

1/43

Nonlinear Control Lecture 5: Stability Analysis II

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2009

Nonautonomous systems Lyapunov Theorem for Nonautonomous Systems

Linear Time-Varying Systems and Linearization Linear Time-Varying Systems Linearization for Nonautonomous Systems

Converse Theorems

Barbalat's Lemma and Lyapunov-Like Lemma Asymptotic Properties of Functions and Their Derivatives: Barbalat's Lemma

Boundedness and Ultimate Boundedness



Comparison Functions

- Unlike autonomous systems, the solution of non-autonomous systems starting at $x(t_0) = x_0$ depends on both t and t_0 .
- \triangleright Stability definition shall be refined s.t. they hold uniformly in t_0 .
- \blacktriangleright Two special classes of comparison functions known as class $\mathcal K$ and class \mathcal{KL} are very useful in such definitions.
- **Definition:** A continuous function $\alpha:[0,a)\longrightarrow[0,\infty)$ is said to belong to class K if it is strictly increasing and $\alpha(0) = 0$. It is said to belong to class \mathcal{K}_{∞} if $\mathbf{a} = \infty$ and $\alpha(\mathbf{r}) \longrightarrow \infty$ as $\mathbf{r} \longrightarrow \infty$.
- ▶ **Definition:** A continuous function β : $[0,a) \times [0,\infty) \longrightarrow [0,\infty)$ is said to belong to class KL if, for each fixed s, the mapping $\beta(r,s)$ belong to class K w.r.t. r and, for each fixed r, the mapping $\beta(r,s)$ is decreasing w.r.t. s and $\beta(r,s) \longrightarrow 0$ as $s \longrightarrow \infty$.

Comparison Functions

- Examples:
 - ▶ The function $\alpha(r) = tan^{-1}(r)$ belongs to class \mathcal{K} but not to class \mathcal{K}_{∞} .
 - ▶ The function $\alpha(r) = r^c$, c > 0 belongs to class \mathcal{K}_{∞} .
 - ▶ The function $\beta(r,s) = r^c e^{-s}$, c > 0 belong to class \mathcal{KL} .
- **Lemma:** Let $V:D \longrightarrow R$ be a continuous positive definite function defined on a domain $D \in R^n$ containing the origin. Let $B_r \subset D$ for some R > 0. Then \exists class \mathcal{K} functions α_1 and α_2 defined on [0, r] s.t.

$$\alpha_1(\|x\|) \le V(x) \le \alpha_2(\|x\|)$$

 $\forall x \in B_r$. If $D = R^n$, the functions α_1 and α_2 will be defined on $[0, \infty)$ and the above inequality will hold for all $x \in \mathbb{R}^n$. Moreover, if V(x) is radially unbounded, then α_1 and α_2 can be chosen to belong to class \mathcal{K}_{∞} .

▶ For a quadratic p.d. function $V(x) = x^T P x$, the lemma follows from the following inequality: $|\lambda_{min}(P)||x||_{2}^{2} \leq V(x) \leq \lambda_{max}(P)||x||_{2}^{2}$

Consider the nonautonomous system

$$\dot{x} = f(t, x) \tag{1}$$

where $f:[0,\infty)\times D\longrightarrow R^n$ is p.c. in t and locally Lip. in x on $[0,\infty)\times D$, and $D\subset R^n$ is a domain containing the origin x=0.

▶ The origin is an **Equ.** pt. of (1), if

$$f(t,0)=0, \forall t \geq 0$$

▶ A nonzero Equ. pt. or more generally nonzero solution can be transformed to x = 0 by proper coordinate transformation.

 \triangleright Suppose $x_d(\tau)$ is a solution of the system

$$\frac{dy}{d\tau} = g(\tau, y)$$

defined for all $\tau > a$.

▶ The change of variables $x = y - x_d(\tau)$; $t = \tau - a$ transform the original system into

$$\dot{x} = g(\tau, y) - \dot{x}_d(\tau) = g(t + a, x + x_d(t + a)) - \dot{x}_d(\tau) \stackrel{\triangle}{=} f(t, x)$$

- Note that $\dot{x}_d(t+a) = g(t+a,x_d(t+a)), \forall t \geq 0$
- ▶ Hence, x = 0 is an **Equ. pt.** of the transformed system
- If $x_d(t)$ is not constant, the transformed system is always nonautonomous even when the original system is autonomous, i.e. when $g(\tau, y) = g(y)$.

▶ The origin x = 0 is a stable Equ. pt. of $\dot{x} = f(t, x)$ if for each $\epsilon > 0$ and any $t_0 > 0$, $\exists \delta = \delta(t_0, \epsilon) > 0$ s.t.

$$||x(t_0)|| < \delta \implies ||x(t)|| < \epsilon \quad \forall t \ge t_0$$
 (2)

- ▶ Note that $\delta = \delta(t_0, \epsilon)$ for any $t_0 \ge 0$.
- Example:

$$\dot{x} = (6t \sin t - 2t)x \Longrightarrow
x(t) = x(t_0) \exp \left[\int_{t_0}^t (6\tau \sin \tau - 2\tau) d\tau \right]
= x(t_0) \exp \left[6\sin t - 6t \cos t - t^2 - 6\sin t_0 + 6t_0 \cos t_0 + t_0^2 \right]$$

▶ For any t_0 , the term $-t^2$ is dominant \Longrightarrow the exp. term is bounded $\forall t > t_0 \Longrightarrow$ $|x(t)| < |x(t_0)|c(t_0) \forall t \geq t_0$

- **Definition:** The Equ. pt. x = 0 of $\dot{x} = f(t, x)$ is
 - 1. Uniformly stable if, for each $\epsilon < 0$, there is a $\delta = \delta(\epsilon) > 0$ independent of *t*₀ s.t.

$$||x(t_0)|| < \delta \implies ||x(t)|| < \epsilon \quad \forall t \ge t_0$$

- 2. Asymptotically stable if it is stable and there is a positive constant $c = c(t_0)$ such that $x(t) \to 0$ as $t \to \infty$ for all $||x(t_0)|| < c$.
- 3. Uniformly asymptotically stable if it is uniformly stable and there is a positive constant c, independent of t_0 s.t. for all $||x(t_0)|| < c$, $x(t) \longrightarrow 0$ as $t \longrightarrow \infty$, uniformly in t_0 ; that is for each $\eta > 0$, there is $T = T(\eta) > 0$ s.t.

$$||x(t)|| \le \eta$$
, $\forall t \ge t_0 + T(\eta)$, $\forall ||x(t_0)|| < c$

4. Globally uniformly asymptotically stable if it is uniformly stable, $\delta(\epsilon)$ can be chosen to satisfy $\lim_{\epsilon \to \infty} \delta(\epsilon) = \infty$, and for each pair of positive numbers η and c, there is $T = T(\eta, c) > 0$ s.t. $\|x(t)\| \le \eta, \quad \forall t \ge t_0 + T(\eta, c), \quad \forall \|x(t_0)\| < c$

- ▶ Uniform properties have some desirable ability to withstand the disturbances.
- ▶ since the behavior of autonomous systems are independent of initial time t_0 , all the stability propresties for autonomous systems are uniform
- $\dot{x} = -\frac{x}{1+t} \Longrightarrow$ **Example:** $x(t) = x(t_0) exp \left[\int_{t_0}^{t} \frac{-1}{1+\tau} d\tau \right] = x(t_0) \frac{1+t_0}{1+t}$
- ▶ Since $|x(t)| \le |x(t_0)| \ \forall \ t \ge t_0 \implies x = 0$ is stable
- ▶ It follows that $x(t) \longrightarrow 0$ as $t \longrightarrow \infty \implies x = 0$ is **a.s.**
- ▶ However, the convergence of x(t) to zero is not uniform w.r.t. t_0
- \triangleright since T is not independent of t_0 , i.e., larger t_0 requires more time to get close enough to the origin.

- \blacktriangleright The mentioned definitions can be stated by using class $\mathcal K$ and class $\mathcal K\mathcal L$ functions:
- ▶ **Lemma:** The Equ. pt. x = 0 of $\dot{x} = f(t, x)$ is
 - 1. Uniformly stable iff there exist a class K function α and a positive constant c, independent of t_0 s.t.

$$||x(t)|| \le \alpha(||x(t_0)||), \quad \forall t \ge t_0 \ge 0, \quad \forall ||x(t_0)|| < c$$

2. Uniformly asymptotically stable iff there exists a class \mathcal{KL} function β and a positive constant c, independent of t_0 s.t.

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \quad \forall t \ge t_0 \ge 0, \quad \forall ||x(t_0)|| < c$$
 (3)

3. globally uniformly asymptotically stable iff equation (3) is satisfied for any initial state $x(t_0)$.

Lecture 5 Farzaneh Abdollahi Nonlinear Control 10/43

- \blacktriangleright A special class of uniform asymptotic stability arises when the class \mathcal{KL} function β takes an exponential form, $\beta(r,s) = kre^{-\lambda s}$.
- ▶ **Definition:** The Equ. pt. x = 0 of $\dot{x} = f(t, x)$ is exponentially stable if there exist positive constants c, k, λ s.t.

$$||x(t)|| \le k||x(t_0)||e^{-\lambda(t-t_0)}, \quad \forall ||x(t_0)|| < c$$
 (4)

- and is globally exponentially stable if equation (4) is satisfied for any initial state $x(t_0)$.
- ▶ Lyapunov theorem for autonomous system can be extended to nonautonomous systems, besides more mathematical complexity
- ▶ The extension involving uniform stability and uniform asymptotic stability is considered.
- ▶ Note that: the powerful Lasalle's theorem is not applicable for nonautonomous systems. Instead, we will introduce Balbalet's lemma,

- A function V(t,x) is said to be **positive semi-definite** if $V(t,x) \geq 0$
- ▶ A function V(t,x) satisfying $W_1(x) \leq V(t,x)$ where $W_1(x)$ is a continuous positive definite function, is said to be positive definite
- \blacktriangleright A p.d. function V(t,x) is said to be radially unbounded if $W_1(x)$ is radially unbounded.
- A function V(t,x) satisfying $V(t,x) \leq W_2(x)$ where $W_2(x)$ is a continuous positive definite function, is said to be decrescent
- ▶ A function V(t,x) is said to be negative semi-definite if -V(t,x) is p.s.d.
- ▶ A function V(t,x) is said to be **negative definite** if -V(t,x) is p.d.

Lyapunov Theorem for Nonautonomous Systems

▶ Theorem:

- ▶ Stability: Let x = 0 be an Equ. pt. for $\dot{x} = f(t, x)$ and $D \in \mathbb{R}^n$ be a domain containing x = 0. Let $V : [0, \infty) \times D \longrightarrow R$ be a continuously differentiable function s.t.:
 - 1. V is p.d. $\equiv V(x,t) \geq \alpha(\|x\|)$, α is class \mathcal{K}
 - 2. $\dot{V} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x)$ is n.s.d

then x = 0 is **stable**.

- Uniform Stability: If, furthermore
 - 3. V is decrescent $\equiv V(x,t) \leq \beta(||x||), \beta$ is class Kthen the origin is uniformly stable.
- ▶ Uniform Asymptotic Stability: If, furthermore condition 2 is strengthened by

$$\dot{V} \leq -W_3(x)$$

where W_3 is a p.d. fcn. In other word, \dot{V} is n.d., then the origin is uniformly asymptotically stable

Lyapunov Theorem for Nonautonomous Systems

- ► Theorem (continued):
 - ► Global Uniform Asymptotic Stability: If, the conditions above are satisfied globally $\forall x \in R^n$, and
 - 4. \emph{V} is radially unbounded $\equiv \ lpha$ is class \mathcal{K}_{∞}

then the origin is globally uniformly asymptotically stable.

Exponential Stability: If, the conditions above are satisfied with $w_i(r) = k_i r^c$, i = 1, ..., 3 for some positive constants $k_i \& c$:

$$\begin{aligned} k_1 \|x\|^c &\leq V(t,x) \leq k_2 \|x\|^c \\ \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x) &\leq -k_3 \|x\|^c, \ \forall x \in D, \end{aligned}$$

then x = 0 is **exponentially stable**

- Moreover, if the assumptions hold globally, then the origin is globally exponentially stable
 - prove it by using Comparison Lemma

Example: Consider $\dot{x} = -[1 + g(t)]x^3$

where g(t) is cont. and $g(t) \geq 0$ for all $t \geq 0$.

▶ Let $V(x) = x^2/2$, then

$$\dot{V} = -[1+g(t)]x^4 \le -x^4, \ \forall \ x \in R \ \& \ t \ge 0$$

- ▶ All assumptions of the theorem are satisfied with $W_1(x) = W_2(x) = V(x)$ and $W_3(x) = x^4$. Hence, the origin is **g.u.a.s.**
- Example: Consider $\dot{x}_1 = -x_1 - g(t)x_2$ $\dot{X}_2 = -X_1 - X_2$

where g(t) is cont. diff, and satisfies

$$0 \le g(t) \le k$$
, and $\dot{g}(t) \le g(t)$, $\forall t \ge 0$

► Let $V(t,x) = x_1^2 + [1 + g(t)]x_2^2$

- ► Example (Cont'd) $x_1^2 + x_2^2 \le V(t,x) \le x_1^2 + (1+k)x_2^2, \forall x \in R^2$
 - V(t,x) is p.d., decrescent, and radially unbounded.

$$\dot{V} = -2x_1^2 + 2x_1x_2 - [2 + 2g(t) - \dot{g}(t)]x_2^2$$

• We have $2 + 2g(t) - \dot{g}(t) > 2 + 2g(t) - g(t) > 2$. Then,

$$\dot{V} = -2x_1^2 + 2x_1x_2 - 2x_2^2 = -\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \triangleq -x^T Q x$$

where Q is p.d. $\Longrightarrow V(t,x)$ is n.d.

- ▶ All assumptions of the theorem are satisfied globally with p.d. quadratic fcns W_1 , W_2 , and W_3 .
- ▶ Recall: for a quadratic fcn $x^T P x \lambda_{min}(P) ||x||^2 \le x^T P x \le \lambda_{max}(P) ||x||^2$ The conditions of exponential stability are satisfied with c=2, : origin is **g.e.s.**

4 D > 4 D > 4 D > 4 D > 3 Nonlinear Control Lecture 5 16/43

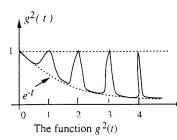
Example: Importance of decrescence condition

► Consider
$$\dot{x}(t) = \frac{\dot{g}(t)}{g(t)}x$$

 \triangleright g(t) is cont. diff fcn., coincides with $e^{-t/2}$ except around some peaks where it reaches 1. s.t.:

$$\int_{0}^{\infty} g^{2}(r) dr < \int_{0}^{\infty} e^{-r} dr + \sum_{n=1}^{\infty} \frac{1}{2^{n}} = 2$$

- ► Let $V(x,t) = \frac{x^2}{g^2(t)} [3 \int_0^t g^2(r) dr] \rightarrow V$ is p.d $(V(x, t) > x^2)$
- $\dot{V} = -x^2$ is n.d.
- $\blacktriangleright \text{ But } x(t) = \frac{g(t)}{g(t_0)} x(t_0)$
- ▶ ∴ origin is not u.a.s.



Linear Time-Varying Systems $\dot{x} = A(t)x$

- ▶ The sol. is the so called state transition matrix $\phi(t, t_0)$, i.e., $x(t) = \phi(t, t_0)x(t_0)$
- **Theorem:** The Equ. pt. x = 0 is **g.u.a.s** iff the state transition matrix satisfies $\|\phi(t,t_0)\| < ke^{-\gamma(t-t_0)} \ \forall t > t_0 > 0$ for some positive const. $k\&\gamma$
- **u.a.s.** of x = 0 is equivalent to **e.s.** for linear systems.
- ► Tools/intutions of TI systems are **no longer valid** for TV systems.

$$\ddot{x} + c(t)\dot{x} + k_0x = 0$$

A mass-spring-damper system with t.v. damper c(t) > 0.

- origin is an Equ. pt. of the system
- ▶ Physical intuition may suggest that the origin is **a.s.** as long as the damping c(t) remains strictly positive (implying a constant dissipation of energy) as is for autonomous mass-spring-damper systems.

- **Example** (cont'd)
 - ► HOWEVER, this is **not necessarily true**:

$$\ddot{x} + (2 + e^t)\dot{x} + k_0x = 0$$

- ▶ The sol. for $x(0) = 2, \dot{x}(0) = -1$ is $x(t) = 1 + e^{-t}$ which approaches to x = 1!

Example:
$$\begin{bmatrix} -1 + 1.5\cos^2 t & 1 - 1.5\sin t \cos t \\ -1 - 1.5\sin t \cos t & -1 + 1.5\sin^2 t \end{bmatrix}$$

- ▶ For all t, $\lambda \{A(t)\} = -.25 \pm j.25\sqrt{7} \implies \lambda_1 \& \lambda_2$ are independent of $t \& \lambda_1 \& \lambda_2 = 0$ lie in I HP.
- ▶ HOWEVER, x = 0 is unstable

$$\phi(t,0) = \begin{bmatrix} e^{.5t} \cos t & e^{-t} \sin t \\ -e^{.5t} \sin t & e^{-t} \cos t \end{bmatrix}$$

Linear Time-Varying Systems

- ▶ Important: For linear time-varying systems, eigenvalues of A(t) cannot be used as a measure of stability.
- ▶ A simple result: If all eigenvalues of the symmetric matrix $A(t) + A^{T}(t)$ (all of which are real) remain strictly in LHP, then the LTV system is **a.s**:

$$\exists \lambda > 0, \ \forall i, \ \forall \ t \geq 0, \ \lambda_i \{A(t) + A^T(t)\} \leq \lambda$$

► Consider the Lyap. fcn candidate $V = x^T x$:

$$\dot{V} = x^T \dot{x} + \dot{x}^T x = x^T (A(t) + A^T(t)) x \le -\lambda x^T x = -\lambda V$$

hence,
$$\forall t \geq 0$$
, $0 \leq x^T x = V(t) \leq V(0)e^{-\lambda t}$

▶ x tends to zero exponentially. Only a **sufficient condition**, though

rzaneh Abdollahi Nonlinear Control Lecture 5 20/43

- More specific theorems are available for classes of linear time-varying system such as periodic systems, slowly varying system, perturbed linear systems:
 - Perturbed linear systems
 - Consider a LTV system:

$$\dot{x}=(A_1+A_2(t))x$$

▶ A is sum of: A_1 is a constant Hurwitz matrix and a small t.v. matrix $A_2(t)$ satisfying:

$$A_2(t) \longrightarrow 0$$
 as $t \longrightarrow \infty$ and $\int_0^\infty \|A_2(t)\| dt < \infty$

then the LTV system is **g.e.s.**

▶ **Theorem:** Let x = 0 be a **e.s.** Equ. pt. of $\dot{x} = A(t)x$. Suppose, A(t) is cont. & bounded. Let Q(t) be a cont., bounded, p.d. and symmetric matrix, i.e $0 < c_3 I \le Q(t) \le c_4 I$, $\forall t \ge 0$. Then, there exists a cont. diff., bounded, symmetric, p.d. matrix P(t) satisfying

$$\dot{P}(t) = -(A^{T}(t)P(t) + P(t)A(t) + Q(t))$$

Hence, $V(t,x) = x^T P(t)x$ is a Lyap. fcn for the system satisfying e.s. theorem

- \triangleright P(t) is symmetric, bounded, p.d. matrix, i.e. $0 < c_1 I < P(t) < c_2 I, \forall t > 0$
- $ightharpoonup : c_1 ||x||^2 < V(t,x) < c_2 ||x||^2$
- $\dot{V}(t,x) = x^T \left[\dot{P}(t) + P(t)A(t) + A^T(t)P(t) \right] x = -x^T Q(t)x \le -c_3 ||x||^2$
- ▶ The conditions of exponential stability are satisfied with c = 2, the origin is **g.e.s.**

《四》《圖》《意》《意》。 章 Nonlinear Control Lecture 5 22/43

Linear Time-Varying Systems

- ▶ As a special case when A(t) = A, then $\phi(\tau, t) = e^{(\tau t)A}$ which satisfies $\|\phi(t,t_0)\| < e^{-\gamma(t-t_0)}$ when A is a stable matrix.
- ▶ Choosing $Q = Q^T > 0$, then P(t) is given by

$$P = \int_t^\infty e^{(\tau - t)A^T} Q e^{(\tau - t)A} d\tau = \int_0^\infty e^{A^T s} Q e^{As} ds$$

independent of t and is a solution to the Lyap. equation.

Linearization for Nonautonomous Systems

▶ Consider $\dot{x} = f(t,x)$ where $f:[0,\infty)\times D \longrightarrow R^n$ is cont. diff. and $D = \{x \in \mathbb{R}^n \mid ||x|| < r\}$. Let x = 0 be an Equ. pt. Also, let the Jacobian matrix be bounded and Lip. on D uniformly in t, i.e.

$$\begin{split} \|\frac{\partial f}{\partial x}(t,x)\| & \leq k \ \forall \ x \in D, \ \forall \ t \geq 0 \\ \|\frac{\partial f}{\partial x}(t,x_1) - \frac{\partial f}{\partial x}(t,x_2)\| & \leq L \|x_1 - x_2\| \ \forall \ x_1,x_2 \in D, \ \forall \ t \geq 0 \end{split}$$

Let $A(t) = \frac{\partial f}{\partial x}(t,x)\big|_{x=0}$. Then, x=0 is e.s. for the nonlinear system if it is an e.s. Equ. pt. for the linear system $\dot{x} = A(t)x$.

- ▶ Lyapunov Theorem for Nonautonomous Systems $\dot{x} = f(x, t)$:
 - **Stability:** Let x=0 be an Equ. pt. and $D \in \mathbb{R}^n$ be a domain containing x = 0. Let $V : [0, \infty) \times D \longrightarrow R$ be a continuously differentiable function s.t.: V is p.d. , and \dot{V} is n.s.d
 - ▶ Uniform Stability: If, furthermore V is decrescent
 - ▶ Uniform Asymptotic Stability: If, furthermore \hat{V} is n.d.
 - ► Global Uniform Asymptotic Stability: If, the conditions above are satisfied globally $\forall x \in \mathbb{R}^n$, and V is radially unbounded
 - **Exponential Stability:** If for some positive constants $k_i \& c$:

$$\begin{array}{lll} k_1\|x\|^c & \leq & V(t,x) & \leq & k_2\|x\|^c \\ \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x) & \leq & -k_3\|x\|^c, & \forall x \in D, \end{array}$$

then x = 0 is exponentially stable

▶ Moreover, if the assumptions hold globally, then the origin is **globally** exponentially stable

Summary

- ▶ Linear Time-Varying Systems $\dot{x} = A(t)x$
 - **Theorem:** The Equ. pt. x = 0 is **g.u.a.s** iff the state transition matrix satisfies $\|\phi(t,t_0)\| < ke^{-\gamma(t-t_0)} \ \forall t > t_0 > 0$ for some positive const. $k&\gamma$
 - ▶ If all eigenvalues of the symmetric matrix $A(t) + A^{T}(t)$ remain strictly in LHP, then the LTV system is a.s
 - for LTV systems, eigenvalues of A(t) alone cannot be used as a measure of stability.
 - ▶ Theorem: Let x = 0 be a **e.s.** Equ. pt. of $\dot{x} = A(t)x$. Suppose, A(t) is cont. & bounded. Let Q(t) be a cont., bounded, p.d. and symmetric matrix, i.e $0 < c_3 I \le Q(t) \le c_4 I$, $\forall t \ge 0$. Then, there exists a cont. diff., bounded, symmetric, p.d. matrix P(t) satisfying

$$\dot{P}(t) = -(A^{T}(t)P(t) + P(t)A(t) + Q(t))$$

Hence, $V(t,x) = x^T P(t)x$ is a Lyap. fcn for the system satisfying e.s. theorem

- They guarantee the existence of Lyapunov function satisfying certain conditions, but they do not help in finding these fcns.
 - ▶ **Theorem:** Let x = 0 be an Equ. pt. of $\dot{x} = f(t, x)$ where $f:[0,\infty)\times D\longrightarrow R^n$ is cont. diff., $D=\{x\in R^n|\ \|x\|< r\}$ and the Jacobian matrix $\frac{\partial f}{\partial x}$ is bounded on D uniformly in t. Let k, γ , and r_0 be pos constants with $r_0 < r/k$. Let $D_0 = \{x \in R^n \mid ||x|| < r_0\}$. Assume that the trajectories satisfy

 $\|x(t)\| \le k \|x(t_0)\|e^{-\gamma(t-t_0)}, \ \forall \ x(t_0) \in D_0, \ \forall \ t \ge t_0 \ge 0.$ Then, $\exists \ a$ fcn $V:[0,\infty)\times D_0\longrightarrow R$ satisfying:

$$c_1 ||x||^2 \le V(t, x) \le c_2 ||x||^2$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -c_3 ||x||^2$$

$$\frac{\partial V}{\partial x} \le c_4 ||x||$$

for some pos., const. $c_1, ..., c_4$. Moreover, if $r = \infty$ and the origin is **g.e.s.**, then V(t,x) is defined and satisfies the the above inequalities on \mathbb{R}^n . If f(t,x) = f(x), then V(t,x) = V(x).

Converse Theorems

- Now, exponential stability of the linearization is a necessary and sufficient condition for **e.s.** of x = 0
- ▶ **Theorem:** Let x = 0 be an Equ. pt. of $\dot{x} = f(t, x)$ with conditions as above. Let $A(t) = \frac{\partial f(t,x)}{\partial x}\Big|_{x=0}$. Then, x=0 is an **e.s.** Equ. pt. for the nonlinear system **iff** it is an **e.s.** Equ. pt. for the linear system $\dot{x} = A(t)x$.
- ► For autonomous systems e.s. condition is satisfied iff A is Hurwitz.
- **Example:**

$$\dot{x} = -x^3$$

- Recall that x = 0 is **a.s.**
- ▶ However, linearization results in $\dot{x} = 0$ whose A is not Hurwitz.
- \triangleright Using the above theorem, we conclude that x=0 is **not exponentially stable** for nonlinear system.

Barbalat's Lemma

- ► For autonomous systems, invariant set theorems are power tools to study asymptotic stability when V is **n.s.d.**
- ▶ The invariant set theorem is not valid for nonautonomous systems.
- ► Hence, asymptotic stability of nonautonomous systems is generally more difficult than that of autonomous systems.
- ▶ An important result that remedy the situation: **Barbalat's Lemma**
- ► Asymptotic Properties of Functions and Their Derivatives:
- For diff. fcn f of time t, always keep in mond the following three facts!
 - 1. $\dot{f} \longrightarrow 0 \implies f$ converges
 - ▶ The fact that $\dot{f} \longrightarrow 0$ does not imply f(t) has a limit as $t \longrightarrow \infty$.
 - **Example:** $f(t) = \sin(\ln t) \rightsquigarrow \dot{f} = \frac{\cos(\ln t)}{h} \longrightarrow 0$ as $t \longrightarrow \infty$
 - ▶ However, the fcn f(t) keeps oscillating (slower and slower).
 - Example: For an unbounded function $f(t) = \sqrt{t} \sin(\ln t), \stackrel{\longleftrightarrow}{f} = \frac{\sin(\ln t)}{2\sqrt{t}} + \frac{\cos(\ln t)}{\sqrt{t}} \longrightarrow 0 \text{ as } t \longrightarrow \infty$

Asymptotic Properties of Functions and Their Derivatives:

- 2. f converges \Rightarrow $\dot{f} \longrightarrow 0$
 - ▶ The fact that f(t) has a finite limit at $t \longrightarrow \infty$ does not imply that $\dot{f} \longrightarrow 0$
 - **Example:** $f(t) = e^{-t} \sin(e^{2t}) \longrightarrow 0$ as $t \longrightarrow \infty$
 - while its derivative $\dot{f} = -e^{-t} \sin(e^{2t}) + 2e^t \cos(e^{2t})$ is unbounded.
- 3. If f is lower bounded and decreasing $(\dot{f} \leq 0)$, then it converges to a limit.
 - ▶ However, it does not say whether the slope of the curve will diminish or not.

Given that a fcn tends towards a finite limit, what additional property guarantees that the derivatives converges to zero?

▶ Barbalat's Lemma: If the differentiable fcn has a finite limit as $t \longrightarrow \infty$, and if \dot{f} is uniformly cont., then $\dot{f} \longrightarrow 0$ as $t \longrightarrow \infty$.

- proved by contradiction
- ▶ A function g(t) is **continuous** on $[0, \infty)$ if

$$orall \ t_1 \geq 0, \ orall \ R > 0, \ \exists \ \eta(R, t_1) > 0, \ orall \ t \geq 0, \ \ |t - t_1| < \eta \implies |g(t) - g(t_1)| \ < R$$

 \blacktriangleright A function g(t) is **uniformly continuous** on $[0,\infty)$ if

$$orall \; R > \; 0, \; \exists \; \eta(R) > 0, \; orall \; t_1 \; \geq \; 0, \; \mid t - t_1 \mid < \eta \; \Longrightarrow \ \mid g(t) - g(t_1) \mid \; < R$$

i.e. an η can be found independent of specific point t_1 .

Barbalat's Lemma

- A sufficient condition for a diff. fcn. to be uniformly continuous is that its derivative be bounded
 - ▶ This can be seen from Mean-Value Theorem:

$$\forall t, \ \forall t_1, \ \exists t_2 \ (\text{between } t \ \text{and} \ t_1) \ \text{s.t.} \ g(t) - g(t_1) = \dot{g}(t_2)(t-t_1)$$

- if $\dot{g} \leq R_1 \ \forall \ t \geq 0$, let $\eta = \frac{R}{R_1}$ independent of t_1 to verify the definition above.
- ▶ ∴ An immediate and practical corollary of Barbalat's lemma: If the differentiable fcn f(t) has a finite limit as $t \longrightarrow \infty$ and \ddot{f} exists and is bounded, then $\dot{f} \longrightarrow 0$ as $t \longrightarrow \infty$

Using Barbalat's lemma for Stability Analysis

- **Lyapunov-Like Lemma:** If a scaler function V(t,x) satisfies the following conditions
 - 1. V(t,x) is lower bounded
 - 2. V(t,x) is negative semi-definite
 - 3. V(t,x) is uniformly continuous in time

then
$$\dot{V}(t,x) \longrightarrow 0$$
 as $t \longrightarrow \infty$.

- Example:
 - Consider a simple adaptive control systems:

$$\dot{e} = -e + \theta w(t)$$
 $\dot{\theta} = -ew(t)$

where e is the tracking error, θ is the parameter error, and w(t) is a bounded continuous fcn.

Example (Cont'd)

Consider the lower bounded fcn:

$$V = e^2 + \theta^2$$

 $\dot{V} = 2e(-e + \theta w) + 2\theta(-ew(t)) = -2e^2 \le 0$

- $ightharpoonup : V(t) \leq V(0)$, therefore, e and θ are bounded.
- ▶ Invariant set theorem cannot be used to conclude the convergence of e, since the dynamic is nonautonomous.
- ▶ To use Barbalat's lemma, check the uniform continuity of V.

$$\ddot{V} = -4e(-e + \theta w)$$

- \blacktriangleright \ddot{V} is bounded, since w is bounded by assumption and e and θ are shown to be bounded $\rightsquigarrow V$ is uniformly continuous
- ▶ Applying Barbalat's lemma: $\dot{V} = 0 \implies e \longrightarrow 0$ as $t \longrightarrow \infty$.
- ▶ **Important:** Although $e \longrightarrow 0$, the system is not **a.s.** since θ is only shown to be bounded.

Boundedness and Ultimate Boundedness

- Lyapunov analysis can be used to show boundedness of the solution even when there is no Equ. pt.
- Example:

$$\dot{x} = -x + \delta \sin t$$
, $x(t_0) = a$, $a > \delta > 0$

which has no Equ. pt and

$$\begin{array}{lll} x(t) & = & e^{-(t-t_0)}a + \delta \int_{t_0}^t e^{-(t-\tau)} sin\tau d\tau \\ \\ x(t) & \leq & e^{-(t-t_0)}a + \delta \int_{t_0}^t e^{-(t-\tau)}d\tau \\ \\ & = & e^{-(t-t_0)}a + \delta \left[1 - e^{-(t-t_0)}\right] \leq a, \ \forall \ t \geq t_0 \end{array}$$

- ▶ The solution is bounded for all $t \ge t_0$, uniformly in t_0 .
- ▶ The bound is conservative due to the exponentially decaying terms.

Example Cont'd

Pick any number
$$b$$
 s.t. $\delta < b$ a , it can be seen that $|x(t)| \leq b, \ \delta \ \ \forall \ t \geq t_0 + ln\left(\frac{a-\delta}{b-\delta}\right)$

- \triangleright b is also independent of t_0
 - ► The solution is said to be uniformly ultimately bounded
 - b is called the ultimate bound
- ▶ The same properties can be obtained via Lyap. analysis. Let $V = x^2/2$

$$\dot{V} = x\dot{x} = -x^2 + x\delta \text{ sint } \le -x^2 + \delta|x|$$

- ▶ V is not **n.d.**, bc. near the origin, positive linear term $\delta |x|$ is dominant.
- ▶ However, \dot{V} is negative outside the set $\{|x| < \delta\}$.
- ▶ Choose, $c > \delta^2/2$, solutions starting in the set $\{V(x) < c\}$ will remain there in for all future time since V is negative on the boundary V=c.

▶ Hence, the solution is **ultimately bounded**.

Boundedness and Ultimate Boundedness

- ▶ **Definition:** The solutions of $\dot{x} = f(t,x)$ where $f:(0,\infty)\times D\to R^n$ is piecewise continuous in t and locally Lipschitz in x on $(0,\infty) \times D$, and $D \in \mathbb{R}^n$ is a domain that contains the origin are
 - uniformly bounded if there exist a positive constant c, independent of $t_0 \ge 0$, and for every $a \in (0,c)$, there is $\beta = \beta(a) > 0$, independent of t_0 , s.t.

$$||x(t_0)|| \leq a \implies ||x(t)|| \leq \beta, \ \forall \ t \geq t_0$$
 (5)

• uniformly ultimately bounded if there exist positive constants b and c, independent of $t_0 \ge 0$, and for every $a \in (0, c)$, there is T = T(a, b) > 0, independent of t_0 , s.t.

$$||x(t_0)|| \leq a \implies ||x(t)|| \leq \beta, \ \forall \ t \geq t_0 + T$$
 (6)

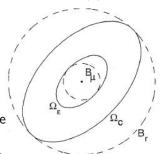
- ▶ globally uniformly bounded if (5) holds for arbitrary large a.
- ▶ globally uniformly ultimately bounded if (6) holds for arbitrary large a.

How to Find Ultimate Bound?

In many problems, negative definiteness of V is guaranteed by using norm inequalities, i.e.:

$$\dot{V}(t,x) \leq -W_3(x), \quad \forall \ \mu \leq \|x\| \leq r, \ \forall \ t \geq t_0$$
 (7)

- ▶ If r is sufficiently larger than μ , then c and ϵ can be found s.t. the set $\Lambda = \{ \epsilon \leq V \leq c \}$ is nonempty and contained in $\{\mu \leq ||x|| \leq r\}$.
- If the Lyap. fcn satisfy: $\alpha_1(\|x\|) \leq V(t,x) \leq \alpha_2(\|x\|)$ for some class \mathcal{K} functions α_1 and α_2 .
- ▶ We are looking for a bound on ||x|| based on α_1 and α_2 s.t. satisfies (7).



- ▶ We have: $V(x) \le c \implies \alpha_1(\|x\|) \le c \iff \|x\| \le \alpha_1^{-1}(c)$ \therefore $c = \alpha_1(r)$ ensures that $\Omega_c \subset B_r$.
- On the other hand we have:

$$||x|| \leq \mu \implies V(x) \leq \alpha_2(\mu)$$

- ▶ Hence, taking $\epsilon = \alpha_2(\mu)$ ensures that $B_{\mu} \subset \Omega_{\epsilon}$.
- ▶ To obtain $\epsilon < c$, we must have $\mu < \alpha_2^{-1}(\alpha_1(r))$.
- ▶ Hence, all trajectories starting in Ω_c enter Ω_ϵ within a finite time T as discussed before.
- ▶ To obtain the ultimate bound on x(t), $V(x) \leq \epsilon \implies \alpha_1(\|x\|) \leq \epsilon \Leftrightarrow \|x\| < \alpha_1^{-1}(\epsilon)$
- ▶ Recall that $\epsilon = \alpha_2(\mu)$, hence: $x \in \Omega_{\epsilon} \implies \|x\| \leq \alpha_1^{-1}(\alpha_2(\mu))$ \therefore The ultimate bound can be taken as $b = \alpha_1^{-1}(\alpha_2(\mu))$.

Theorem: Let $D \in \mathbb{R}^n$ be a domain containing the origin and

$$V:[0,\infty)\times D\longrightarrow R$$
 be a cont. diff. fcn s.t. $\alpha_1(\|x\|)\leq V(t,x)\leq \alpha_2(\|x\|)$ (8)

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \leq -W_3(x), \quad \forall \|x\| \geq \mu > 0$$
 (9)

 $\forall t \geq 0$ and $\forall x$ in D, where α_1 and α_2 are class K fcns and $W_3(x)$ is a cont. p.d. fcn. Take r > 0 s.t. $B_r \subset D$ and suppose that $\mu < \alpha_2^{-1}(\alpha_1(r))$

Then, there exists a class \mathcal{KL} fcn β and for every initial state $x(t_0)$ satisfying $||x(t_0)|| \le \alpha_2^{-1}(\alpha_1(r))$, there is $T \ge 0$ (dependent on $x(t_0)$ and $\mu \text{ s.t.}) \quad \|x(t)\| \le \beta(\|x(t_0)\|, t - t_0), \quad \forall \ t_0 \le t \le t_0 + T$ $||x(t)|| \le \alpha_1^{-1}(\alpha_2(\mu)) \quad \forall \ t > t_0 + T$

Moreover, if $D = R^n$ and $\alpha_1 \in \mathcal{K}_{\infty}$, then the above inequalities hold for any

ial state $x(t_0)$ Nonlinear Control Lecture 5

Ultimate Boundedness

- ▶ The inequalities of the theorem show that
 - x(t) is uniformly bounded for all $t \ge t_0$
 - uniformly ultimately bounded with the ultimate bound $\alpha_1^{-1}(\alpha_2(\mu))$.
 - ▶ The ultimate function is a class $\mathcal K$ fcn of μ → the smaller the value of μ , the smaller the ultimate bound
 - \blacktriangleright As μ $\,\longrightarrow\,$ 0, the ultimate bound approaches zero.
- The main application of this theorem arises in studying the stability of perturbed system.

◆ロ > ← □ > ← 重 > ← 重 > 一重 = からで

Example for Ultimate Boundedness

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -(1+x_1^2)x_1 - x_2 + M\cos\omega t$

where M>0

Let
$$V(x) = x^T \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} x + \frac{1}{2}x_1^4 = x^T P x + \frac{1}{2}x_1^4$$

- ▶ V(x) is p.d. and radially unbounded \leadsto there exist class \mathcal{K}_{∞} fcns. α_1 and α_2 satisfying (8).
- $\dot{V} = -x_1^2 x_1^4 x_2^2 + (x_1 + 2x_2)M\cos\omega t \le -\|x\|_2^2 x_1^4 + M\sqrt{5}\|x\|_2$
 - where $(x_1 + 2x_2) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \sqrt{5} ||x||_2$
- ▶ We want to use part of $-\|x\|_2^2$ to dominate $M\sqrt{5}\|x\|_2$ for large $\|x\|$
- $\dot{V} < -(1-\theta)\|x\|_2^2 x_1^4 \theta\|x\|_2^2 + M\sqrt{5}\|x\|_2$, for $0 < \theta < 1$
- ► Then $\dot{V} \le -(1-\theta)\|x\|_2^2 x_1^4 \ \forall \ \|x\|_2 \ge \frac{M\sqrt{5}}{\theta} \rightsquigarrow \mu = M\sqrt{5}/\theta$

Example for Ultimate Boundedness

- ▶ ∴ the solutions are u.u.b.
- Next step: finding ultimate bound:

$$V(x) \ge x^T P x \ge \lambda_{min}(P) ||x||_2^2$$
$$V(x) \le x^T P x + \frac{1}{2} ||x||_2^4 \le \lambda_{max}(P) ||x||_2^2 + \frac{1}{2} ||x||_2^4$$

- \bullet $\alpha_1(r) = \lambda_{min}(P)r^2$ and $\alpha_2(r) = \lambda_{max}(P)r^2 + \frac{1}{2}r^4$
- ... ultimate bound: $b = \alpha_1^{-1}(\alpha_2(\mu)) = \sqrt{\lambda_{max}(P)\mu^2 + \mu^4/2\lambda_{min}(P)}$