Nonlinear Control
Lecture 6: Stability Analysis Ill

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

Farzaneh Abdollahi Nonlinear Control Lecture 6




Outline

Input-to-State Stability
Stability of Cascade System

Input-Output Stability
L Stability of State Models

Farzaneh Abdollahi Nonlinear Control Lecture 6




Outline Input-to-State Stability Input-Output Stability

Input-to-State Stability
» Consider the system x = f(t,x, u) (1)

where f:[0,00) x R™ —— R" is piecewise continuous, local lip in x
and u. u(t) is p.c. and bounded fcn Vt > 0.
» Suppose the Equ. pt. of the unforced system below is g.u.a.s.
x = f(t,x,0) (2)

» What can be said about the behavior of the forced system in the presence
of a bounded input u(t).

» For an LTI system: x = Ax + Bu
where A is Hurwitz, the solution satisfies: || ”
Ix(£) < ke 2E70) |ix(to)|| + —— sup [Ju(7)]
to<r<t

» Zero-input response decays to zero
» Zero-state response remains bounded for bounded.input
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Input-to-State Stability
» Can this conclusion be extended to nonlinear system (1)?
» The answer in general is no, for instance:
x==3x+(1+2*)u

when u = 0, the origin is g.e.s
» However, with x(0) =2 and u(t) =1, x(t) = (3 —¢e")/(3—2¢") is
unbounded and have a finite scape time.
» View the system x = f(t, x, u) as a perturbation of the unforced system
x = f(t, x,0).
> Suppose there exists a Lyap. fcn for the unforced system and calculate v
in the presence of u

» Since u is bounded, it may be possible to show that V is n.d. outside of
a ball with radius p where 11 depends on sup || u]|.

» This is possible, for instance if the function f(t,x, u) is Lip. in u, i.e.
1£(t,x, u) = £(t,x,0)[| < Lull
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Input-to-State Stability
» Having shown V' is negative outside of a ball, ultimate boundedness

theorem can be used
» |[x(t)]| is bounded by a cIass KL fen B(||x(to)]l, t — to) over [to, to + T]

and by a class K fen a7 H(ao(p)) for t > to+ T
> Hence, [Ix(t)| < B(lIx(to)ll, t — to) + " az(n)) ¥Vt > to
» Definition: The system (1) is said to be input-to-state stable if there

exist a class L fcn [ and a class K fen 7 s.t. for any initial state x(tp)
and any bounded input u(t), the solution x(t) exists for all t > ty and

satisfies:
Xl < ﬁ(IIX(to)I,t—to)Jrv( up ||u<r))

to<7<t

» If u(t) converges to zero as t — 00, so does x(t).
» with u(t) =0, the above equation reduces to:

Ix(®I < B(IIx(t)ll, t - to)

implying the origin of unforced system is g.u.a:s.
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Input-to-State Stability

» Sufficient condition for input-to-state stability:
» Theorem: Let V: [0,00) x R" —— R be a cont. diff. fen. s.t.

ar([[x[) < V(t,x) < aaf[x]))
vV vV
W Wtxu) < —Wa(), VIl = plllul) >0
V(t,x,u) € [0,00) x R" x R™ where oy and ay are class K, fcns, p is
a class IC fen, and Wi(x) is a cont. p.d. fen. on R". Then, the system
(1) is input-to-state stable with

’y:Oé110012Op

Farzaneh Abdollahi Nonlinear Control Lecture 6




Outline Input-to-State Stability Input put Stability

Input-to-State Stability

» Lemma: Suppose f(t, x, u) is cont. diff. and globally Lip. in (x, u),
uniformly in t. If the unforced system has a globally exponentially
stable Equ. pt. at the origin, then the system (1) is input-to-state
stable (/SS).

» Proof:

» View the forced system as a perturbation to unforced system

» The converse theorem implies that the unforced system has a Lyap. fcn
satisfying the g.e.s conditions.

» The perturbation terms satisfies the Lip. cond. V t > 0 and V (x, u).

» Hence, V along the trajectories of forced system (1):

: ov oV oV
vV = E—I—af(t,x,O)—i—a[f(t,x, U)-f(t,X,O)]
—aslx|I? + callx||Lllull = —es(1 = 0)1x|1* — c30lx||?

+ IA

callxlILlull, 0<0<1
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Input-to-State Stability

 allu]

V< —a - 0P | 2

Y (t,x,u)

» The conditions of previous theorem are satisfied with:
(r) = c1r 042( ) = CQI’ (r) = (C4L/C3(9)

*. The system is input-to-state stable with v(r) = \/c2/c1(cal/c30)r
> The previous lemma relies on globally Lip. fcn f and global exponential
stability of the origin of the unforced system for ISS.
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Input-to-State Stability

» Example 1: = - -|)-<X2 +u=f(x,u)
has a globally Lip. f since % = —(11;(22)2 and % =1 and are globally
bounded.
> The origin of unforced system x = —355 is
gas(V=x*2 = V= —1fx2 n.d. for all x)
» The system is locally e.s because of the linearized system x = —x
» However, the system is not g.e.s
u=1f(xu) > 1/2 = x(t) > x(to)+t/2 Vt> ty
» . This is not ISS
> If g.e.s. and globally Lip. conds. are not satisfied, then we can use

previous theorem to show ISS (i.e. find a region ||x|| > p in which V < 0)
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Input-to-State Stability

» Example 2: x=-x4u

has a g.a.s. Equ. pt. at the origin when u = 0.

> Let V = x2/2, then V can be written as:
V=-x*+ux = —(1-0)x*—0x*+xu

1/3
< —(1-0)x4 Vx| > (%) 0 <6 <1

> The system is ISS with v(r) = (r/0)'/3

> Example 31 5 = f(x,u) = —x — 2x> 4+ (1 + x?)?
has a g.e.s. Equ. pt. at the origin when u = 0.

» However, f is not globally Lip. Let V = x2/2, then:
V=-x?-2*+x(1+x)? < —x* Vx| > 2

» The system is ISS with y(r) = r?
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Stability of Cascade System

> Consider the cascade system

x1 = f(t,x1,x), f: [0,00) x R™ x R — R™ (3)
X = fh(t,x), h: [0,00) X R? — R™ (4)

where fi and £ are p.c. in t and locally Lip. in x = [ il }
2

» Suppose x; = fi(t, x1,0) and (4) both have g.u.a.s. Equ. pt. at x; =0
and x» = 0.

» Under what condition the origin of the cascade system is also g.u.a.s.?
» The condition is that (3) should be ISS with x> viewed as input.

» Lemma: Under the assumption given above, if the system (3) with x> as
input, is 1SS and the origin of (4) is g.u.a.s., then the origin of the
cascade system (3) and (4) is g.u.a.s.
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Input-Output Stability
» The foundation of input-output (1/O) approaches to nonlinear systems
can be found in 1960's by Sandberg and Zames

» An input-output model relates output to input with no knowledge of the
internal structure (state equation).

y=Hu, u:[0,00) = R™

» The norm function ||u|| should satisfy the three properties
1. |lu]l = 0 iff u =0 and it is strictly positive otherwise
2. scaling property Va > 0, u = ||au| = a||u||
3. triangular inequality: Vuy, ua, i + wo| < |lun| + || u2]|

. ullgm = supllul| <
» Example: l[ulleg, s [ ul
o0
ullep = / uT (t)u(t)dt < oo
0
(oo}
lulley = [ul|Pdt)/P < 00, 1< p<oo

Q
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Input-Output Stability

» Stable system: any "well-behaved” input generate a "well-behaved”
output
» Extended space: L' = {u|u; € L™ V71 € [0,00)}
u(t) 0<t<r
0 t>71
» |t allows us to deal with unbounded " ever-growing" signals
» Example: u(t) =t ¢ Lo but ur(t) € Looe

> where u; is a truncation of u: u,(t) =

» Casuality: mapping H : £ — L is causal if the output (Hu)(t) at any
time t depends only on the value of the input up to time t

(Hu)r = (Huz),
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Input-Output Stability

» Definition: A mapping H : LT — LI is L stable if there exist a class K
function «, defined on [0, 00) and a nonneg const. [3 s.t.

[(Hu)-llz < a(llu-llc) + B8, Vue LI, 7€ [0,00) (5)
Itis stable if there exist nonneg. const. v and 3 s.t.
[(Hu)zllc < Allurlle + B8, Vue L, 7 €0,00) (6)

» [ is bias term ~~ allows Hu does not vanish at v =0
> In finite-gain L stability , the smallest possible « is desired to satisfy (6)
» L stability is bounded-input-bounded-output stability.

» Example 4: y(t) = h(u) = a+ btanhcu = a+ pei—e”

eCU+e—Cu7
> using the fact: h(u) = ﬁ <bc, VueER
» lh(u)] <a+bclul, VueR

» it is finite gain L., stable with vy =bc, B=a

cu

fora,b,c >0
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Input-Output Stability

» Example: y(t) = h(u) = u?
> supeo [h(u(t))] < (sup,so [u(t)])?
> . itis Lo stable with =0, a(r) = r?
» But it is not finite-gain L., stable since h(u) can not be bounded by a
straight line of the form |h(u)| < ~v|u|+ B for all u € R
» Example: y =tanu
> y(t) is defined only for |u(t)| < 5, Vt > 0~ it is not L, stable
> If we restrict [u] < r < Zos|y| < (B2L)[u
> it is small-gain L stable
» Definition: mapping H : LT — L& is small-signal £ stable /small-signal
finite-gain L stable if there exist r s.t. inequality (5)/(6) is satisfied for
all u € LT with supg<,<, [|ul| < r
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L Stability of State Models

» What can we say about 1/0O stability based on the formalism of Lyapunov
stability?

» Consider

f(t,x,u) (7)
h(t, x, u)

xeR™ yeR?

f:]0,00) x D x D, — R"is p.c. in t, locally Lipshitz in (x, u)
h:[0,00) x D x D, — R9 p.c. in t and cont. in (x, u)

D C R" is a domain containing x =0

D, C R™ is a domain containing u =0

Assume the unforced system x = f(t, x,0) is u.a.s (or e.s)

vV VY VY VY VY

Farzaneh Abdollahi Nonlinear Control Lecture 6 16/22



Input-Output Stability

» Theorem: Consider the system (7) and take r,,r > 0 s.t. {||x|| <r} C D and
{JJull < ry} C D,. Suppose that
» x=0isanes. Equ. point of x = f(t,x,0) and there is a Lyap. fcn
V(t,x) and positive const ¢;, i =1,...,4 that
v oV
& Ix? < V(ex) < el 20 + Wkt x,0) < el
oV

5 = callx] v(t,x) € [0,00) x D,

» V(t,x,u) € [0,00) x D x D, and for some nonneg. const. L, 1y, and n,:
(£, x,u) = £(t,x,0)[| < Lljull, [[A(t,x, u)|| < mllx]| + n2 ull

» Then for each ||xo|| < rv/c1/c, the system is small-signal finite-gain L, stable
for each p € [1,00]. In particular, for each u € Lpe with
SUPo<<, |lull < min{r,, cicsr/(cacal)} the output satisfies:

Iyrllz, < llurlle, + 8, 7 €[0,00)

1 p =00
mecal _ [ . )
=12+ » B=mllxoll\/Gr =19 (22y1/p
e Cl (KP) / y PE [1300)
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L Stability of State Models
» Theorem Cont'd. If the origin is g.e.s and all assumptions hold for
globally (with D = R" and D, = R™), then for each xo € R" the system
is finite-gain L, stable for each p € [1, 0]
» Exercise: Provide similar conditions for finite-gain £, stability of LTI
system
x = Ax+ Bu
= (x+ Du

» Example:
ramp = —x—x>+u, x(0)=x

= tanhx+u
The origin of x = —x — x3 is g.e.s. (Use Lyap V(x) = x2/2)
a=6=1/2, a=a=1

The system is finite-gain L, stable

vV v vy
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L Stability of State Models

» Example: X = —x
Xo = —xy—Xxp— atanhxy +u, a>0
y = x1

» For unforced system, take V(x) = x"Px = p11x¢ + 2p1ox1xz + p22x3
> V = —2p1p(x® + axgtanhxy) + 2(p11 — P12 — pa2)x1xe — 2apaxxatanhxy —
2(p22 — p12)X3

To cancel the cross product term x;xz, choose p11 = p12 + p22

To make P p.d., choose p»y =2p1p =1

Use the facts: x; tanhx; > 0, and Vx; € R, |x1| > |tanh xq|

V= —x? — x3 — ax; tanh x; — 2axp tanh x; < —(1 — a)||x|13

s foralla<1, V<0

¢1 = Amin(P), ¢a = Amax(P), cs =1—aand ¢4 = 2||P||2 = 2Amax(P)
L=m=1m=0

All conditions are satisfied globally ~~ system is finite-gain Lp stable

vV VvV VY VY VY VvV VvYY
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L Stability of State Models

» Theorem: Consider the system (7) and take r,,r >0 s.t. {||x|| <r}C D
and {||u|| < r,} C D,. Suppose that

» x =0 s an as. Equ. point of x = f(t,x,0) and there is a Lyap. fcn
V/(t,x) and class K fens i, i =1,...,4 that

ov 9V
a(ll) £ V(Ex) < ax(ixl) S+ 5

oV
1521 < aallix) ¥(t,x) € [0,00) x D,

f(t,x) < —as(llx])

» VY(t,x,u) €[0,00) x D x D, and for some class K «;, i =5,..,7, nonneg
conts. n:

[1F(2, %, u) = £(t,x,0)[ < as(l[u]]), [[A(t,x, u)| < as([[x]]) + ez (llull) + 7

» Then for each ||xo|| < oy }((r)) the system is small-signal L, stable
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L Stability of State Models

» Theorem: Consider the system (7) with D = R" and D, = R™. Suppose
that
» The system is ISS.
» for all (t,x,u) € [0,00) x R" x R™, some class K fcns a1, ap and a const.
n>0
[1h(t, x, ) || < as([Ix]]) + az([[ul]) +n

» Then for each xog € R", the system is L, stable.
» Example : x = —x=23+(1+x)?

y = x>+ u

V =x2/2wV = —x% = 2x* + x(1 + x®)u? < —x* Vx| > u?
. the system is ISS with v = r?

ag=r? az=randn=0

Therefore the system is L, stable

vV vy VvYyy
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L Stability of State Models

» Example:

xy = —X13 + g(t)Xg
x2 = —g(t)x1—x3+u
y = xtx

g(t) is continuous and bounded for t > 0

V =x? + x2

V = —2x} — 2x¢ + 2xu

2 +x3) 2 |[x[[3 and 0 < 0 < 1~ V < —(1 = 0)||x]I3, V||| = (2)+/2
globally: i (r) = az(r) = 12, W(x) = —(1 — ) x|I§ and p(r) = (2r/6)"/>
.. The system is globally ISS

globally: ag(r) = v2r, az(r) =0,and =10

Therefore the system is L., stable

vV VvV VvV VY VvV VY
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