(p)T )v +
1

2
vTPIv

E (s(m)) = −1

2
(n2 − Pn)

I If n > P, the energy at this pattern is min

2. If the stored patterns are not orthogonal(Statistically they are not fully
independent):

I η 6= 0
I η may affect the sign of net
I The noise term

increases for an increased number of stored patterns
becomes relatively significant when the factor (n − p) decreases

H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 6 24/50



Outline Dynamic Memory Gradient-Type Hopfield Network

Memory Convergence versus Corruption
I Assume n = 120, HD of stored

vectors is fixed and equal to 45

I The correct convergence rate drops
about linearly with the amount of
corruption of the key vector.

I The correct convergence rate also
reduces as the number of stored
patterns increases for a fixed
distortion value of input key
vectors.

I The network performs very well at
p = 2 patterns stored

I It recovers rather poorly distorted
vectors at p = 16 patterns stored.
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I Assume n = 120, P is fixed and
equal to 4

I The network exhibits high noise
immunity for large and very large
Hamming distances between the
stored vectors.

I For stored vectors that have 75%
of the bits in common, the
recovery of correct memories is
shown to be rather inefficient.
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I The average number of
measured update cycles has
been between 1 and 4.

I This number increases
almost linearly with the
number of patterns stored
and with the percent
corruption of the key input
vector.
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Problems

I Uncertain Recovery
I Heavily overloaded memory (p/n > 50%) may not be able to provide

error-free or efficient recovery of stored pattern.
I Theres are some examples of convergence that are not toward the closest

memory as measured with the HD value

I Undesired Equilibria
I Spurious points are stable equilibria with minimum energy that are

additional to the patterns we already stored.
I The undesired equilibria may be unstable. Therefore, any noise in the

system will move the network out of them.
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Example

I Assume two patterns are stored in
the memory as shown in Fig.

I The input vector converges to the
closer pattern

I BUT if the input is exactly between
the two stable points, it moves into
the center of the state space!

H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 6 29/50
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Bidirectional Associative Memory (Kosko 1987, 1988)

I It is a heteroassociative,
content-addressable memory
consisting of two layers.

I It uses the forward and backward
information flow to produce an
associative search for stored
stimulus-response association

I The stability corresponds to a local
energy minimum.

I The network’s dynamics involves
two layers of interaction.

I The patterns are
{(a(1), b(1)), (a(2), b(2)), . . . , (a(p), b(p))}
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Memory Architecture
I Assume an initializing vector b is applied at the input ( layer A)

I The neurons are assumed to be bipolar binary.

a′ = Γ[Wb]

a′i = sgn(
m∑

j=1

wijbj), i = 1, ..., n

I Γ[.] is a nonlinear activation function. For discrete-time networks, it is
usually a TLU

I Now vector a′ is applied to Layer B

b′ = Γ[W ′a′]

b′j = sgn(
n∑

i=1

wijai ), j = 1, ...,m

I Then a” is obtained form b′ and ...
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I So the procedure can be shown as

First Forward Pass a1 = Γ[Wb0]
First backward Pass b2 = Γ[W Ta1]

Second Forward Pass a3 = Γ[Wb2]
...

...

k/2 th backward Pass bk = Γ[W Ta(k−1)]

(1)

I If the network is stable the procedure is stope at an equilibrium pair
like (a(i), b(i))

I Both asynchronously and synchronously updating yields stability.

I To achieve faster result it is preferred to update synchronously

I If the weight matrix is square and symmetric, W = W T , then both
memories become identical and autoassociative.
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I Storage Algorithm :
I It is based on Hebbian rule:

W =

p∑
i=1

a(i)b(i)T

wij =
P∑

m=1

a
(m)
i b

(m)
j

I a(i) and b(i) are bipolar binary

I Stability Analysis
I bidirectionally stable means that the updates continue and the memory

comes to its equilibrium at the k th step, we have ak → bk → ak+2, and
ak+2 = ak

I Consider the energy function E (a, b) = − 1
2 (aTWb)− 1

2 (bTW Ta)
I Since a and b are vectors E (a, b) = −(aTWb)
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I The gradients of energy with respect to a and b:

∇aE (a, b) = −Wb

∇bE (a, b) = −W Ta

I Energy changes due to the single bit increments 4ai and 4bj :

4Eai = −(
m∑

j=1

wijbj)4ai i = 1, ..., n

4Ebi
= −(

n∑
i=1

wijai )4bj j = 1, ...,m
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I Considering the output update law (1):

4ai =


−2

∑m
j=1 wijbj < 0

0
∑m

j=1 wijbj = 0

2
∑m

j=1 wijbj > 0

4bj =


−2

∑n
i=1 wijai < 0

0
∑n

i=1 wijai = 0
2

∑n
i=1 wijai > 0

I ∴ 4E ≤ 0

I and E is bounded : E ≥ −
∑N

i=1

∑M
j=1 |wij | the memory converges

to a stable point
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Example

I Consider four 16-pixel bit maps of letter characters should be
associated to 7-bit binary vectors as below:

a(1) = [1 1 1 − 1 1 − 1 − 1 − 1 1 − 1 − 1 − 1 1 1 1 − 1]T ,

b(1) = [1 − 1 − 1 − 1 − 1 1 1]T ,

a(2) = [1 − 1 − 1 1 1 1 − 1 1 1 − 1 1 1 1 − 1 − 1 1]T ,

b(2) = [1 − 1 − 1 1 1 1 − 1]T ,

a(3) = [1 1 1 1 − 1 − 1 1 − 1 − 1 1 − 1 − 1 1 1 1 1]T ,

b(3) = [1 − 1 1 1 − 1 1 − 1]T ,

a(4) = [−1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 1 1 − 1 − 1 − 1 1]T ,

b(4) = [−1 1 1 − 1 1 − 1 1]T ,

I W =
∑p

i=1 a(i)b(i)T
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I Assume a key vector a1 at the memory input is a distorted prototype
of a(2), HD(a(2), a1) = 4:

a1 = [−1 − 1 − 1 1 − 1 1 − 1 1 1 − 1 1 1 − 1 − 1 1 1]T ,

I Therefore:

b2 = Γ[−16 16 0 0 32 − 16 0]T = [−1 1 0 0 1 − 1 0]T ,

a3 = [−1 − 1 − 1 − 1 − 1 1 − 1 1 1 1 1 1 1 − 1 − 1 1]T ,

b4 = [−1 1 1 − 1 1 − 1 1]T ,

a5 = [−1 − 1 − 1 − 1 − 1 − 1 − 1 1 1 1 1 1 − 1 − 1 − 1 1]T ,

b6 = b4, a7 = a5

I HD(a(1), a1) = 12,HD(a(2), a1) = 4, HD(a(3), a1) = 10
,HD(a(4), a1) = 4
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Multidimensional Associative Memory (MAM)

I Bidirectional associative memory is a two-layer nonlinear recurrent
network for stored stimulus-response associations
(a(i), b(i)), i = 1, 2, ..., p.

I The bidirectional model can be generalized to multiple associations
(a(i), b(i), c(i), ...), i = 1, 2, ..., p. (Hagiwara 1990)

I For n tuple association memory, n layer network should be considered.

I Layers are interconnected with each other by weights that pass
information between them.

I For a triple association memory:

WAB =

p∑
i=1

a(i)b(i)T ,WCB =

p∑
i=1

c(i)b(i)T

WAC =

p∑
i=1

a(i)c(i)T
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I Each neuron independently
and synchronously updates
its output based on its total
input sum from all other
layers:

a′ = Γ[WABb + WACc]

b′ = Γ[W T
CBc + W T

ABa]

c ′ = Γ[W T
ACa + WCBb]

I The neurons’ states change
synchronously until a
multidirectionally stable
state is reached
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Gradient-Type Hopfield Network

I Gradient-type neural networks are generalized Hopfield networks in
which the computational energy decreases continuously in time.

I Gradient-type networks converge to one of the stable minima in the
state space.

I The evolution of the system is in the general direction of the negative
gradient of an energy function.

I Typically, the network energy function is equivalent to a certain
objective (penalty) function to be minimized.

I These networks are examples of nonlinear, dynamical, and
asymptotically stable systems.

I They can be considered as a solution of an optimization problem.
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I The model of a
gradient-type neural system
using electrical components
is shown in Fig.

I It has n neurons,

I Each neuron mapping its
input voltage ui into the
output voltage vi through
the activation function
f (ui ),

I f (ui ) is the common static
voltage transfer
characteristic (VTC) of the
neuron.
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I Conductance wij connects the output of the jth neuron to the input of
the ith neuron.

I The inverted neuron outputs v̄i representing inverting output is
applied to avoid negative conductance values wij

I Note that in Hopefield networks:
I wij = wji

I wii = 0 , the outputs of neurons are not connected back to their own
inputs

I Capacitances Ci , for i = 1, 2, ..., n, are responsible for the dynamics of
the transients in this model.
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I KCL equ. for each node is

ii +
n∑

j 6=i

Wijvj − ui (
n∑

j 6=i

wij + gi ) = Ci
du

dt
(2)

I Considering Gi =
∑n

j=1 wij + gi , C = diag [C1,C2, ...,Cn],
G = [G1, ...,Gn], the output equ. for whole system is

C
du

dt
= Wv(t)− Gu(t) + I (3)

v(t) = f [u(t)]
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I The energy to be minimized is
E (v) = −1

2v tWv − iv + 1
λ

∑n
i=1 Gi

∫ vi

0 f −1
i (z)dz

I To study the stability one should check the sign of dE [v(t)]
dt

I dE [v(t)]
dt = ∇E t(v)v̇ ;∇E t(v) = [∂E(v)

∂v1

∂E(v)
∂v2

. . . ∂E(v)
∂vn

]

I d
dvi

(Gi

∫ vi

0 f −1
i (z)dz) = Giui 

dE [v(t)]
dt = (−Wv − i + Gu)t v̇

I Now considering (3) yields: dE [v(t)]
dt = −(C du

dt )t dv
dt

I Using the inverse activation function f −1(vi ) and chain rule leads to
Ci

dui
dt = Ci f

−1′
(vi )

dvi
dt

I Since f −1′
(vi ) > 0, dvi

dt and dui
dt have the same sign

I ∴ The change of E in time, (dE [v(t)]
dt ), is toward lower values of energy.
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I When dE [v(t)]
dt = 0 dui

dt = 0 for i = 1, ..., n

I Therefore, there is no oscillation and cycle, and the updates stop at
minimum energy.

I The Hopfield networks can be applied for optimization problems.

I The challenge will be defining W and I s.t. fit the dynamics and
objective of the problem to (3) and above equation.
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Example: Traveling Salesman Tour Length [?]

I The problem is min tour length through a number of cities with only
one visit of each city

I If n is number of cities (n − 1)! distinct path exists

I Let us use Hopefiled network to find the optimum solution
I We are looking to find a matrix shown in the fig.

I n rows are the cities
I n columns are the position of the salesman
I each city/position can take 1 or 0
I vij = 1 means salesman in its jth position is in ith city

I The network consists n2 unipolar neurons

I Each city should be visited once  only one single 1 at each row and
column
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I We should define w and i such that the energy of the Hopfield
network represent the objective we are looking for

I Recall the energy of Hoefiled network:
E (v) = −1

2

∑
Xi

∑
Yj wXi ,Yj

vXivYj −
∑

Xi iXivXi

I The last term is omitted for simplicity

I Let us express our objective in math:
E1 = A

∑
X

∑
i

∑
j vXivXj for i 6= j

E2 = B
∑

i

∑
X

∑
Y vXivYi for X 6= Y

I E1 be zero  each row has at most one 1

I E2 be zero  each column has at most one 1

I E3 = C (
∑

X

∑
i vXi − n)2

I E3 guarantees that there is at least one 1 at each column and row.

I E4 = D
∑

X

∑
Y

∑
i dXY vXi (vY ,i+1 + vY ,i−1), X 6= Y

I E4 represents minimizing the distances

I dXY is distance between city X and Y
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I Recall the energy of Hoefiled network:
E (v) = −1

2

∑
Xi

∑
Yj wXi ,Yj

vXivYj −
∑

Xi iXivXi

I The weights can be defined as follows

I ∴
WXi ,Yj = −2AδXY (1−δij)−2Bδij(1−δXY )−2C−2Ddxy (δj ,i+1+δj ,j−1)

I iXi = 2Cn

I Positive consts A,B,C , and D are selected heuristically
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