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Introduction

I Learning can be considered as a process of forming associations
between related patterns.

I For example visual image may be associated with another visual
image, or the fragrance of fresh-mown grass may be associated with a
visual image of feeling

I Memorization of a pattern could be associating the pattern with itself

I Therefore, in such networks the input pattern cause an output pattern
which may be similar to the input pattern or related to that.

I An important characteristic of the association is that an input
stimulus which is similar to the stimulus for the association will invoke
the associated response pattern.
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I For example, if we learn to read music, so that we associate with
fingering on a stringed instrument, we do not need to see the same
form of musical note we originally learned

I If the note is larger, or handwritten , we still can recognize and play.
I So after learning it is expected to make a good guess and provide

appropriate response

I Another example, ability to recognize a person either in person or
from a photo even his/her appearance has been changed

I This is relatively difficult to program by a traditional computer algs.

I Associative memories belong to class of NN that learn according to a
certain recording algs.

I They require information a priori and their connectivity matrices
(weights) most often need to be formed in advance

I Writing into memory produces changes in the neural interconnections

I Reading of the stored info from memory named recall, is a
transformation of input signals by the network
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I Not usable addressing schemes exits in an associative memory

I All memory info is spatially distributed throughout the network

I The biological memory operates the same
I Associative memory enables a parallel search within a stored data

I The purpose of search is to output one or all stored items that matches
the search argument and retrieve it entirely or partially

I The fig. depicts a block diagram of an associative memory.

I The transformation is v = M[x ], M: a nonlinear matrix operator
which has different meaning for each of memory models.
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I For dynamic memories, M is time variable.
I v is available at output at a later time than the input has been applied

I For a given memory model, M is usually expressed in terms of given
prototype vectors that should be stored

I The algs of finding M are called recording or storage algs.

I The mapping in v = M[x ] preformed on x is called a retrieval.

I Retrieval may provide a desired an undesired solution prototype

I To have efficient retrieval some mechanisms should be developed

I Assume there are p stored pairs: x (i) → v (i) for i = 1, ..., p

I If x (i) 6= v (i) for i = 1, ..., p it is called heteroassociative memory

I If x (i) = v (i) for i = 1, ..., p it is called autoassociative memory

I Obviously the mapping of a vector x (i) into itself cannot be of any
significance

I A more realistic application of autoassociative memory is recovery of
undistorted prototype in response to a distorted prototype vector.
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I Associative memory which uses NN concepts may resemble digital
computer memory

I Let us compare their difference:
I Digital memory is address-addressable memory:

I data have input and output lines
I a word line access the entire row of binary cells containing word data

bits.
I activation takes place when the binary address is decoded by an address

decoder.
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I Associative memory is content addressable memory
I The words are accessed based on the content of the key vector
I When the network is excited by a portion of the stored date, the

efficient response of autoassociative memory is the completed x (i)

vector
I In hetroassociative memory the content of x (i) provides the stored

vector v (i)

I There is no storage for prototype x (i) or v (i) at any location of network
I The entire mapping is distributed in the network.
I The mapping is implemented through dense connections, feedback

or/and a nonlinear thresholding operation

I Associative network memory can be
I Static: networks recall an output response after an input has been

applied in one feedforward pass, and, theoretically, without delay. They
were termed instantaneous

I Dynamic: memory networks produce recall as a result of output/input
feedback interaction, which requires time.
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I Static memory
I Implement a feedforward operation of mapping without a feedback, or

recursive update, operation.
I They are sometimes called non-recurrent
I The mapping can be expressed as

vk = M1[xk ]

where k : index of recursion, M1 operator symbol

I Dynamic memory
I exhibit dynamic evolution in the sense that they converge to an

equilibrium state according to the recursive formula

vk+1 = M2[xk , vk ]

I This is a nonlinear difference equation.
I Hopfield model is an example of a recurrent network for which the input

x0 is used to initialize v0, i.e., x0 = v0, and the input is then removed.
I So the formula will be simplified to

vk+1 = M2[vk ]
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Linear Associator

I Traditional associative memories are of
the ff and instantaneous.

I Their task: to learn the association
within p vector pairs {x (i), v (i)}, for
i = 1, 2, ..., p.

I For the linear associative memory, an
input pattern x is mapped to the
output v by simply performing the
matrix multiplication operation v =
Wx , x ∈ Rn, v ∈ Rm, W ∈ Rm×n

I ∴ The general nonlinear mapping
relationship v = M1[Wx ] has been
simplified to the linear form
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I Objective: finding the matrix W to allow efficient storage of data
within the memory

I Given the pairs of vectors {s(i), f (i)}, for i = 1, 2, ..., p.
I We are looking for the mapping f (i) + ηi = Ws(i) s.t. the length of the

noise term vector, ηi is minimized.
I Let us consider Hebbian learning rule

w ′
ij = wij + fi sj

where fi , sj are ith and jth elements of vector f and s respectively and
wij is the weight between them before update.

I To generalize the formula: W ′ = W + fsT, where W : the weight
matrix before update.

I Initializing the weights in their unbiased position W0 = 0 W ′ = fsT

I Since there are p pairs of patterns, the superposition of weights:
W ′ =

∑p
i=1 f(i)s(i)T

I The memory weight matrix W ′ above has the form of a
cross-correlation matrix.
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I Let us check whether or not the weight matrix W provides a
noise-free mapping?

I Consider one of the stored vectors, s(j) as key vector at the input:

v = (

p∑
i=1

f(i)s(i)T)s(j)

= f(1)s(1)Ts(j) + . . .+ f(j)s(j)Ts(j) + . . .+ f(p)s(p)Ts(j)

I For ideal mapping, s(j) → f(j), we should have
v = f(j)

I ∴ The orthogonal set of p input vectors {s(i), s(2), . . . , s(p)} ensures
perfect mapping {

s(i)Ts(j) = 0 i 6= j

s(i)Ts(j) = 1 i = j

I This is a strict condition and may not always hold for all sets of
vectors.
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