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Input-to-State Stability
I Consider the system ẋ = f (t, x , u) (1)

where f : [0,∞) × Rm −→ Rn is piecewise continuous, local lip in x
and u. u(t) is p.c. and bounded fcn ∀t ≥ 0.

I Suppose the Equ. pt. of the unforced system below is g.u.a.s.
ẋ = f (t, x , 0) (2)

I What can be said about the behavior of the forced system in the presence
of a bounded input u(t).

I For an LTI system: ẋ = Ax + Bu

where A is Hurwitz, the solution satisfies:

‖x(t)‖ ≤ ke−λ(t−t0) ‖x(t0)‖+
k‖B‖
λ

sup
t0≤τ≤t

‖u(τ)‖

I Zero-input response decays to zero
I Zero-state response remains bounded for bounded input
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Input-to-State Stability
I Can this conclusion be extended to nonlinear system (1)?

I The answer in general is no, for instance:

ẋ = −3x + (1 + 2x2)u

when u = 0, the origin is g.e.s
I However, with x(0) = 2 and u(t) ≡ 1, x(t) = (3− et)/(3− 2et) is

unbounded and have a finite scape time.

I View the system ẋ = f (t, x , u) as a perturbation of the unforced system
ẋ = f (t, x , 0).

I Suppose there exists a Lyap. fcn for the unforced system and calculate V̇
in the presence of u

I Since u is bounded, it may be possible to show that V̇ is n.d. outside of
a ball with radius µ where µ depends on sup ‖u‖.

I This is possible, for instance if the function f (t, x , u) is Lip. in u, i.e.

‖f (t, x , u)− f (t, x , 0)‖ ≤ L‖u‖
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Input-to-State Stability
I Having shown V̇ is negative outside of a ball, ultimate boundedness

theorem can be used, i.e.
I ‖x(t)‖ is bounded by a class KL fcn β(‖x(t0)‖, t − t0) over [t0, t0 + T ]

and by a class K fcn α−1
1 (α2(µ)) for t ≥ t0 + T

I Hence, ‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + α−1(α2(µ)) ∀ t ≥ t0
I Definition: The system (1) is said to be input-to-state stable if there

exist a class KL fcn β and a class K fcn γ s.t. for any initial state x(t0)
and any bounded input u(t), the solution x(t) exists for all t ≥ t0 and
satisfies:

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0) + γ

(
sup

t0≤τ≤t
‖u(τ)‖

)
I If u(t) converges to zero as t −→ ∞, so does x(t).
I with u(t) ≡ 0, the above equation reduces to:

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0)

implying the origin of unforced system is g.u.a.s.
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Input-to-State Stability

I Sufficient condition for input-to-state stability:

I Theorem: Let V : [0,∞) × Rn −→ R be a cont. diff. fcn. s.t.

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)
∂V

∂t
+
∂V

∂x
f (t, x , u) ≤ −W3(x), ∀ ‖x‖ ≥ ρ(‖u‖) > 0

∀(t, x , u) ∈ [0,∞)× Rn × Rm where α1 and α2 are class K∞ fcns, ρ is
a class K fcn, and W3(x) is a cont. p.d. fcn. on Rn. Then, the system
(1) is input-to-state stable with

γ = α−1
1 ◦ α2 ◦ ρ
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Input-to-State Stability

I Lemma: Suppose f (t, x , u) is cont. diff. and globally Lip. in (x , u),
uniformly in t. If the unforced system has a globally exponentially
stable Equ. pt. at the origin, then the system (1) is input-to-state
stable (ISS).

I Proof:
I View the forced system as a perturbation to unforced system
I The converse theorem implies that the unforced system has a Lyap. fcn

satisfying the g.e.s conditions.
I The perturbation terms satisfies the Lip. cond. ∀ t ≥ 0 and ∀ (x , u).
I Hence, V̇ along the trajectories of forced system (1):

V̇ =
∂V

∂t
+
∂V

∂x
f (t, x , 0) +

∂V

∂x
[f (t, x , u)− f (t, x , 0)]

≤ −c3‖x‖2 + c4‖x‖L‖u‖ = −c3(1− θ)‖x‖2 − c3θ‖x‖2

+ c4‖x‖L‖u‖, 0 < θ < 1
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Input-to-State Stability

∴V̇ ≤ −c3(1− θ)‖x‖2∀ ‖x‖ ≥ c4L‖u‖
c3θ

, ∀ (t, x , u)

I The conditions of previous theorem are satisfied with:

α1(r) = c1r2, α2(r) = c2r2, ρ(r) = (c4L/c3θ)r

I ∴ The system is input-to-state stable with γ(r) =
√

c2/c1(c4L/c3θ)r

I The previous lemma relies on globally Lip. fcn f and global exponential
stability of the origin of the unforced system for ISS.
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Input-to-State Stability
I Example 1: ẋ = − x

1 + x2
+ u = f (x , u)

has a globally Lip. f since ∂f
∂x = − 1−x2

(1+x2)2
and ∂f

∂u = 1 and are globally

bounded.

I The origin of unforced system ẋ = − x
1+x2 is

g .a.s(V = x2/2 =⇒ V̇ = − x2

1+x2 n.d. for all x)

I The system is locally e.s because of the linearized system ẋ = −x

I However, the system is not g.e.s

u ≡ 1, f (x , u) ≥ 1/2 =⇒ x(t) ≥ x(t0) + t/2 ∀ t ≥ t0

I ∴ This is not ISS

I If g.e.s. and globally Lip. conds. are not satisfied, then we can use
previous theorem to show ISS (i.e. find a region ‖x‖ ≥ µ in which V̇ < 0)
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Input-to-State Stability
I Example 2: ẋ = −x3 + u

has a g.a.s. Equ. pt. at the origin when u = 0.

I Let V = x2/2, then V̇ can be written as:
V̇ = −x4 + ux = − (1− θ)x4 − θx4 + xu

≤ − (1− θ)x4, ∀|x | ≥
(
|u|
θ

)1/3
0 < θ < 1.

I The system is ISS with γ(r) = (r/θ)1/3

I Example 3: ẋ = f (x , u) = −x − 2x3 + (1 + x2)u2

has a g.e.s. Equ. pt. at the origin when u = 0.

I However, f is not globally Lip. Let V = x2/2, then:

V̇ = −x2 − 2x4 + x(1 + x2)u2 ≤ − x4, ∀ |x | ≥ u2

I The system is ISS with γ(r) = r2
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Stability of Cascade System
I Consider the cascade system

ẋ1 = f1(t, x1, x2), f1 : [0,∞) × Rn1 × Rn2 −→ Rn1 (3)

ẋ2 = f2(t, x2), f2 : [0,∞) × Rn2 −→ Rn2 (4)

where f1 and f2 are p.c. in t and locally Lip. in x =

[
x1

x2

]
.

I Suppose ẋ1 = f1(t, x1, 0) and (4) both have g.u.a.s. Equ. pt. at x1 = 0
and x2 = 0.

I Under what condition the origin of the cascade system is also g.u.a.s.?

I The condition is that (3) should be ISS with x2 viewed as input.

I Lemma: Under the assumption given above, if the system (3) with x2 as
input, is ISS and the origin of (4) is g.u.a.s., then the origin of the
cascade system (3) and (4) is g.u.a.s.
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Input-Output Stability
I The foundation of input-output (I/O) approaches to nonlinear systems

can be found in 1960’s by Sandberg and Zames

I An input-output model relates output to input with no knowledge of the
internal structure (state equation).

y = Hu, u : [0,∞)→ Rm

I The norm function ‖u‖ should satisfy the three properties

1. ‖u‖ = 0 iff u = 0 and it is strictly positive otherwise
2. scaling property ∀a > 0, u ⇒ ‖au‖ = a‖u‖
3. triangular inequality: ∀u1, u2, ‖u1 + u2‖ ≤ ‖u1‖+ ‖u2‖

I Example: ‖u‖Lm
∞

= sup
t≥0
‖u‖ <∞

‖u‖Lm
2

=

√∫ ∞
0

uT (t)u(t)dt <∞

‖u‖Lm
p

=

∫ ∞
0

‖u‖pdt)1/p <∞, 1 ≤ p <∞
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Input-Output Stability

I Stable system: any ”well-behaved”input generate a ”well-behaved”
output

I Extended space: Lm
e = {u|uτ ∈ Lm, ∀τ ∈ [0,∞)}

I where uτ is a truncation of u: uτ (t) =

{
u(t) 0 ≤ t ≤ τ

0 t > τ
I It allows us to deal with unbounded ”ever-growing” signals
I Example: u(t) = t /∈ L∞ but uτ (t) ∈ L∞e

I Casuality: mapping H : Lm
e → L

q
e is causal if the output (Hu)(t) at any

time t depends only on the value of the input up to time t

(Hu)τ = (Huτ )τ
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Input-Output Stability
I Definition: A mapping H : Lm

e → L
q
e is L stable if there exist a class K

function α, defined on [0,∞) and a nonneg const. β s.t.

‖(Hu)τ‖L ≤ α(‖uτ‖L) + β, ∀u ∈ Lm
e , τ ∈ [0,∞) (5)

It is finite-gain L stable if there exist nonneg. const. γ and β s.t.

‖(Hu)τ‖L ≤ γ‖uτ‖L + β, ∀u ∈ Lm
e , τ ∈ [0,∞) (6)

I β is bias term  allows Hu does not vanish at u = 0
I In finite-gain L stability , the smallest possible γ is desired to satisfy (6)
I L∞ stability is bounded-input-bounded-output stability.

I Example 4: y(t) = h(u) = a + b tanh cu = a + b ecu−e−cu

ecu+e−cu , for a, b, c ≥ 0

I using the fact: h́(u) = 4bc
(ecu+e−cu)2 ≤ bc, ∀ u ∈ R

I ∴ |h(u)| ≤ a + bc|u|, ∀ u ∈ R
I it is finite gain L∞ stable with γ = bc, β = a
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Input-Output Stability

I Example: y(t) = h(u) = u2

I supt≥0 |h(u(t))| ≤ (supt≥0 |u(t)|)2

I ∴ it is L∞ stable with β = 0, α(r) = r2

I But it is not finite-gain L∞ stable since h(u) can not be bounded by a
straight line of the form |h(u)| ≤ γ|u|+ β for all u ∈ R

I Example: y = tan u
I y(t) is defined only for |u(t)| < π

2 , ∀t ≥ 0 it is not L∞ stable
I If we restrict |u| ≤ r ≤ π

2 |y | ≤ ( tan r
r )|u|

I it is small-gain L stable

I Definition: mapping H : Lm
e → L

q
e is small-signal L stable/small-signal

finite-gain L stable if there exist r s.t. inequality (5)/(6) is satisfied for
all u ∈ Lm

e with sup0≤t≤τ ‖u‖ ≤ r
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L Stability of State Models

I What can we say about I/O stability based on the formalism of Lyapunov
stability?

I Consider

ẋ = f (t, x , u) (7)

y = h(t, x , u)

I x ∈ Rm, y ∈ Rq

I f : [0,∞)× D × Du → Rn is p.c. in t, locally Lipshitz in (x , u)
I h : [0,∞)× D × Du → Rq p.c. in t and cont. in (x , u)
I D ⊂ Rn is a domain containing x = 0
I Du ⊂ Rm is a domain containing u = 0
I Assume the unforced system ẋ = f (t, x , 0) is u.a.s (or e.s)
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I Theorem:Consider the system (7) and take ru, r > 0 s.t. {‖x‖ ≤ r} ⊂ D and
{‖u‖ ≤ ru} ⊂ Du. Suppose that

I x = 0 is an e.s. Equ. point of ẋ = f (t, x , 0) and there is a Lyap. fcn
V (t, x) and positive const ci , i = 1, ..., 4 that

c1 ‖x‖2 ≤ V (t, x) ≤ c2 ‖x‖2,
∂V

∂t
+
∂V

∂x
f (t, x , 0) ≤ − c3‖x‖2

‖∂V

∂x
‖ ≤ c4‖x‖ ∀(t, x) ∈ [0,∞) × D,

I ∀(t, x , u) ∈ [0,∞)× D × Du and for some nonneg. const. L, η1, and η2:

‖f (t, x , u)− f (t, x , 0)‖ ≤ L‖u‖, ‖h(t, x , u)‖ ≤ η1‖x‖+ η2‖u‖

I Then for each ‖x0‖ ≤ r
√

c1/c2 the system is small-signal finite-gain Lp stable
for each p ∈ [1,∞]. In particular, for each u ∈ Lpe with
sup0≤t≤τ ‖u‖ ≤ min{ru, c1c3r/(c2c4L)} the output satisfies:

‖yτ‖Lp ≤ γ‖uτ‖Lp + β, τ ∈ [0,∞)

γ = η2 + η1c2c4L
c1c3

, β = η1‖x0‖
√

c2

c1
ρ, ρ =

{
1, p =∞

( 2c2

c3p
)1/p, p ∈ [1,∞)
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L Stability of State Models
I Theorem Cont’d. If the origin is g.e.s and all assumptions hold for

globally (with D = Rn and Du = Rm), then for each x0 ∈ Rn the system
is finite-gain Lp stable for each p ∈ [1,∞]

I Exercise: Provide similar conditions for finite-gain Lp stability of LTI
system

ẋ = Ax + Bu

y = Cx + Du

I Example:
ẋ = −x − x3 + u, x(0) = x0

y = tanhx + u

I The origin of ẋ = −x − x3 is g.e.s. (Use Lyap V (x) = x2/2)
I c1 = c2 = 1/2, c3 = c4 = 1
I L = η1 = η2 = 1
I The system is finite-gain Lp stable
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L Stability of State Models

I Example: ẋ1 = −x2

ẋ2 = −x1 − x2 − atanhx1 + u, a ≥ 0

y = x1

I For unforced system, take V (x) = xT Px = p11x2
1 + 2p12x1x2 + p22x2

2
I V̇ = −2p12(x2

1 + ax1tanhx1) + 2(p11 − p12 − p22)x1x2 − 2ap22x2tanhx1 −
2(p22 − p12)x2

2
I To cancel the cross product term x1x2, choose p11 = p12 + p22

I To make P p.d., choose p22 = 2p12 = 1
I Use the facts: x1 tanh x1 > 0, and ∀x1 ∈ R, |x1| ≥ | tanh x1|
I  V̇ = −x2

1 − x2
2 − ax1 tanh x1 − 2ax2 tanh x1 ≤ −(1− a)‖x‖22

I ∴ for all a < 1, V̇ < 0
I c1 = λmin(P), c2 = λmax(P), c3 = 1− a and c4 = 2‖P‖2 = 2λmax(P)
I L = η1 = 1, η2 = 0
I All conditions are satisfied globally  system is finite-gain LP stable
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L Stability of State Models

I Theorem: Consider the system (7) and take ru, r > 0 s.t. {‖x‖ ≤ r} ⊂ D
and {‖u‖ ≤ ru} ⊂ Du. Suppose that

I x = 0 is an a.s. Equ. point of ẋ = f (t, x , 0) and there is a Lyap. fcn
V (t, x) and class K fcns αi , i = 1, ..., 4 that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖), ∂V

∂t
+
∂V

∂x
f (t, x) ≤ − α3(‖x‖)

‖∂V

∂x
‖ ≤ α4(‖x‖) ∀(t, x) ∈ [0,∞) × D,

I ∀(t, x , u) ∈ [0,∞)× D × Du and for some class K αi , i = 5, .., 7, nonneg
conts. η:

‖f (t, x , u)− f (t, x , 0)‖ ≤ α5(‖u‖), ‖h(t, x , u)| ≤ α6(‖x‖) + α7(‖u‖) + η

I Then for each ‖x0‖ ≤ α−1
2 (α1(r)) the system is small-signal L∞ stable
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L Stability of State Models
I Theorem: Consider the system (7) with D = Rn and Du = Rm. Suppose

that
I The system is ISS.
I for all (t, x , u) ∈ [0,∞)× Rn × Rm, some class K fcns α1, α2 and a const.
η ≥ 0

‖h(t, x , u)‖ ≤ α6(‖x‖) + α7(‖u‖) + η

I Then for each x0 ∈ Rn, the system is L∞ stable.

I Example : ẋ = −x − 2x3 + (1 + x2)u2

y = x2 + u

I V = x2/2 V̇ = −x2 − 2x4 + x(1 + x2)u2 ≤ −x4 ∀|x | ≥ u2

I ∴ the system is ISS with γ = r2

I α6 = r2, α7 = r and η = 0
I Therefore the system is L∞ stable
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L Stability of State Models

I Example:

ẋ1 = −x3
1 + g(t)x2

ẋ2 = −g(t)x1 − x3
2 + u

y = x1 + x2

g(t) is continuous and bounded for t ≥ 0
I V = x2

1 + x2
2

I V̇ = −2x4
1 − 2x4

2 + 2x2u
I 2(x4

1 + x4
2 ) ≥ ‖x‖42 and 0 < θ < 1 V̇ ≤ −(1− θ)‖x‖42,∀‖x‖2 ≥ ( 2|u|

θ )1/3

I globally: α1(r) = α2(r) = r2,W3(x) = −(1− θ)‖x‖42 and ρ(r) = (2r/θ)1/3

I ∴ The system is globally ISS
I globally: α6(r) =

√
2r , α7(r) = 0, and η = 0

I Therefore the system is L∞ stable
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