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Introduction

I Learning can be considered as a process of forming associations
between related patterns.

I For example visual image may be associated with another visual
image, or the fragrance of fresh-mown grass may be associated with a
visual image of feeling

I Memorization of a pattern could be associating the pattern with itself

I Therefore, in such networks the input pattern cause an output pattern
which may be similar to the input pattern or related to that.

I An important characteristic of the association is that an input
stimulus which is similar to the stimulus for the association will invoke
the associated response pattern.
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I For example, if we learn to read music, so that we associate with
fingering on a stringed instrument, we do not need to see the same
form of musical note we originally learned

I If the note is larger, or handwritten , we still can recognize and play.
I So after learning it is expected to make a good guess and provide

appropriate response

I Another example, ability to recognize a person either in person or
form a photo even his/her appearance has been changed

I This is relatively difficult to program by a traditional computer algs.

I Associative memories belong to class of NN that learn according to a
certain recording algs.

I They require information a priori and their connectivity matrices
(weights) most often need to be formed in advance

I Writing into memory produces changes in the neural interconnections

I Reading of the stored info from memory named recall, is a
transformation of input signals by the network
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I Not usable addressing schemes exits in an associative memory

I All memory info is spatially distributed throughout the network

I The biological memory operates the same
I Associative memory enables a parallel search within a stored data

I The purpose of search is to output one or all stored items that matches
the search argument and retrieve it entirely or partially

I The fig. depicts a block diagram of an associative memory.

I The transformation is v = M[x ], M: a nonlinear matrix operator
which has different meaning for each of memory models.
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I For dynamic memories, M is time variable.
I v is available in output at a later time than the input has been applied

I For a given memory model, M is usually expressed in terms of given
prototype vectors that should be stored

I The algs of finding M are called recording or storage algs.

I The mapping in v = M[x ] preformed on x is called a retrieval.

I Retrieval may provide a desired/an undesired solution prototype

I To have efficient retrieval some mechanisms should be developed

I Assume there are p stored pairs: x (i) → v (i) for i = 1, ..., p

I If x (i) 6= v (i) for i = 1, ..., p it is called heteroassociative memory

I If x (i) = v (i) for i = 1, ..., p it is called autoassociative memory

I Obviously the mapping of a vector x (i) into itself cannot be of any
significance

I A more realistic application of autoassociative memory is recovery of
undistorted prototype in response to a distorted prototype vector.
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I Associative memory which uses NN concepts may resemble digital
computer memory

I Let us compare their difference:
I Digital memory is address-addressable memory:

I data have input and output lines
I a word line access the entire row of binary cells containing word data

bits.
I activation takes place when the binary address is decoded by an address

decoder.
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I Associative memory is content addressable memory
I the words are accessed based on the content of the key vector
I When the network is excited by a portion of the stored data, the

efficient response of autoassociative memory is the completed x (i)

vector
I In hetroassociative memory the content of x (i) provides the stored

vector v (i)

I There is no storage for prototype x (i) or v (i) at any location of network
I The entire mapping is distributed in the network.
I The mapping is implemented through dense connections, feedback

or/and a nonlinear thresholding operation

I Associative network memory can be
I Static: networks recall an output response after an input has been

applied in one feedforward pass, and, theoretically, without delay. They
were termed instantaneous

I Dynamic: memory networks produce recall as a result of output/input
feedback interaction, which requires time.
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I Static memory
I implement a feedforward operation of mapping without a feedback, or

recursive update, operation.
I They are sometimes also called non-recurrent
I The mapping can be expressed as f

vk = M1[xk ]

where k : index of recursion, M1 operator symbol

I Dynamic memory
I exhibit dynamic evolution in the sense that they converge to an

equilibrium state according to the recursive formula

vk+1 = M2[xk , vk ]

I This is a nonlinear difference equation.
I Hopfield model is an example of a recurrent network for which the input

x0 is used to initialize vo , i.e., x0 = v0, and the input is then removed.
I So the formula will be simplified to

vk+1 = M2[vk ]
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Hopfield Networks

I It is a special type of Dynamic Network that v0 = x0, i.e.,
vk+1 = M[vk ]

I It is a single layer feedback network which was first introduced by
John Hopfield (1982,1988)

I Neurons are with either a hard-limiting activation function or with a
continuous activation function (TLU)

I In MLP:
I The weights are updated gradually by teacher-enforced which was

externally imposed rather than spontaneous
I The FB interactions within the network ceased once the training had

been completed.
I After training, output is provided immediately after receiving input

signal
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I In FB networks:
I the weights are usually adjusted spontaneously.
I Typically, the learning of dynamical systems is accomplished without a

teacher.
I i.e., the adjustment of system parameters does not depend on the

difference between the desired and actual output value of the system
during the learning phase.

I To recall information stored in the network, an input pattern is applied,
and the network’s output is initialized accordingly.

I Next, the initializing pattern is removed and the initial output forces
the new, updated input through feedback connections.

I The first updated input forces the first updated output. This, in turn,
produces the second updated input and the second updated response.

I The transition process continues until no new updated responses are
produced and the network has reached its equilibrium.

I ∴ These networks should fulfill certain assumptions that make the
class of networks stable and useful, and their behavior predictable in
most cases.
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I FB in the network
I allows for great reduction of the complexity.
I Deal with recalling noisy patterns

I Hopfield networks can provide
I associations or classifications
I optimization problem solution
I restoration of patterns
I In general, as with perceptron networks, they can be viewed as mapping

networks

I One of the inherent drawbacks of dynamical systems is:
I The solutions offered by the networks are hard to track back or to

explain.
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I wij : the weight value
connecting the output of the
jth neuron with the input of
the ith neuron

I W = {wij} is weight matrix

I V = [v1, ..., vn]T is output
vector

I net = [net1, .., netn]T = Wv

I vk+1
i = sgn(

∑n
j=1 wijv

k
j )
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I W is defined:

W =


0 w12 w13 . . . w1n

w21 0 w23 . . . w2n

w31 w32 0 . . . w3n
...

...
... . . .

...
wn1 wn2 wn3 . . . 0


I It is assumed that W is symmetric, i.e., wij = wji

I wii = 0, i.e., There is no self-feedback
I The output is updated asynchronously. This means that

I For a given time, only a single neuron (only one entry in vector V ) is
allowed to update its output

I The next update in a series uses the already updated vector V .
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I Example: In this example output vector is started with initial value
V 0, the updated by m, p and q respectively:

V 1 = [v0
1 v0

2 . . . v1
m v0

p v0
q . . . v0

n ]T

V 2 = [v0
1 v0

2 . . . v1
m v2

p v0
q . . . v0

n ]T

V 3 = [v0
1 v0

2 . . . v1
m v2

p v3
q . . . v0

n ]T

I The vector of neuron outputs V in n-dimensional space.

I The output vector is one of the vertices of the n-dimensional cube
[−1, 1] in En space.

I The vector moves during recursions from vertex to vertex, until it
stabilizes in one of the 2n vertices available.

I To evaluate the stability property of the dynamical system of interest,
let us study a so-called computational energy function.

I This is a function usually defined in n-dimensional output space v
E = −1

2vTWv
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Example

I A 10× 12 bit map of black
and white pixels representing
the digit 4.

I The initial, distorted digit 4
with 20% of the pixels
randomly reversed.
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I State transition map for a
memory network is shown

I Each node of the graph is
equivalent to a state and
has one and only one edge
leaving it.

I If the transitions terminate
with a state mapping into
itself, A, then the
equilibrium A is fixed point.

I If the transitions end in a
cycle of states, B, then we
have a limit cycle solution
with a certain period.

I The period is defined as
the length of the cycle.
(3 in this example)
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I Energy function was defined as E = −1
2vTWv

I In bipolar notation the complement of vector v is −v

I ∴E (−v) = −1
2vTWv

I E (v) = E (−v) min E (v) = min E (−v)

I The memory transition may end up to v as easily as −v

I The similarity between initial output vector and v and −v determines
the convergence.

I It has been shown that synchronous state updating algorithm may
yield persisting cycle states consisting of two complimentary patterns
(Kamp and Hasler 1990)
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I Example 1: Consider W =

[
0 −1
−1 0

]
, v0 =

[
−1
−1

]
I v1 = sgn(Wv) = sgn(

[
0 −1
−1 0

] [
−1
−1

]
) =

[
1
1

]
I v2 = sgn(Wv) = sgn(

[
0 −1
−1 0

] [
1
1

]
) =

[
−1
−1

]
I v0 = v1 It provides a cycle of two states rather than a fix point

I Example 2: Consider W =


0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0


I The energy function becomes

E (v) = − 1
2 [v1 v2 v3 v4]


0 1 1 −1
1 0 1 −1
1 1 0 −1
−1 −1 −1 0




v1

v2

v3

v4

 =

−v1(v2 + v3 − v4)− v2(v3 − v4) + v3v4
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I It can be verifying
that all possible
energy levels are
−6, 0, 2

I Each edge of the
state diagram shows
a single asynchronous
state transition.

I Energy values are
marked at cube
vertexes

I By asynchronous
updates, finally the
energy ends up to its
min value -6.
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I Applying synchronous update:
I Assume v0 = [1 − 1 1 1]T

I v1 = sgn(Wv0) = [−1 1 − 1 − 1]
I v2 = sgn(Wv1) = [1 − 1 1 1] = v0

I Storage Algorithm
I For bipolar prototype vectors: the weight is calculated:

W =
∑p

m=1 s(m)s(m)T − PI or wij = (1− δij)
∑p

m=1 s
(m)
i s

(m)
j

I δij is Kronecker function: δij =

{
1 i = j
0 i 6= j

I If the prototype vectors are unipolar, the the memory storage alg. is

modified as wij = (1− δij)
∑p

m=1(2s
(m)
i − 1)(2s

(m)
j − 1)

I The storage rule is invariant with respect to the sequence of storing
pattern

I Additional patterns can be added at any time by superposing new
incremental weight matrices
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Problems

I Uncertain Recovery
I Heavily overloaded memory (p/n > 50%) may not be able to provide

error-free or efficient recovery of stored pattern.
I There are some examples of convergence that are not toward the closest

memory as measured with the HD value

I Undesired Equilibria
I Spurious points are stable equilibria with minimum energy that are

additional to the patterns we already stored.
I The undesired equilibria may be unstable. Therefore, any noise in the

system will move the network out of them.
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Example

I Assume two patterns are stored in
the memory as shown in Fig.

I The input vector converges to the
closer pattern

I BUT if the input is exactly between
the two stable points, it moves into
the center of the state space!
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Gradient-Type Hopfield Network

I Gradient-type neural networks are generalized Hopfield networks in
which the computational energy decreases continuously in time.

I Gradient-type networks converge to one of the stable minima in the
state space.

I The evolution of the system is in the general direction of the negative
gradient of an energy function.

I Typically, the network energy function is equivalent to a certain
objective (penalty) function to be minimized.

I These networks are examples of nonlinear, dynamical, and
asymptotically stable systems.

I They can be considered as a solution of an optimization problem.
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I The model of a
gradient-type neural system
using electrical components
is shown in Fig.

I It has n neurons,

I each neuron mapping its
input voltage ui into the
output voltage vi through
the activation function
f (ui ),

I f (ui ) is the common static
voltage transfer
characteristic (VTC) of the
neuron.
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I Conductance wij connects the output of the jth neuron to the input of
the ith neuron.

I The inverted neuron outputs v̄i representing inverting output is
applied to avoid negative conductance values wij

I Note that in Hopefield networks:
I wij = wji

I wii = 0 , the outputs of neurons are not connected back to their own
inputs

I Capacitances Ci , for i = 1, 2, ..., n, are responsible for the dynamics of
the transients in this model.
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I KCL equ. for each node is

ii +
n∑

j 6=i

Wijvj − ui (
n∑

j 6=i

wij + gi ) = Ci
du

dt
(1)

I Considering Gi =
∑n

j=1 wij + gi , C = diag [C1,C2, ...,Cn],
G = [G1, ...,Gn], the output equ. for whole system is

C
du

dt
= Wv(t)− Gu(t) + I (2)

v(t) = f [u(t)]
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I The energy to be minimized is
E (v) = −1

2v tWv − iv + 1
λ

∑n
i= Gi

∫ vi

0 f −1
i (z)dz

I The Hopfield networks can be applied for optimization problems.

I The challenge will be defining W and I s.t. fit the dynamics and
objective of the problem to (2) and above equation.
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Example: Traveling Salesman Tour Length [1]

I The problem is min tour length through a number of cities with only
one visit of each city

I If n is number of cities (n − 1)! distinct path exists

I Let us use Hopefiled network to find the optimum solution
I We are looking to find a matrix shown in the fig.

I n rows are the cities
I n columns are the position of the salesman
I each city/position can take 1 or 0
I vij = 1 means salesman in its jth position is in ith city

I The network consists n2 unipolar neurons

I Each city should be visited once  only one single 1 at each row and
column
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I We should define w and i such that the energy of the Hopfield
network represent the objective we are looking for

I Recall the energy of Hopfiled network:
E (v) = −1

2

∑
Xi

∑
Yj wXi ,Yj

vXivYj −
∑

Xi iXivXi

I The last term is omitted for simplicity

I Let us express our objective in math:
E1 = A

∑
X

∑
i

∑
j vXivXj for i 6= j

E2 = B
∑

i

∑
X

∑
Y vXivYi for X 6= Y

I E1 be zero  each row has at most one 1

I E2 be zero  each column has at most one 1

I E3 = C (
∑

X

∑
i vXi − n)2

I E3 guarantees that there is at least one 1 at each column and row.

I E4 = D
∑

X

∑
Y

∑
i dXY vXi (vY ,i+1 + vY ,i−1), X 6= Y

I E4 represents minimizing the distances

I dXY is distance between city X and Y
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I Recall the energy of Hopfiled network:
E (v) = −1

2

∑
Xi

∑
Yj wXi ,Yj

vXivYj −
∑

Xi iXivXi

I The weights can be defined as follows

I ∴
WXi ,Yj = −2AδXY (1−δij)−2Bδij(1−δXY )−2C−2Ddxy (δj ,i+1+δj ,j−1)

I δij is Kronecker function: δij =

{
1 i = j
0 i 6= j

I iXi = 2Cn

I Positive consts A,B,C , and D are selected heuristically
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J. J. Hopfield and D. W. Tank, “Neural computation of
decisions in optimization problems,” Biolog. Cybern, vol. 52 ,
pp. 141–154, 1985.
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