

Computational Intelligence Lecture 6:Fuzzy Rule Base and Fuzzy Inference Engine

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

伺下 イヨト イヨト

Fuzzy Rule Base Properties of Set of Rules

Fuzzy Inference

Composition Based Inference Individual-Rule Based Inference

Fuzzy Rule Base

イロン イロン イヨン イヨン

Fuzzy Rule Base

- ► We study only the multi-input-single-output case
- a multioutput system can be decomposed into a collection of single-output systems.
- ► A fuzzy rule base : a set of fuzzy IF-THEN rules.
- ► It is ♥ of the fuzzy system: all other components are used to implement these rules in a reasonable and efficient manner.
- ► The Canonical Fuzzy IF-THEN Rule Ru^(l): IF x₁ is A^l₁ and ... and x^l_n is A^l_n, THEN y is B^l
 - A_i^l : fuzzy set in $U_i \subset R$
 - B_l : Fuzzy set in $V \subset R$
 - $X = (x_1, ..., x_n)^T \in U$: Input linguistic variable
 - $y \in V$: Output linguistic variable
 - ▶ I = 1, ..., M, M: # of rules in the fuzzy rule base

・ 同 ト ・ ヨ ト ・ ヨ ト

Most of Fuzzy Rules can be expressed by Canonical Fuzzy Rule

- ► Partial Rules:
 - IF x_1 is A'_1 and ... and x_m is A'_m , THEN y is B', m < n
 - ► It is equivalent to: IF x₁ is A^l₁ and ... and x_m is A^l_m and x_{m+1} is l and ... and x_n is l THEN y is B^l
 - I is a fuzzy set in R, $\mu_I(x) = 1, \forall x \in R$
- Or Rules:
 - IF x_1 is A'_1 and ... and x_m is A'_m or x_{m+1} is A'_{m+1} and ... and x_n is A'_n THEN y is B',
 - It is equivalent to:
 IF x₁ is A'₁ and ... and x_m is A'_m THEN y is B'
 IF x_{m+1} is A'_{m+1} and ... and x_n is A'_n THEN y is B'

伺下 イヨト イヨト

- Single fuzzy statement: v is B'.
 - It is equivalent to:

IF x_1 is I and ... and x_n is I THEN y is B^I

Gradual Rules:

The smaller the x, the bigger the y_{i}

- ▶ Define S : a fuzzy set for "smaller": µ_S(x) = 1/(1+exp(5(x+2)))
 ▶ Define B : a fuzzy set for "bigger": µ_B(y) = 1/(1+exp(-5(y-2)))
- The rule is equivalent to: IF x is S THEN y is B

► Non-fuzzy Rules:

▶ When µ_A and µ_B can only take values 1 or 0

Amirkabir

7/24

Properties of Set of Rules

Complete Fuzzy Rules

- ∀x ∈ U, ∃ at least one rule (k) in fuzzy rule base s.t. μ_{A^k_i} ≠ 0, for all i = 1, ..., n
- Example:
 - Consider a 2-input 1-output system
 - ▶ The completer Fuzzy rule set: IF x_1 is S_1 and x_2 is S_2 , THEN y is B^1 IF x_1 is S_1 and x_2 is L_2 , THEN y is B^2 IF x_1 is M_1 and x_2 is S_2 , THEN y is B^3 IF x_1 is M_1 and x_2 is L_2 , THEN y is B^4 IF x_1 is L_1 and x_2 is S_2 , THEN y is B^5 IF x_1 is L_1 and x_2 is L_2 , THEN y is B^6
 - If each of them is missing is will loose the completeness

Properties of Set of Rules

Consistent Fuzzy Rules:

there are no rules with the same IF parts but different THEN parts.

- Consistency is very important for nonfuzzy production rules, it causes conflicting rules
- ► For fuzzy rules: the proper inference engine and defuzzifier use average solution to resolve the conflicting results

Continuous Fuzzy Rules:

there is no neighboring rules whose THEN part fuzzy sets have empty intersection.

• \therefore I/O behavior of fuzzy system should be smooth

・ 同 ト ・ ヨ ト ・ ヨ ト

Fuzzy Inference

イロン イロン イヨン イヨン

Fuzzy Inference

- ► Using fuzzy logic principles, the fuzzy IF-THEN rules in the fuzzy rule base are combined to map a fuzzy set A' in U to a fuzzy set B' in V.
- It is the brain of fuzzy system
- There are two methods to infer the rules
 - 1. Composition based inference
 - 2. Individual-rule based inference
- ► Composition Based Inference
 - \blacktriangleright all rules in the fuzzy rule base are combined into a single fuzzy relation in $U \times V$
 - It is viewed as a single fuzzy IF-THEN rule.

< 国 > < 国 >

- What is appropriate logic to combine?
- ► There are two diff. views:
 - 1. Each rule is independent conditional statement \rightsquigarrow operator: union
 - For *M* rules, $Ru^{(l)} = A_1^l \times \ldots \times A_n^l \to B^l$
 - ► Interpreted as a single fuzzy relation called Mamdani combination $Q_M = \bigcup_{l=1}^M Ru^{(l)}$
 - $\mu_{Q_M}(x, y) = \mu_{Ru^{(1)}}(x, y) + \dots + \mu_{Ru^{(1)}}(x, y)$ + is s-norm
 - 2. The rules are strongly coupled conditional statements; all the rules must be satisfied to have impact ~ appropriate operator is intersection
 - Combined as a fuzzy relation called Godel combination $\mu_{Q_G}(x, y) = \bigcap_{l=1}^M Ru^{(l)}$

 $\mu_{Q_G}(x, y) = \mu_{Ru^{(1)}}(x, y) \star \ldots \star \mu_{Ru^{(1)}}(x, y)$ * is t-norm

(日本) (日本) (日本)

 Output of fuzzy inference engine is obtained using the generalized modus ponens:

 $\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{Q_{M/G}}(x, y)]$

- The computational procedure of the composition based inference:
 - 1. Consider *M* canonical IF-THEN rules (Ru^(*l*): IF x_1 is A'_1 and ... and x'_n is A'_n , THEN *y* is B'), determine membership fcn: $\mu_{A'_1} \times \ldots \times \mu_{A'_n}(x_1, \ldots, x_n) = \mu_{A'_1}(x_1) \star \ldots \star \mu_{A'_n}(x_1)$ for l = 1, ..., M

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Output of fuzzy inference engine is obtained using the generalized modus ponens:

 $\mu_{B'}(y) = sup_{x \in U}t[\mu_{A'}(x), \mu_{Q_{M/G}}(x, y)]$

- The computational procedure of the composition based inference:
 - 1. Consider *M* canonical IF-THEN rules (Ru^(*l*): IF x_1 is A'_1 and ... and x'_n is A'_n , THEN *y* is B'), determine membership fcn: $\mu_{A'_1} \times \ldots \times \mu_{A'_n}(x_1, \ldots, x_n) = \mu_{A'_1}(x_1) \star \ldots \star \mu_{A'_n}(x_1)$ for l = 1, ..., M
 - Considering A'₁ × ... × A'_n as FP1, and B' as FP2, determine μ_{Ru^(l)}(x₁,...,x_n,y) = μ_{A'₁×...×A'_n→B'}(x₁,...,x_n,y) for l = 1,..., M using Dienes, Lukasiewicz, Zadeh, Godel, or Mamdani implications

Composition Based Inference

Output of fuzzy inference engine is obtained using the generalized modus ponens:

 $\mu_{B'}(y) = sup_{x \in U}t[\mu_{A'}(x), \mu_{Q_{M/G}}(x, y)]$

- ► The computational procedure of the composition based inference:
 - 1. Consider *M* canonical IF-THEN rules (Ru^(*l*): IF x_1 is A'_1 and ... and x'_n is A'_n , THEN *y* is B'), determine membership fcn: $\mu_{A'_1} \times \ldots \times \mu_{A'_n}(x_1, \ldots, x_n) = \mu_{A'_1}(x_1) \star \ldots \star \mu_{A'_n}(x_1)$ for l = 1, ..., M
 - Considering A'₁ × ... × A'_n as FP1, and B' as FP2, determine μ_{Ru^(l)}(x₁,...,x_n,y) = μ_{A'₁×...×A'_n→B'}(x₁,...,x_n,y) for l = 1,..., M using Dienes, Lukasiewicz, Zadeh, Godel, or Mamdani implications
 - 3. Determine $\mu_{Q_G}(x, y) = \mu_{Ru^{(1)}}(x, y) \star \ldots \star \mu_{Ru^{(1)}}(x, y)$ or $\mu_{Q_M}(x, y) = \mu_{Ru^{(1)}}(x, y) + \ldots + \mu_{Ru^{(1)}}(x, y)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Output of fuzzy inference engine is obtained using the generalized modus ponens:

 $\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{Q_{M/G}}(x, y)]$

- The computational procedure of the composition based inference:
 - 1. Consider *M* canonical IF-THEN rules (Ru^(*l*): IF x_1 is A'_1 and ... and x'_n is A'_n , THEN *y* is *B'*), determine membership fcn: $\mu_{A'_1} \times \ldots \times \mu_{A'_n}(x_1, \ldots, x_n) = \mu_{A'_1}(x_1) \star \ldots \star \mu_{A'_n}(x_1)$ for l = 1, ..., M
 - Considering A'₁ × ... × A'_n as FP1, and B' as FP2, determine μ_{Ru^(l)}(x₁,...,x_n,y) = μ_{A'₁×...×A'_n→B'}(x₁,...,x_n,y) for l = 1,..., M using Dienes, Lukasiewicz, Zadeh, Godel, or Mamdani implications
 - 3. Determine $\mu_{Q_G}(x, y) = \mu_{Ru^{(1)}}(x, y) \star \ldots \star \mu_{Ru^{(1)}}(x, y)$ or $\mu_{Q_M}(x, y) = \mu_{Ru^{(1)}}(x, y) + \ldots + \mu_{Ru^{(1)}}(x, y)$
 - 4. Determine output B', give input A' and $\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{Q_{M/G}}(x, y)]$

1

12/24

Individual-Rule Based Inference

- ► Each rule in the fuzzy rule base determines an output fuzzy set
- The output of the whole fuzzy inference engine is the combination of the *M* individual fuzzy sets using intersection or union for combination.
- The computational procedure of the individual-rule based inference:
 - 1. Follow Step 1 and 2 of composition based inference.

Individual-Rule Based Inference

- ► Each rule in the fuzzy rule base determines an output fuzzy set
- The output of the whole fuzzy inference engine is the combination of the *M* individual fuzzy sets using intersection or union for combination.

► The computational procedure of the individual-rule based inference:

- 1. Follow Step 1 and 2 of composition based inference.
- 2. For given input fuzzy set $A' \in U$, find output fuzzy set $B' \in V$ for each individual rule $RU^{(l)}$ according to the generalized modus ponens

 $\mu_{B'_{l}} = \sup_{x \in U} t[\mu_{A'}(x), \mu_{Ru^{(l)}}(x, y)]$ for l = 1, ..., M

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Individual-Rule Based Inference

- ► Each rule in the fuzzy rule base determines an output fuzzy set
- The output of the whole fuzzy inference engine is the combination of the *M* individual fuzzy sets using intersection or union for combination.
- ► The computational procedure of the individual-rule based inference:
 - 1. Follow Step 1 and 2 of composition based inference.
 - 2. For given input fuzzy set $A' \in U$, find output fuzzy set $B' \in V$ for each individual rule $RU^{(l)}$ according to the generalized modus ponens

 $\mu_{B'_{l}} = \sup_{x \in U} t[\mu_{A'}(x), \mu_{Ru^{(l)}}(x, y)] \text{ for } l = 1, ..., M$

3. The output of the fuzzy inference engine is the combination of the *M* fuzzy sets $B'_1, ..., B'_M$ either by union $\mu_{B'}(y) = \mu_{B'_1}(y) + ... + \mu_{B'_M}(y)$ or by intersection $\mu_{B'}(y) = \mu_{B'_1}(y) \star ... \star \mu_{B'_M}(y)$

・ロト ・回ト ・ヨト ・ヨト

- ► There are a variety of choices in the fuzzy inference engine based on
 - Composition based inference or individual-rule based inference, and within the composition based inference, Mamdani inference or Godel inference
 - Dienes-Rescher implication, Lukasiewicz implication, Zadeh implication, Godel implication, or Mamdani implications
 - Different operations for the t-norms and s-norms
- ► Three main criteria to choose these alternatives:
 - Intuitive appeal: The choice should make sense intuitively. For example, if an expert who believes that the rules are independent of each other, use engine with combined by union.
 - Computational efficiency
 - Special properties: Some choice may result in an inference engine that has special properties.

A E F A E F

A Number of Popular Fuzzy Inference Engine

- Product Inference Engine: Includes:
 - Individual rule based inference with union combination
 - Mamdani's product implication
 - Algebraic product for t-norms and max for all the s-norms

 $\mu_{B'}(y) = \max_{l=1}^{M} [\sup_{x \in U} (\mu_{A'}(x) \prod_{i=1}^{n} \mu_{A_{i}^{l}}(x_{i}) \mu_{B'}(y))]$

for given fuzzy set $A' \in U$ az input

- Minimum Inference Engine: Includes:
 - Individual-rule based inference with union combination
 - Mamdani's minimum implication
 - min for t-norms and max for s-norms

 $\mu_{B'}(y) = \max_{l=1}^{M} [\sup_{x \in U} \min(\mu_{A'}(x), \mu_{A'_1}(x_i), \dots, \mu_{A'_n}(x_i), \mu_{B'}(y))]$ for given fuzzy set $A' \in U$ az input

Product and Minimum inference engines are computationally simple; they are intuitively appealing for many practical problems, especially for fuzzy control.

A Number of Popular Fuzzy Inference Engine

► A disadvantage of the product and minimum inference engines: if at some x ∈ U the µ_{A'_i}(x_i) are very small, the obtained µ_{B'}(y) is very small. (due to local implication)

Lukasiewicz Inference Engine: Includes:

- Individual-rule based inference with intersection combination
- Lukasiewicz implication
- min for t-norms

 $\mu_{B'}(y) = \min_{l=1}^{M} [\sup_{x \in U} \min(\mu_{A'}(x), \mu_{Ru^{(l)}}(x, y))] \\ \mu_{Ru^{(l)}}(x, y) = \min(1, 1 - \min_{i=1}^{n}(\mu_{A'_{i}}(x_{i})) + \mu_{B'}(y))) \\ \therefore \mu_{B'}(y) = \min_{l=1}^{M} [\sup_{x \in U} \min(\mu_{A'}(x), 1 - \min_{i=1}^{n}(\mu_{A'_{i}}(x_{i})) + \mu_{B'}(y))]$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ...

Zadeh Inference Engine: Includes:

- Individual rule based inference with intersection combination
- Zadeh implication
- min for t-norms.

 $\mu_{B'}(y) = \min_{l=1}^{M} \{ \sup_{x \in U} \min[\mu_{A'}(x), \max(\min(\mu_{A'_{l}}(x_{1}), \dots, \mu_{A'_{n}}(x_{n}), \mu'_{B}(y)) \\, 1 - \min_{i=1}^{n}(\mu_{A'_{i}}(x_{i})))] \}$

- Dienes-Rescher Inference Engine: Includes:
 - Individual rule based inference with intersection combination
 - Dienes-Rescher implication
 - min for t-norms.

 $\mu_{B'}(y) = \min_{l=1}^{M} \{ \sup_{x \in U} \min[\mu_{A'}(x), \max(1 - \min_{i=1}^{n} (\mu_{A_{i}^{l}}(x_{i})), \mu_{B}^{l}(y))] \}$

(1日) (1日) (日) (日)

Lemma: The product inference engine is unchanged if "individual rule based inference with union combination" is replaced by "composition based inference with Mamdani combination"

Proof:

- composition based inference with Mamdani combination: $\mu_{B'}(y) = sup_{x \in U} t[\mu_{A'}(x), \mu_{Q_{M/C}}(x, y)]$
- $\mu_{B'}(y) = \sup_{x \in U} \iota[\mu_{A'}(x), \mu_{Q_{M/G}}(x, y)]$ $\mu_{Q_M}(x, y) \text{ for max as s-norm, product as t-norm:}$
- $\mu_{Q_M}(x, y) \text{ for max as s-norm, product as t-norm,} \\ \mu_{Q_{M/G}}(x, y) = \max_{l=1}^M (\mu_{Ru^{(l)}}(x, y))$
- $\therefore \mu_{B'}(y) = \sup_{x \in U} [\mu_{A'}(x) \max_{l=1}^{M} (\mu_{Ru^{(l)}}(x, y))]$
- Use Mamdani product and $\mu_{A'_1} \times \ldots \times \mu_{A'_n}(x_1, \ldots, x_n) = \mu_{A'_1}(x_1) \star \ldots \star \mu_{A'_n}(x_1)$
- $\therefore \mu_{B'}(y) = \sup_{x \in U} \max_{l=1}^{M} [\mu_{A'}(x) \prod_{l=1}^{n} \mu_{A'_{l}}(x_{l}) \mu_{B'}(y)]$
- ► Since max^M_{l=1} and sup_{x∈U} are interchangeable the above equation is equal to individual rule based inference with union combination

▲□ → ▲ 三 → ▲ 三 → ……

- - If the fuzzy set A' is a fuzzy singleton: $\mu_{A'}(x) = \begin{cases} 1 & \text{if } x = x^* \\ 0 & \text{otherwise} \end{cases}$ where x^* is some point in U
 - The product inference engine is $\mu_{B'}(y) = \max_{i=1}^{M} [\prod_{i=1}^{n} \mu_{A'_i}(x_i^*) \mu_{B'}(y)]$
 - ► The minimum inference engine is $\mu_{B'}(y) = \max_{i=1}^{M} [\min(\mu_{A_i^i}(x_1^*), \dots, \mu_{A_n^i}(x_n^*), \mu_{B'}(y))]$
 - ► The Lukasiewicz inference engine is $\mu_{B'}(y) = \min_{l=1}^{M} [1, 1 - \min_{i=1}^{n} (\mu_{A'_{i}}(x_{i}^{*})) + \mu_{B'}(y))]$
 - ► The Zadeh inference engine is $\mu_{B'}(y) = \min_{l=1}^{M} \{\max[\min(\mu_{A'_{l}}(x_{i}^{*}), \dots, \mu_{A'_{n}}(x_{n}^{*}), \mu'_{B}(y)), 1 \min_{i=1}^{n}(\mu_{A'_{i}}(x_{i}^{*}))]\}$
 - ► The Dienes-Rescher inference engine is $\mu_{B'}(y) = \min_{l=1}^{M} \{ \max(1 - \min_{i=1}^{n} (\mu_{A'_{i}}(x_{i}^{*})), \mu'_{B}(y)) \}$

伺下 イヨト イヨト

► Graphical Product inference Engine

(人間) システレ イラン

Example

• A fuzzy rule base: "IF x_1 is A_1 and ... and x_n is A_n , THEN y is B

Fuzzy Inference

0000000

- $\blacktriangleright \mu_B(y) = \begin{cases} 1 |y| & \text{if } -1 \le y \le 1 \\ 0 & \text{otherwise} \end{cases}$
- A' is a fuzzy singleton: $\mu_{A'}(x) = \begin{cases} 1 & \text{if } x = x^* \\ 0 & \text{otherwise} \end{cases}$
- Find $\mu_{B'}(y)$ using $B'_P, B'_M, B'_L, B'_Z, B'_D$
- Let $\min[\mu_{A_1}(x_1^*), \dots, \mu_{A_n}(x_n^*)] = \mu_{A_p}(x_p^*)$

$$\blacktriangleright \prod_{i=1}^{n} \mu_{\mathcal{A}_i}(x_i^*) = \mu_{\mathcal{A}}(x^*)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$u_{A_p}(x^*) \leq 0.5$$

<ロ> <同> <同> < 同> < 同>

• $\mu_{B'_{p}}(y) = \mu_{A}(x^{*})\mu_{B'}(y)$ • $\mu_{B'_{M}}(y) = \min(\mu_{A^{*}_{p}}(x^{*}_{p}), \mu_{B}(y))$ $\mu_{A_{p}}(x^{*}) > 0.5, \qquad \mu_{A_{p}}(x^{*}) \le 0.5$

(4 同) トイヨト イヨト

3

23/24

- $\blacktriangleright \ \mu_{B'_P}(y) = \mu_A(x^*)\mu_{B'}(y)$
- $\mu_{B'_M}(y) = \min(\mu_{A^*_p}(x^*_p), \mu_B(y))$
- $\mu_{B'L}(y) = \min[1, 1 \mu_{A_p^*}(x_p^*) + \mu_B(y)]$

 $\mu_{A_p}(x^*) > 0.5, \qquad \qquad \mu_{A_p}(x^*) \le 0.5$

(4 回) (4 回) (4 回)

3

23/24

- $\blacktriangleright \ \mu_{B'_P}(y) = \mu_A(x^*)\mu_{B'}(y)$
- $\mu_{B'_M}(y) = \min(\mu_{A^*_p}(x^*_p), \mu_B(y))$
- $\mu_{B'L}(y) = \min[1, 1 \mu_{A_p^*}(x_p^*) + \mu_B(y)]$
- $\mu_{B'_{Z}}(y) = \min\{\max[\mu_{A^*_{p}}(x^*_{p}), \mu_{B}(y), 1 \mu_{A^*_{p}}(x^*_{p})]\}$ $\mu_{A_{p}}(x^*) > 0.5, \qquad \mu_{A_{p}}(x^*) \le 0.5$

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\blacktriangleright \ \mu_{B'_P}(y) = \mu_A(x^*)\mu_{B'}(y)$
- $\mu_{B'_M}(y) = \min(\mu_{A^*_p}(x^*_p), \mu_B(y))$
- $\mu_{B'L}(y) = \min[1, 1 \mu_{A_p^*}(x_p^*) + \mu_B(y)]$
- $\mu_{B'_Z}(y) = \min\{\max[\mu_{A^*_p}(x^*_p), \mu_B(y), 1 \mu_{A^*_p}(x^*_p)]\}$
- $\mu_{B'_{D}}(y) = \max(1 \mu_{A^{*}_{p}}(x^{*}_{p}), \mu_{B}(y)) \\ \mu_{A_{p}}(x^{*}) > 0.5, \qquad \mu_{A_{p}}(x^{*}) \le 0.5$

・ 同 ト ・ ヨ ト ・ ヨ ト

Example Cont'd

- ► $\mu_{A_p}(x^*) < 0.5 \rightsquigarrow \mu_{B'P}, \mu_{B'_M}$ is very small; $\mu_{B'L}(y), \mu_{B'_Z}(y), \mu_{B'_D}(y)$ is very large
- Product and Minimum inf. eng. are similar; Zadeh, Dienes, Lukasiewicz inf. eng. are similar
- Lukasiewicz inf. eng.: Largest output; Product inf. eng.: Smallest output

(4 同) トイヨト イヨト

