

Nonlinear Control Lecture 6: Stability Analysis III

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

Input-to-State Stability Stability of Cascade System

Input-Output Stability \mathcal{L} Stability of State Models

(1)

(2)

Input-to-State Stability

• Consider the system $\dot{x} = f(t, x, u)$

where $f:[0,\infty) \times \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is piecewise continuous, local lip in x and u. u(t) is p.c. and bounded for $\forall t \geq 0$.

- Suppose the Equ. pt. of the unforced system below is **g.u.a.s**. $\dot{x} = f(t, x, 0)$
- What can be said about the behavior of the forced system in the presence of a bounded input u(t).
- For an LTI system: $\dot{x} = Ax + Bu$

where A is Hurwitz, the solution satisfies: $\|x(t)\| \leq ke^{-\lambda(t-t_0)} \|x(t_0)\| + \frac{k\|B\|}{\lambda} \sup_{t_0 \leq \tau \leq t} \|u(\tau)\|$

- Zero-input response decays to zero

Can this conclusion be extended to nonlinear system (1)?

• The answer in general is no, for instance:

$$\dot{x} = -3x + (1+2x^2)u$$

when u = 0, the origin is **g.e.s**

- However, with x(0) = 2 and u(t) ≡ 1, x(t) = (3 e^t)/(3 2e^t) is unbounded and have a finite scape time.
- ► View the system $\dot{x} = f(t, x, u)$ as a perturbation of the unforced system $\dot{x} = f(t, x, 0)$.
- Suppose there exists a Lyap. fcn for the unforced system and calculate V in the presence of u
- Since u is bounded, it may be possible to show that V is n.d. outside of a ball with radius µ where µ depends on sup ||u||.
- This is possible, for instance if the function f(t, x, u) is Lip. in u, i.e.

$$\|f(t,x,u) - f(t,x,0)\| \leq L \|u\|_{C^{2}}$$

- Having shown V is negative outside of a ball, ultimate boundedness theorem can be used, i.e.
 - theorem can be used, i.e. • ||x(t)|| is bounded by a class \mathcal{KL} for $\beta(||x(t_0)||, t - t_0)$ over $[t_0, t_0 + T]$ and by a class \mathcal{K} for $\alpha_1^{-1}(\alpha_2(\mu))$ for $t \ge t_0 + T$
- ► Hence, $\|x(t)\| \leq \beta(\|x(t_0)\|, t t_0) + \alpha^{-1}(\alpha_2(\mu)) \quad \forall t \geq t_0$
- ▶ **Definition:** The system (1) is said to be **input-to-state stable** if there exist a class \mathcal{KL} fcn β and a class \mathcal{K} fcn γ s.t. for any initial state $x(t_0)$ and any bounded input u(t), the solution x(t) exists for all $t \ge t_0$ and satisfies:

$$\|x(t)\| \leq eta(\|x(t_0)\|, t-t_0) + \gamma\left(\sup_{t_0 \leq \tau \leq t} \|u(\tau)\|
ight)$$

- If u(t) converges to zero as $t \longrightarrow \infty$, so does x(t).
- with $u(t) \equiv 0$, the above equation reduces to:

$$||x(t)|| \leq \beta(||x(t_0)||, t-t_0)$$

implying the origin of unforced system is g.u.a.s. $(\mathbb{B}) (\mathbb{$

- Sufficient condition for input-to-state stability:
- ▶ Theorem: Let $V : [0, \infty) \times R^n \longrightarrow R$ be a cont. diff. fcn. s.t.

$$\begin{array}{rcl} \alpha_1(\|x\|) &\leq & V(t,x) \leq & \alpha_2(\|x\|) \\ \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x,u) &\leq & -W_3(x), & \forall & \|x\| \geq & \rho(\|u\|) &> 0 \end{array}$$

 $\forall (t, x, u) \in [0, \infty) \times \mathbb{R}^n \times \mathbb{R}^m$ where α_1 and α_2 are class \mathcal{K}_∞ fcns, ρ is a class \mathcal{K} fcn, and $W_3(x)$ is a cont. p.d. fcn. on \mathbb{R}^n . Then, the system (1) is input-to-state stable with

$$\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$$

伺 ト イヨト イヨト

- ▶ Lemma: Suppose f(t, x, u) is cont. diff. and globally Lip. in (x, u), uniformly in t. If the unforced system has a globally exponentially stable Equ. pt. at the origin, then the system (1) is input-to-state stable (ISS).
- Proof:
 - View the forced system as a perturbation to unforced system
 - ► The converse theorem implies that the unforced system has a Lyap. fcn satisfying the **g.e.s** conditions.
 - The perturbation terms satisfies the Lip. cond. $\forall t \ge 0$ and $\forall (x, u)$.
 - Hence, V along the trajectories of forced system (1):

$$\begin{split} \dot{V} &= \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x, 0) + \frac{\partial V}{\partial x} [f(t, x, u) - f(t, x, 0)] \\ &\leq -c_3 \|x\|^2 + c_4 \|x\|L\|u\| = -c_3 (1-\theta) \|x\|^2 - c_3 \theta \|x\|^2 \\ &+ c_4 \|x\|L\|u\|, \quad 0 < \theta < 1 \end{split}$$

(4回) (4回) (4回)

$$\therefore \dot{V} \leq -c_3(1-\theta) \|x\|^2 \forall \|x\| \geq \frac{c_4 L \|u\|}{c_3 \theta}, \quad \forall \ (t,x,u)$$

► The conditions of previous theorem are satisfied with:

$$\alpha_1(r) = c_1 r^2, \ \alpha_2(r) = c_2 r^2, \ \rho(r) = (c_4 L/c_3 \theta) r$$

• ... The system is input-to-state stable with $\gamma(r) = \sqrt{c_2/c_1}(c_4L/c_3\theta)r$

The previous lemma relies on globally Lip. fcn f and global exponential stability of the origin of the unforced system for ISS.

不良 とう きょう かきょう

• Example 1:
$$\dot{x} = -\frac{x}{1+x^2} + u = f(x, u)$$

has a globally Lip. f since $\frac{\partial f}{\partial x} = -\frac{1-x^2}{(1+x^2)^2}$ and $\frac{\partial f}{\partial u} = 1$ and are globally bounded.

- The origin of unforced system $\dot{x} = -\frac{x}{1+x^2}$ is $g.a.s(V = x^2/2 \implies \dot{V} = -\frac{x^2}{1+x^2}$ n.d. for all x)
- The system is locally **e.s** because of the linearized system $\dot{x} = -x$
- ► However, the system is not g.e.s

$$\mu \equiv 1, f(x,u) \geq 1/2 \implies x(t) \geq x(t_0) + t/2 \quad \forall t \geq t_0$$

This is not ISS

L

If g.e.s. and globally Lip. conds. are not satisfied, then we can use previous theorem to show ISS (i.e. find a region ||x|| ≥ µ in which V ≤ 0)

Example 2:
$$\dot{x} = -x^3 + u$$

has a **g.a.s.** Equ. pt. at the origin when u = 0. • Let $V = x^2/2$, then \dot{V} can be written as: $\dot{V} = -x^4 + ux = -(1-\theta)x^4 - \theta x^4 + xu$ $\leq -(1-\theta)x^4, \ \forall |x| \geq \left(\frac{|u|}{\theta}\right)^{1/3} \quad 0 < \theta < 1.$

• The system is ISS with $\gamma(r) = (r/ heta)^{1/3}$

• Example 3:
$$\dot{x} = f(x, u) = -x - 2x^3 + (1 + x^2)u^2$$

has a **g.e.s.** Equ. pt. at the origin when u = 0.

► However, f is not globally Lip. Let $V = x^2/2$, then: $\dot{V} = -x^2 - 2x^4 + x(1+x^2)u^2 \leq -x^4$, $\forall |x| \geq u^2$

• The system is ISS with $\gamma(r) = r^2$

・ロ ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

• Consider the cascade system

$$\dot{x}_1 = f_1(t, x_1, x_2), \quad f_1 : [0, \infty) \times R^{n_1} \times R^{n_2} \longrightarrow R^{n_1}$$
 (3)

$$\dot{x}_2 = f_2(t, x_2), f_2: [0, \infty) \times \mathbb{R}^{n_2} \longrightarrow \mathbb{R}^{n_2}$$

$$(4)$$

where f_1 and f_2 are p.c. in t and locally Lip. in $x = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$.

- Suppose $\dot{x}_1 = f_1(t, x_1, 0)$ and (4) both have **g.u.a.s.** Equ. pt. at $x_1 = 0$ and $x_2 = 0$.
- Under what condition the origin of the cascade system is also g.u.a.s.?
- The condition is that (3) should be **ISS** with x_2 viewed as input.
- Lemma: Under the assumption given above, if the system (3) with x₂ as input, is ISS and the origin of (4) is g.u.a.s., then the origin of the cascade system (3) and (4) is g.u.a.s.

Input-Output Stability

- The foundation of input-output (I/O) approaches to nonlinear systems can be found in 1960's by Sandberg and Zames
- An input-output model relates output to input with no knowledge of the internal structure (state equation).

$$y = Hu, \quad u: [0,\infty) \to \mathcal{R}^m$$

• The norm function ||u|| should satisfy the three properties

- 1. ||u|| = 0 iff u = 0 and it is strictly positive otherwise
- 2. scaling property $\forall a > 0, u \Rightarrow ||au|| = a||u||$
- 3. triangular inequality: $\forall u_1, u_2, \|u_1 + u_2\| \le \|u_1\| + \|u_2\|$

► Example: $\|u\|_{\mathcal{L}^m_{\infty}} = \sup_{t \ge 0} \|u\| < \infty$

$$\|u\|_{\mathcal{L}_{2}^{m}} = \sqrt{\int_{0}^{\infty} u^{T}(t)u(t)dt} < \infty$$
$$\|u\|_{\mathcal{L}_{p}^{m}} = \int^{\infty} \|u\|^{p}dt)^{1/p} < \infty, \quad 1 \le p < \infty$$

Input-Output Stability

- Stable system: any "well-behaved" input generate a "well-behaved" output
- ► Extended space: $\mathcal{L}_e^m = \{u | u_\tau \in \mathcal{L}^m, \forall \tau \in [0, \infty)\}$
 - where u_{τ} is a truncation of u: $u_{\tau}(t) = \begin{cases} u(t) & 0 \leq t \leq \tau \\ 0 & t > \tau \end{cases}$
 - It allows us to deal with unbounded "ever-growing" signals
 - Example: $u(t) = t \notin \mathcal{L}_{\infty}$ but $u_{\tau}(t) \in \mathcal{L}_{\infty e}$
- Casuality: mapping H : L_e^m → L_e^q is causal if the output (Hu)(t) at any time t depends only on the value of the input up to time t

$$(Hu)_{\tau} = (Hu_{\tau})_{\tau}$$

伺下 イヨト イヨト

▶ Definition: A mapping $H : \mathcal{L}_e^m \to \mathcal{L}_e^q$ is \mathcal{L} stable if there exist a class \mathcal{K} function α , defined on $[0, \infty)$ and a nonneg const. β s.t.

Input-Output Stability

$$\|(Hu)_{\tau}\|_{\mathcal{L}} \leq \alpha(\|u_{\tau}\|_{\mathcal{L}}) + \beta, \quad \forall u \in \mathcal{L}_{e}^{m}, \tau \in [0, \infty)$$
(5)

It is finite-gain \mathcal{L} stable if there exist nonneg. const. γ and β s.t.

$$\|(Hu)_{\tau}\|_{\mathcal{L}} \leq \gamma \|u_{\tau}\|_{\mathcal{L}} + \beta, \quad \forall u \in \mathcal{L}_{e}^{m}, \tau \in [0, \infty)$$
(6)

- β is bias term \rightsquigarrow allows Hu does not vanish at u = 0
- In finite-gain \mathcal{L} stability, the smallest possible γ is desired to satisfy (6)
- \mathcal{L}_{∞} stability is bounded-input-bounded-output stability.

• Example 4: $y(t) = h(u) = a + b \tanh cu = a + b \frac{e^{cu} - e^{-cu}}{e^{cu} + e^{-cu}}$, for $a, b, c \ge 0$

- ▶ using the fact: $\dot{h}(u) = \frac{4bc}{(e^{cu} + e^{-cu})^2} \leq bc, \forall u \in R$
- ► \therefore $|h(u)| \le a + bc|u|, \forall u \in R$
- ▶ it is finite gain \mathcal{L}_{∞} stable with $\gamma = bc$, $\beta = a$

Input-Output Stability

- **Example:** $y(t) = h(u) = u^2$
 - $\sup_{t\geq 0} |h(u(t))| \leq (\sup_{t\geq 0} |u(t)|)^2$
 - \therefore it is \mathcal{L}_{∞} stable with $\beta = 0, \ \alpha(r) = r^2$
 - But it is not finite-gain L_∞ stable since h(u) can not be bounded by a straight line of the form |h(u)| ≤ γ|u| + β for all u ∈ R

• **Example:** $y = \tan u$

- ▶ y(t) is defined only for $|u(t)| < \frac{\pi}{2}, \ \forall t \ge 0$ → it is not \mathcal{L}_{∞} stable
- If we restrict $|u| \le r \le \frac{\pi}{2} \rightsquigarrow |y| \le (\frac{\tan r}{r})|u|$
- it is small-gain $\mathcal L$ stable
- ▶ Definition: mapping $H : \mathcal{L}_e^m \to \mathcal{L}_e^q$ is small-signal \mathcal{L} stable/small-signal finite-gain \mathcal{L} stable if there exist r s.t. inequality (5)/(6) is satisfied for all $u \in \mathcal{L}_e^m$ with $\sup_{0 \le t \le \tau} ||u|| \le r$

・ロト ・四ト ・ヨト ・ ヨト

\mathcal{L} Stability of State Models

- What can we say about I/O stability based on the formalism of Lyapunov stability?
- Consider

$$\dot{x} = f(t, x, u)$$

$$y = h(t, x, u)$$

$$(7)$$

▶
$$x \in R^m$$
, $y \in R^q$
▶ $f : [0, \infty) \times D \times D_u \to R^n$ is p.c. in t , locally Lipshitz in (x, u)
▶ $h : [0, \infty) \times D \times D_u \to R^q$ p.c. in t and cont. in (x, u)
▶ $D \subset R^n$ is a domain containing $x = 0$
▶ $D_u \subset R^m$ is a domain containing $u = 0$
▶ Assume the unforced system $\dot{x} = f(t, x, 0)$ is u.a.s (or e.s)

()

- T

- ▶ Theorem: Consider the system (7) and take $r_u, r > 0$ s.t. $\{||x|| \le r\} \subset D$ and $\{||u|| \le r_u\} \subset D_u$. Suppose that
 - ▶ x = 0 is an e.s. Equ. point of $\dot{x} = f(t, x, 0)$ and there is a Lyap. fcn V(t, x) and positive const c_i , i = 1, ..., 4 that
 - $\begin{aligned} c_1 \|x\|^2 &\leq V(t,x) \leq c_2 \|x\|^2, \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x,0) \leq -c_3 \|x\|^2 \\ \|\frac{\partial V}{\partial x}\| &\leq c_4 \|x\| \qquad \forall (t,x) \in [0,\infty) \times D, \end{aligned}$
 - ► $\forall (t, x, u) \in [0, \infty) \times D \times D_u$ and for some nonneg. const. L, η_1 , and η_2 : $\|f(t, x, u) - f(t, x, 0)\| \le L \|u\|$, $\|h(t, x, u)\| \le \eta_1 \|x\| + \eta_2 \|u\|$

► Then for each $||x_0|| \le r\sqrt{c_1/c_2}$ the system is small-signal finite-gain \mathcal{L}_p stable for each $p \in [1, \infty]$. In particular, for each $u \in \mathcal{L}_{pe}$ with $\sup_{0 \le t \le \tau} ||u|| \le \min\{r_u, c_1c_3r/(c_2c_4L)\}$ the output satisfies: $||y_\tau||_{\mathcal{L}_p} \le \gamma ||u_\tau||_{\mathcal{L}_p} + \beta, \quad \tau \in [0, \infty)$

$$\gamma = \eta_2 + \frac{\eta_1 c_2 c_4 L}{c_1 c_3}, \ \beta = \eta_1 \| x_0 \| \sqrt{\frac{c_2}{c_1}} \rho, \ \rho = \begin{cases} 1, & p = \infty \\ \left(\frac{2c_2}{c_3 \rho}\right)^{1/\rho}, & p \in [1, \infty) \\ 0 \in \mathbb{R}, \ \rho \in [1, \infty) \end{cases}$$

\mathcal{L} Stability of State Models

- ▶ Theorem Cont'd. If the origin is g.e.s and all assumptions hold for globally (with $D = R^n$ and $D_u = R^m$), then for each $x_0 \in R^n$ the system is finite-gain \mathcal{L}_p stable for each $p \in [1, \infty]$
- Exercise: Provide similar conditions for finite-gain L_p stability of LTI system

$$\dot{x} = Ax + Bu y = Cx + Du$$

Example:

$$\dot{x} = -x - x^3 + u, \quad x(0) = x_0$$

$$y = tanhx + u$$

• The origin of $\dot{x} = -x - x^3$ is g.e.s. (Use Lyap $V(x) = x^2/2$)

- $c_1 = c_2 = 1/2, \ c_3 = c_4 = 1$
- $L = \eta_1 = \eta_2 = 1$
- The system is finite-gain \mathcal{L}_p stable

$\mathcal L$ Stability of State Models

► Example:

$$\dot{x}_1 = -x_2$$

 $\dot{x}_2 = -x_1 - x_2 - atanhx_1 + u, a \ge 0$
 $y = x_1$

- For unforced system, take $V(x) = x^T P x = p_{11}x_1^2 + 2p_{12}x_1x_2 + p_{22}x_2^2$
- $\dot{V} = -2p_{12}(x_1^2 + ax_1 tanhx_1) + 2(p_{11} p_{12} p_{22})x_1x_2 2ap_{22}x_2 tanhx_1 2(p_{22} p_{12})x_2^2$
- To cancel the cross product term x_1x_2 , choose $p_{11} = p_{12} + p_{22}$
- To make *P* p.d., choose $p_{22} = 2p_{12} = 1$
- Use the facts: $x_1 \tanh x_1 > 0$, and $\forall x_1 \in R$, $|x_1| \ge |\tanh x_1|$
- $\rightarrow V = -x_1^2 x_2^2 ax_1 \tanh x_1 2ax_2 \tanh x_1 \le -(1-a) \|x\|_2^2$
- : for all a < 1, V < 0
- $c_1 = \lambda_{min}(P), \ c_2 = \lambda_{max}(P), \ c_3 = 1 a \text{ and } c_4 = 2 \|P\|_2 = 2\lambda_{max}(P)$
- $L = \eta_1 = 1, \ \eta_2 = 0$
- ▶ All conditions are satisfied globally \rightsquigarrow system is finite-gain \mathcal{L}_P stable

イロト イポト イヨト イヨト

\mathcal{L} Stability of State Models

- ► Theorem: Consider the system (7) and take r_u, r > 0 s.t. {||x|| ≤ r} ⊂ D and {||u|| ≤ r_u} ⊂ D_u. Suppose that
 - x = 0 is an a.s. Equ. point of $\dot{x} = f(t, x, 0)$ and there is a Lyap. fcn V(t, x) and class \mathcal{K} fcns α_i , i = 1, ..., 4 that

$$\begin{aligned} \alpha_1(\|x\|) &\leq V(t,x) \leq \alpha_2(\|x\|), \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x) \leq -\alpha_3(\|x\|) \\ \|\frac{\partial V}{\partial x}\| &\leq \alpha_4(\|x\|) \qquad \forall (t,x) \in [0,\infty) \times D, \end{aligned}$$

- ► $\forall (t, x, u) \in [0, \infty) \times D \times D_u$ and for some class $\mathcal{K} \alpha_i$, i = 5, ..., 7, nonneg conts. η : $\|f(t, x, u) - f(t, x, 0)\| \le \alpha_5(\|u\|)$, $\|h(t, x, u)\| \le \alpha_6(\|x\|) + \alpha_7(\|u\|) + \eta$
- Then for each $||x_0|| \le \alpha_2^{-1}(\alpha_1(r))$ the system is small-signal \mathcal{L}_{∞} stable

・ロト ・四ト ・ヨト ・ ヨト

$\mathcal L$ Stability of State Models

- Theorem: Consider the system (7) with $D = R^n$ and $D_u = R^m$. Suppose that
 - The system is ISS.
 - ► for all $(t, x, u) \in [0, \infty) \times \mathbb{R}^n \times \mathbb{R}^m$, some class \mathcal{K} fcns α_1, α_2 and a const. $\eta \ge 0$ $\|h(t, x, u)\| \le \alpha_6(\|x\|) + \alpha_7(\|u\|) + \eta$
- Then for each $x_0 \in \mathbb{R}^n$, the system is \mathcal{L}_{∞} stable.
- ► Example : $\dot{x} = -x 2x^3 + (1 + x^2)u^2$ $y = x^2 + u$

•
$$V = x^2/2 \rightsquigarrow V = -x^2 - 2x^4 + x(1+x^2)u^2 \le -x^4 \quad \forall |x| \ge u^2$$

• : the system is ISS with $\gamma = r^2$

•
$$\alpha_6 = r^2$$
, $\alpha_7 = r$ and $\eta = 0$

 \blacktriangleright Therefore the system is \mathcal{L}_∞ stable

イロト イポト イヨト イヨト

\mathcal{L} Stability of State Models

Example:

$$\begin{aligned} \dot{x}_1 &= -x_1^3 + g(t)x_2 \\ \dot{x}_2 &= -g(t)x_1 - x_2^3 + u \\ y &= x_1 + x_2 \end{aligned}$$

g(t) is continuous and bounded for $t \ge 0$

э

・ 同 ト ・ ヨ ト ・ ヨ ト