

Nonlinear Control Lecture 5: Stability Analysis II

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

김 말에 귀 말에

Lyapunov Theorem for Nonautonomous Systems

Linear Time-Varying Systems and Linearization Linear Time-Varying Systems Linearization for Nonautonomous Systems

Barbalat's Lemma and Lyapunov-Like Lemma Asymptotic Properties of Functions and Their Derivatives: Barbalat's Lemma

Boundedness and Ultimate Boundedness

Consider the nonautonomous system

$$\dot{x} = f(t, x) \tag{1}$$

不良 とう きょう ちょうし

where $f:[0,\infty) \times D \longrightarrow \mathbb{R}^n$ is p.c. in t and locally Lip. in x on $[0,\infty) \times D$, and $D \subset \mathbb{R}^n$ is a domain containing the origin x = 0.

• The origin is an **Equ. pt.** of (1), at t = 0 if

$$f(t,0)=0, \quad \forall \ t \ \geq 0$$

A nonzero Equ. pt. or more generally nonzero solution can be transformed to x = 0 by proper coordinate transformation.

• Suppose $x_d(\tau)$ is a solution of the system

$$\frac{dy}{d\tau} = g(\tau, y)$$

defined for all $\tau \geq a$.

The change of variables x = y − x_d(τ); t = τ − a transform the original system into

$$\dot{x} = g(\tau, y) - \dot{x}_d(\tau) = g(t + a, x + x_d(t + a)) - \dot{x}_d(\tau) \triangleq f(t, x)$$

- Note that $\dot{x}_d(t+a) = g(t+a, x_d(t+a)), \quad \forall t \ge 0$
- Hence, x = 0 is an **Equ. pt.** of the transformed system
- ▶ If $x_d(t)$ is not constant, the transformed system is always nonautonomous even when the original system is autonomous, i.e. when $g(\tau, y) = g(y)$.

▶ The origin x = 0 is a stable Equ. pt. of $\dot{x} = f(t, x)$ if for each $\epsilon > 0$ and any $t_0 \ge 0$, $\exists \delta = \delta(t_0, \epsilon) \ge 0$ s.t.

$$\|x(t_0)\| < \delta \implies \|x(t)\| < \epsilon \quad \forall t \ge t_0 \tag{2}$$

• Note that $\delta = \delta(t_0, \epsilon)$ for any $t_0 \ge 0$.

• Example:

$$\begin{aligned} \dot{x} &= (6t \ sint \ -2t)x \implies \\ x(t) &= x(t_0)exp\left[\int_{t_0}^t (6\tau \ sin\tau \ -2\tau)d\tau\right] \\ &= x(t_0)exp\left[6sint \ -6t \ cost \ -t^2 \ -6sint_0 \ +6t_0 \ cost_0 \ +t_0^2\right] \end{aligned}$$

► For any t_0 , the term $-t^2$ is dominant \implies the exp. term is bounded $\forall t \ge t_0 \implies |x(t)| < |x(t_0)|c(t_0) \forall t \ge t_0$

- ▶ **Definition:** The Equ. pt. x = 0 of $\dot{x} = f(t, x)$ is
 - 1. Uniformly stable if, for each $\epsilon < 0$, there is a $\delta = \delta(\epsilon) > 0$ independent of t_0 s.t.

$$\|x(t_0)\| < \delta \implies \|x(t)\| < \epsilon \quad \forall t \ge t_0$$

- 2. Asymptotically stable if it is stable and there is a positive constant $c = c(t_0)$ such that $x(t) \to 0$ as $t \to \infty$ for all $||x(t_0)|| < c$.
- 3. Uniformly asymptotically stable if it is uniformly stable and there is a positive constant c, independent of t_0 s.t. for all $||x(t_0)|| < c$, $x(t) \rightarrow 0$ as $t \rightarrow \infty$, uniformly in t_0 ; that is for each $\eta > 0$, there is $T = T(\eta) > 0$ s.t.

$$||x(t)|| \le \eta, \ \forall t \ge t_0 + T(\eta), \ \forall ||x(t_0)|| < c$$

4. Globally uniformly asymptotically stable if it is uniformly stable, $\delta(\epsilon)$ can be chosen to satisfy $\lim_{\epsilon \to \infty} \delta(\epsilon) = \infty$, and for each pair of positive numbers η and c, there is $T = T(\eta, c) > 0$ s.t. $\|x(t)\| \le \eta, \quad \forall t \ge t_0 + T(\eta, c), \quad \forall \|x(t_0)\| < c$

- Uniform properties have some desirable ability to withstand the disturbances.
- since the behavior of autonomous systems are independent of initial time t₀, all the stability proprieties for autonomous systems are uniform

► Example:
$$\dot{x} = -\frac{x}{1+t} \implies$$

 $x(t) = x(t_0)exp\left[\int_{t_0}^t \frac{-1}{1+\tau}d\tau\right] = x(t_0)\frac{1+t_0}{1+t}$

- Since $|x(t)| \le |x(t_0)| \quad \forall t \ge t_0 \implies x = 0$ is stable
- It follows that $x(t) \longrightarrow 0$ as $t \longrightarrow \infty \implies x = 0$ is **a.s.**
- However, the convergence of x(t) to zero is not uniform w.r.t. t_0
- ► since T is not independent of t₀, i.e., larger t₀ requires more time to get close enough to the origin.

イロト イポト イヨト イヨト

- ► Unlike autonomous systems, the solution of non-autonomous systems starting at x(t₀) = x₀ depends on both t and t₀.
- Stability definition shall be refined s.t. they hold uniformly in t_0 .
- Two special classes of comparison functions known as class K and class KL are very useful in such definitions.
- ▶ Definition: A continuous function α : [0, a) → [0, ∞) is said to belong to class K if it is strictly increasing and α(0) = 0. It is said to belong to class K_∞ if a = ∞ and α(r) → ∞ as r → ∞.
- Definition: A continuous function β : [0, a) × [0,∞) → [0,∞) is said to belong to class KL if, for each fixed s, the mapping β(r, s) belong to class K w.r.t. r and, for each fixed r, the mapping β(r, s) is decreasing w.r.t. s and β(r, s) → 0 as s → ∞.

イロト 不得 とくき とくき とうき

Examples:

- The function $\alpha(r) = tan^{-1}(r)$ belongs to class \mathcal{K} but not to class \mathcal{K}_{∞} .
- The function $\alpha(r) = r^c$, c > 0 belongs to class \mathcal{K}_{∞} .
- The function $\beta(r, s) = r^c e^{-s}$, c > 0 belong to class \mathcal{KL} .

- 4 戸下 4 戸下

- The mentioned definitions can be stated by using class K and class KL functions:
- ▶ Lemma: The Equ. pt. x = 0 of $\dot{x} = f(t, x)$ is
 - 1. Uniformly stable iff there exist a class \mathcal{K} function α and a positive constant c, independent of t_0 s.t.

$$\|x(t)\| \le \alpha(\|x(t_0)\|), \quad \forall t \ge t_0 \ge 0, \quad \forall \|x(t_0)\| < c$$

2. Uniformly asymptotically stable iff there exists a class \mathcal{KL} function β and a positive constant c, independent of t_0 s.t.

$$\|x(t)\| \le \beta(\|x(t_0)\|, t-t_0), \quad \forall t \ge t_0 \ge 0, \quad \forall \|x(t_0)\| < c$$
 (3)

3. globally uniformly asymptotically stable iff equation (3) is satisfied for any initial state $x(t_0)$.

イロト イポト イヨト イヨト

- ▶ A special class of uniform asymptotic stability arises when the class \mathcal{KL} function β takes an exponential form, $\beta(r, s) = kre^{-\lambda s}$.

$$\|x(t)\| \le k \|x(t_0)\| e^{-\lambda(t-t_0)}, \quad \forall \|x(t_0)\| < c$$
 (4)

- ► and is globally exponentially stable if equation (4) is satisfied for any initial state x(t₀).
- Lyapunov theorem for autonomous system can be extended to nonautonomous systems, besides more mathematical complexity
- The extension involving uniform stability and uniform asymptotic stability is considered.
- Note that: the powerful Lasalle's theorem is not applicable for nonautonomous systems. Instead, we will introduce Balbalet's lemma.

- A function V(t,x) is said to be **positive semi-definite** if $V(t,x) \ge 0$
- ► A function V(t, x) satisfying $W_1(x) \leq V(t, x)$ where $W_1(x)$ is a continuous positive definite function, is said to be **positive definite**
- A p.d. function V(t,x) is said to be radially unbounded if $W_1(x)$ is radially unbounded.
- ► A function V(t,x) satisfying V(t,x) ≤ W₂(x) where W₂(x) is a continuous positive definite function, is said to be decrescent
- ► A function V(t,x) is said to be negative semi-definite if -V(t,x) is p.s.d.
- A function V(t,x) is said to be **negative definite** if -V(t,x) is p.d.

イロン スピン スヨン スヨン 三日

Lyapunov Theorem for Nonautonomous Systems

► Theorem:

- Stability: Let x = 0 be an Equ. pt. for x̂ = f(t,x) and D ∈ Rⁿ be a domain containing x = 0. Let V : [0,∞) × D → R be a continuously differentiable function s.t.:
 - 1. *V* is p.d. $\equiv V(x,t) \ge \alpha(||x||), \ \alpha$ is class \mathcal{K}

2.
$$\dot{V} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x}f(t,x)$$
 is n.s.d

then x = 0 is **stable**.

► Uniform Stability: If, furthermore

3. V is decrescent $\equiv V(x, t) \leq \beta(||x||), \beta$ is class K

then the origin is **uniformly stable**.

Uniform Asymptotic Stability: If, furthermore conditions 2, 3 is strengthened by

$$\dot{V} \leq -W_3(x)$$

where W_3 is a p.d. fcn. In other word, V is n.d., then the origin is uniformly asymptotically stable

Lyapunov Theorem for Nonautonomous Systems

- ► **Theorem** (continued):
 - ► Global Uniform Asymptotic Stability: If, the conditions above are satisfied globally $\forall x \in \mathbb{R}^n$, and
 - 4. *V* is radially unbounded $\equiv \alpha$ is class \mathcal{K}_{∞}

then the origin is globally uniformly asymptotically stable.

• **Exponential Stability:** If, the conditions above are satisfied with $w_i(r) = k_i r^c$, i = 1, ..., 3 for some positive constants $k_i \& c$:

$$\begin{split} k_1 \|x\|^c &\leq V(t,x) \leq k_2 \|x\|^c \\ \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x) \leq -k_3 \|x\|^c, \ \forall x \in D, \end{split}$$

then x = 0 is exponentially stable

Moreover, if the assumptions hold globally, then the origin is globally exponentially stable

・ロト ・回ト ・ヨト ・ヨト

• **Example:** Consider $\dot{x} = -[1 + g(t)]x^3$

where g(t) is cont. and $g(t) \ge 0$ for all $t \ge 0$.

• Let $V(x) = x^2/2$, then

$$\dot{V} = - \left[1 + g(t) \right] x^4 \le -x^4, \ \forall \ x \ \in \ R \ \& \ t \ \ge \ 0$$

- All assumptions of the theorem are satisfied with W₁(x) = W₂(x) = V(x) and W₃(x) = x⁴. Hence, the origin is g.u.a.s.
- ► Example: Consider $\dot{x}_1 = -x_1 g(t)x_2$ $\dot{x}_2 = x_1 - x_2$

where g(t) is cont. diff, and satisfies $0 \leq g(t) \leq k$, and $\dot{g}(t) \leq g(t)$, $\forall t \geq 0$ \blacktriangleright Let $V(t,x) = x_1^2 + [1+g(t)]x_2^2$

イロト 不同下 イヨト イヨト

► Example (Cont'd) $x_1^2 + x_2^2 \le V(t, x) \le x_1^2 + (1+k)x_2^2, \quad \forall x \in R^2$

• V(t,x) is p.d., decrescent, and radially unbounded.

$$\dot{V} = -2x_1^2 + 2x_1x_2 - [2 + 2g(t) - \dot{g}(t)]x_2^2$$

• We have $2 + 2g(t) - \dot{g}(t) \ge 2 + 2g(t) - g(t) \ge 2$. Then,

$$\dot{V} \leq -2x_1^2 + 2x_1x_2 - 2x_2^2 = -\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^T \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \triangleq -x^T Q x$$

where Q is p.d. $\implies \dot{V}(t,x)$ is n.d.

- ► All assumptions of the theorem are satisfied globally with p.d. quadratic fcns W₁, W₂, and W₃.
- Recall: for a quadratic fcn x^TPx λ_{min}(P)||x||² ≤ x^TPx ≤ λ_{max}(P)||x||² The conditions of exponential stability are satisfied with c = 2,
 ∴ origin is g.e.s.

Example: Importance of decrescence condition

• Consider
$$\dot{x}(t) = \frac{\dot{g}(t)}{g(t)}x$$

- g(t) is cont. diff fcn., coincides with e^{-t/2} except around some peaks where it reaches 1. s.t.: ∫₀[∞] g²(r)dr < ∫₀[∞] e^{-r}dr + ∑_{n=1}[∞] 1/2ⁿ = 2

 Let V(x, t) = x²/g²(t)[3 - ∫₀^t g²(r)dr] → V is p.d (V(x, t) > x²)

 V = -x² is n.d.
 But x(t) = g(t)/g(t_0) x(t_0)
- ▶ ∴ origin is not u.a.s.

Linear Time-Varying Systems $\dot{x} = A(t)x$

- ► The sol. is the so called state transition matrix φ(t, t₀), i.e., x(t) = φ(t, t₀)x(t₀)
- ▶ **Theorem:** The Equ. pt. x = 0 is **g.u.a.s** iff the state transition matrix satisfies $\|\phi(t, t_0)\| \le ke^{-\gamma(t-t_0)} \forall t \ge t_0 > 0$ for some positive const. $k\&\gamma$
- **u.a.s.** of x = 0 is equivalent to **e.s.** for linear systems.
- ► Tools/intutions of TI systems are **no longer valid** for TV systems.
- **Example:** $\ddot{x} + c(t)\dot{x} + k_0x = 0$

A mass-spring-damper system with t.v. damper $c(t) \ge 0$.

- origin is an Equ. pt. of the system
- Physical intuition may suggest that the origin is a.s. as long as the damping c(t) remains strictly positive (implying a constant dissipation of energy) as is for autonomous mass-spring-damper systems.

- Example (cont'd)
 - HOWEVER, this is not necessarily true:

$$\ddot{x} + (2 + e^t)\dot{x} + k_0x = 0$$

- The sol. for $x(0) = 2, \dot{x}(0) = -1$ is $x(t) = 1 + e^{-t}$ which approaches to x = 1!
- **Example:** $\begin{bmatrix} -1+1.5\cos^2 t & 1-1.5sint \ cost \\ -1-1.5sint \ cost & -1+1.5sin^2 t \end{bmatrix}$
 - For all t, λ{A(t)} = −.25 ± j.25√7 ⇒ λ₁&λ₂ are independent of t & lie in LHP.
 - HOWEVER, x = 0 is unstable

$$\phi(t,0) = \begin{bmatrix} e^{.5t} \cos t & e^{-t} \sin t \\ -e^{.5t} \sin t & e^{-t} \cos t \end{bmatrix}$$

- Important: For linear time-varying systems, eigenvalues of A(t) cannot be used as a measure of stability.
- ► A simple result: If all eigenvalues of the symmetric matrix A(t) + A^T(t) (all of which are real) remain strictly in LHP, then the LTV system is a.s:

 $\exists \lambda > 0, \ \forall i, \forall t \geq 0, \ \lambda_i \{A(t) + A^T(t)\} \leq -\lambda$

• Consider the Lyap. fcn candidate $V = x^T x$:

$$\dot{V} = x^T \dot{x} + \dot{x}^T x = x^T (A(t) + A^T(t)) x \le -\lambda x^T x = -\lambda V$$

hence, $\forall t \geq 0$, $0 \leq x^T x = V(t) \leq V(0)e^{-\lambda t}$

► x tends to zero exponentially. Only a sufficient condition, though

イロト 不得下 イヨト イヨト 二日

► Theorem: Let x = 0 be a e.s. Equ. pt. of x = A(t)x. Suppose, A(t) is cont. & bounded. Let Q(t) be a cont., bounded, p.d. and symmetric matrix, i.e 0 < c₃I ≤ Q(t) ≤ c₄I, ∀ t ≥ 0. Then, there exists a cont. diff., bounded, symmetric, p.d. matrix P(t) satisfying

$$\dot{P}(t) = -(A^T(t)P(t) + P(t)A(t) + Q(t))$$

Hence, $V(t,x) = x^T P(t)x$ is a Lyap. fcn for the system satisfying e.s. theorem

- ► P(t) is symmetric, bounded, p.d. matrix , i.e. $0 < c_1 I \le P(t) \le c_2 I, \forall t \ge 0$
- $c_1 \|x\|^2 \le V(t,x) \le c_2 \|x\|^2$
- $\dot{V}(t,x) = x^T \left[\dot{P}(t) + P(t)A(t) + A^T(t)P(t) \right] x = -x^T Q(t)x \le -c_3 \|x\|^2$
- ► The conditions of exponential stability are satisfied with c = 2→, the origin is g.e.s.

イロト 不得 トイヨト イヨト

- ► As a special case when A(t) = A, then $\phi(\tau, t) = e^{(\tau-t)A}$ which satisfies $\|\phi(t, t_0)\| \leq e^{-\gamma(t-t_0)}$ when A is a stable matrix.
- Choosing $Q = Q^T > 0$, then P(t) is given by

$$P = \int_t^\infty e^{(\tau - t)A^T} Q e^{(\tau - t)A} d\tau = \int_0^\infty e^{A^T s} Q e^{As} ds$$

independent of t and is a solution to the Lyap. equation.

(本部) (本語) (本語)

Linearization for Nonautonomous Systems

Consider ẋ = f(t, x) where f : [0,∞) × D → Rⁿ is cont. diff. and D = {x ∈ Rⁿ | ||x|| < r}. Let x = 0 be an Equ. pt. Also, let the Jacobian matrix be bounded and Lip. on D uniformly in t, i.e.

$$\begin{aligned} \|\frac{\partial f}{\partial x}(t,x)\| &\leq k \ \forall \ x \in D, \ \forall \ t \geq 0 \\ \|\frac{\partial f}{\partial x}(t,x_1) - \frac{\partial f}{\partial x}(t,x_2)\| &\leq L \|x_1 - x_2\| \ \forall \ x_1,x_2 \in D, \ \forall \ t \geq 0 \end{aligned}$$

Let $A(t) = \frac{\partial f}{\partial x}(t,x)|_{x=0}$. Then, x = 0 is e.s. for the nonlinear system if it is an e.s. Equ. pt. for the linear system $\dot{x} = A(t)x$.

▲圖▶ ▲注▶ ▲注▶

- ► Now, exponential stability of the linearization is a necessary and sufficient condition for e.s. of x = 0
- ▶ **Theorem:** Let x = 0 be an Equ. pt. of $\dot{x} = f(t, x)$ with conditions as above. Let $A(t) = \frac{\partial f(t,x)}{\partial x}\Big|_{x=0}$. Then, x = 0 is an **e.s.** Equ. pt. for the nonlinear system **iff** it is an **e.s.** Equ. pt. for the linear system $\dot{x} = A(t)x$.
- ▶ For autonomous systems e.s. condition is satisfied iff A is Hurwitz.
- Example:

$$\dot{x} = -x^3$$

- Recall that x = 0 is **a.s.**
- However, linearization results in $\dot{x} = 0$ whose A is not Hurwitz.
- Using the above theorem, we conclude that x = 0 is not exponentially stable for nonlinear system.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Summary

- Lyapunov Theorem for Nonautonomous Systems $\dot{x} = f(x, t)$:
 - ▶ Stability: Let x = 0 be an Equ. pt. and $D \in R^n$ be a domain containing x = 0. Let $V : [0, \infty) \times D \longrightarrow R$ be a continuously differentiable function s.t.: V is p.d., and V is n.s.d
 - Uniform Stability: If, furthermore V is decrescent
 - Uniform Asymptotic Stability: If, furthermore V is n.d.
 - ► Global Uniform Asymptotic Stability: If, the conditions above are satisfied globally $\forall x \in \mathbb{R}^n$, and V is radially unbounded
 - **Exponential Stability:** If for some positive constants $k_i \& c$:

$$\begin{split} k_1 \|x\|^c &\leq V(t,x) \leq k_2 \|x\|^c \\ \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x) \leq -k_3 \|x\|^c, \ \forall x \in D, \end{split}$$

then x = 0 is **exponentially stable**

Moreover, if the assumptions hold globally, then the origin is globally exponentially stable

Summary

- Linear Time-Varying Systems $\dot{x} = A(t)x$
 - ▶ **Theorem:** The Equ. pt. x = 0 is **g.u.a.s** iff the state transition matrix satisfies $\|\phi(t, t_0)\| \le ke^{-\gamma(t-t_0)} \forall t \ge t_0 > 0$ for some positive const. $k\&\gamma$
 - ► If all eigenvalues of the symmetric matrix A(t) + A^T(t) remain strictly in LHP, then the LTV system is a.s
 - ▶ for LTV systems, eigenvalues of A(t) alone cannot be used as a measure of stability.
 - ▶ **Theorem:** Let x = 0 be a **e.s.** Equ. pt. of $\dot{x} = A(t)x$. Suppose, A(t) is cont. & bounded. Let Q(t) be a cont., bounded, p.d. and symmetric matrix, i.e $0 < c_3 I \leq Q(t) \leq c_4 I$, $\forall t \geq 0$. Then, there exists a cont. diff., bounded, symmetric, p.d. matrix P(t) satisfying

$$\dot{P}(t) = -(A^T(t)P(t) + P(t)A(t) + Q(t))$$

Hence, $V(t,x) = x^T P(t)x$ is a Lyap. fcn for the system satisfying e.s. theorem

Barbalat's Lemma

- For autonomous systems, invariant set theorems are power tools to study asymptotic stability when \dot{V} is **n.s.d.**
- ► The invariant set theorem is not valid for nonautonomous systems.
- Hence, asymptotic stability of nonautonomous systems is generally more difficult than that of autonomous systems.
- An important result that remedy the situation: Barbalat's Lemma
- ► Asymptotic Properties of Functions and Their Derivatives:
- For diff. fcn f of time t, always keep in mond the following three facts! 1. $\dot{f} \rightarrow 0 \Rightarrow f$ converges
 - The fact that $f \longrightarrow 0$ does not imply f(t) has a limit as $t \longrightarrow \infty$.
 - Example: $f(t) = sin(ln \ t) \rightsquigarrow \dot{f} = \frac{cos(ln \ t)}{t} \longrightarrow 0$ as $t \longrightarrow \infty$
 - However, the fcn f(t) keeps oscillating (slower and slower).
 - **Example:** For an unbounded function $f(t) = \sqrt{t} \sin(\ln t), \iff \dot{f} = \frac{\sin(\ln t)}{2\sqrt{t}} + \frac{\cos(\ln t)}{\sqrt{t}} \longrightarrow 0 \text{ as } t \longrightarrow \infty$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

Asymptotic Properties of Functions and Their Derivatives:

2. *f* converges $\Rightarrow \dot{f} \longrightarrow 0$

- The fact that f(t) has a finite limit at $t \rightarrow \infty$ does not imply that $\dot{f} \rightarrow 0$.
- ▶ **Example:** $f(t) = e^{-t} \sin(e^{2t}) \longrightarrow 0$ as $t \longrightarrow \infty$
- while its derivative $\dot{f} = -e^{-t} \sin(e^{2t}) + 2e^t \cos(e^{2t})$ is unbounded.
- 3. If f is lower bounded and decreasing $(\dot{f} \leq 0)$, then it converges to a limit.
 - ► However, it does not say whether the slope of the curve will diminish or not.

Given that a fcn tends towards a finite limit, what additional property guarantees that the derivatives converges to zero?

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

Barbalat's Lemma

- ▶ **Barbalat's Lemma:** If the differentiable fcn has a finite limit as $t \rightarrow \infty$, and if f is uniformly cont., then $f \rightarrow 0$ as $t \rightarrow \infty$.
 - proved by contradiction
- A function g(t) is **continuous** on $[0,\infty)$ if

• A function g(t) is **uniformly continuous** on $[0,\infty)$ if

$$orall R > 0, \ \exists \ \eta(R) > 0, \ \forall \ t_1 \ \ge \ 0, \ \forall \ t \ \ge \ 0, \ |t - t_1| < \eta \implies |g(t) - g(t_1)| \ < R$$

i.e. an η can be found independent of specific point t_1 .

・ 同 ト ・ ヨ ト ・ ヨ ト

Barbalat's Lemma

- ► A sufficient condition for a diff. fcn. to be uniformly continuous is that its derivative be bounded
 - This can be seen from Mean-Value Theorem:

 $\forall t, \forall t_1, \exists t_2 \text{ (between } t \text{ and } t_1 \text{) s.t. } g(t) - g(t_1) = \dot{g}(t_2)(t - t_1)$

- if $\dot{g} \leq R_1 \forall t \geq 0$, let $\eta = \frac{R}{R_1}$ independent of t_1 to verify the definition above.
- ▶ ... An immediate and practical corollary of Barbalat's lemma: If the differentiable fcn f(t) has a finite limit as $t \longrightarrow \infty$ and \ddot{f} exists and is bounded, then $\dot{f} \longrightarrow 0$ as $t \longrightarrow \infty$

(日) (四) (종) (종) (종)

Using Barbalat's lemma for Stability Analysis

► Lyapunov-Like Lemma: If a scaler function V(t, x) satisfies the following conditions

- 1. V(t,x) is lower bounded
- 2. V(t,x) is negative semi-definite
- 3. $\dot{V}(t,x)$ is uniformly continuous in time

then $\dot{V}(t,x) \longrightarrow 0$ as $t \longrightarrow \infty$.

Example:

• Consider a simple adaptive control systems:

$$egin{array}{rcl} \dot{e}&=&-e+ heta w(t)\ \dot{ heta}&=&-ew(t) \end{array}$$

where e is the tracking error, θ is the parameter error, and w(t) is a bounded continuous fcn.

Example (Cont'd)

Consider the lower bounded fcn:

$$V = e^2 + \theta^2$$

$$\dot{V} = 2e(-e + \theta w) + 2\theta(-ew(t)) = -2e^2 \leq 0$$

• $\therefore V(t) \geq V(0)$, therefore, *e* and θ are bounded.

- Invariant set theorem cannot be used to conclude the convergence of e, since the dynamic is nonautonomous.
- ► To use Barbalat's lemma, check the uniform continuity of \dot{V} .

$$\ddot{V} = -4e(-e+ heta w)$$

- \ddot{V} is bounded, since w is bounded by assumption and e and θ are shown to be bounded $\rightsquigarrow \dot{V}$ is uniformly continuous
- Applying Barbalat's lemma: $\dot{V} = 0 \implies e \longrightarrow 0$ as $t \longrightarrow \infty$.
- ► Important: Although $e \rightarrow 0$, the system is not **a.s.** since θ is only shown to be bounded. Farzaneh Abdollahi Nonlinear Control Lecture 5 32/41

Boundedness and Ultimate Boundedness

- Lyapunov analysis can be used to show boundedness of the solution even when there is no Equ. pt.
- **Example:**

$$\dot{x} = -x + \delta \ sint, \ x(t_0) = a, \ a > \delta > 0$$

which has no Equ. pt and

$$\begin{aligned} x(t) &= e^{-(t-t_0)}a + \delta \int_{t_0}^t e^{-(t-\tau)} \sin\tau d\tau \\ x(t) &\leq e^{-(t-t_0)}a + \delta \int_{t_0}^t e^{-(t-\tau)}d\tau \\ &= e^{-(t-t_0)}a + \delta \left[1 - e^{-(t-t_0)}\right] \leq a, \quad \forall \ t \geq t_0 \end{aligned}$$

- The solution is bounded for all $t \ge t_0$, uniformly in t_0 .
- The bound is conservative due to the exponentially decaying terms.

Example Cont'd

► Pick any number *b* s.t.
$$\delta < b < a$$
, it can be seen that $|x(t)| \le b$, $\delta \forall t \ge t_0 + ln\left(\frac{a-\delta}{b-\delta}\right)$

- *b* is also independent of t_0
 - The solution is said to be uniformly ultimately bounded
 - b is called the ultimate bound
- ► The same properties can be obtained via Lyap. analysis. Let $V = x^2/2$ $\dot{V} = x\dot{x} = -x^2 + x\delta$ sint $\leq -x^2 + \delta |x|$
- \dot{V} is not **n.d.**, bc. near the origin, positive linear term $\delta |x|$ is dominant.
- However, \dot{V} is negative outside the set $\{|x| \leq \delta\}$.
- Choose, c > δ²/2, solutions starting in the set {V(x) < c} will remain there in for all future time since V is negative on the boundary V = c.
- ► Hence, the solution is **ultimately bounded**.

Boundedness and Ultimate Boundedness

- Definition: The solutions of ẋ = f(t, x) where f : (0,∞) × D → Rⁿ is piecewise continuous in t and locally Lipschitz in x on (0,∞) × D, and D ∈ Rⁿ is a domain that contains the origin are
 - **uniformly bounded** if there exist a positive constant c, independent of $t_0 \ge 0$, and for every $a \in (0, c)$, there is $\beta = \beta(a) > 0$, independent of t_0 , s.t.

$$\|x(t_0)\| \leq a \implies \|x(t)\| \leq \beta, \ \forall \ t \geq t_0 \tag{5}$$

• **uniformly ultimately bounded** if there exist positive constants *b* and *c*, independent of $t_0 \ge 0$, and for every $a \in (0, c)$, there is T = T(a, b) > 0, independent of t_0 , s.t.

$$\|x(t_0)\| \leq a \implies \|x(t)\| \leq b, \forall t \geq t_0 + T$$
(6)

ヘロト 人間 ト 人注 ト 人注 トー

- globally uniformly bounded if (5) holds for arbitrary large a.
- **globally uniformly ultimately bounded** if (6) holds for arbitrary large *a*.

How to Find Ultimate Bound?

 In many problems, negative definiteness of V is guaranteed by using norm inequalities, i.e.:

$$\dot{V}(t,x) \leq -W_3(x), \quad \forall \ \mu \leq \|x\| \leq r, \ \forall \ t \geq t_0$$
 (7)

- If r is sufficiently larger than μ, then c and ε can be found s.t. the set
 Λ = {ε ≤ V ≤ c} is nonempty and contained in {μ ≤ ||x|| ≤ r}.
- If the Lyap. fcn satisfy: $\alpha_1(||x||) \leq V(t,x) \leq \alpha_2(||x||)$ for some class \mathcal{K} functions α_1 and α_2 .
- We are looking for a bound on ||x|| based on α₁ and α₂ s.t. satisfies (7).

How to Find Ultimate Bound?

- We have: $V(x) \leq c \implies \alpha_1(||x||) \leq c \iff ||x|| \leq \alpha_1^{-1}(c)$ $\therefore c = \alpha_1(r)$ ensures that $\Omega_c \subset B_r$.
- On the other hand we have:

$$\|x\| \leq \mu \implies V(x) \leq \alpha_2(\mu)$$

- ▶ Hence, taking $\epsilon = lpha_2(\mu)$ ensures that $B_\mu \ \subset \ \Omega_\epsilon$.
- To obtain $\epsilon < c$, we must have $\mu < \alpha_2^{-1}(\alpha_1(r))$.
- Hence, all trajectories starting in Ω_c enter Ω_e within a finite time T as discussed before.
- ► To obtain the ultimate bound on x(t), $V(x) \leq \epsilon \implies \alpha_1(||x||) \leq \epsilon \Leftrightarrow ||x|| \leq \alpha_1^{-1}(\epsilon)$
- ► Recall that $\epsilon = \alpha_2(\mu)$, hence: $x \in \Omega_\epsilon \implies ||x|| \le \alpha_1^{-1}(\alpha_2(\mu))$
 - \therefore The ultimate bound can be taken as $b = \alpha_1^{-1}(\alpha_2(\mu))$.

・ロト ・回ト ・ヨト ・ヨト

Ultimate Boundedness

Theorem: Let $D \in R^n$ be a domain containing the origin and

$$V: [0,\infty) \times D \longrightarrow R \text{ be a cont. diff. fcn s.t.} \\ \alpha_1(\|x\|) \leq V(t,x) \leq \alpha_2(\|x\|) \\ \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x) \leq -W_3(x), \ \forall \ \|x\| \geq \mu > 0$$
(9)

 $\forall t \geq 0 \text{ and } \forall x \text{ in } D, \text{ where } \alpha_1 \text{ and } \alpha_2 \text{ are class } \mathcal{K} \text{ fcns and } W_3(x) \text{ is a cont. p.d. fcn. Take } r > 0 \text{ s.t. } B_r \subset D \text{ and suppose that } \mu < \alpha_2^{-1}(\alpha_1(r))$

Then, there exists a class \mathcal{KL} for β and for every initial state $x(t_0)$ satisfying $||x(t_0)|| \le \alpha_2^{-1}(\alpha_1(r))$, there is $T \ge 0$ (dependent on $x(t_0)$ and μ s.t.) $||x(t)|| \le \beta(||x(t_0)||, t - t_0), \quad \forall \ t_0 \le t \le t_0 + T$ $||x(t)|| \le \alpha_1^{-1}(\alpha_2(\mu)) \quad \forall \ t \ge t_0 + T$

Ultimate Boundedness

- The inequalities of the theorem show that
 - x(t) is uniformly bounded for all $t \ge t_0$
 - uniformly ultimately bounded with the ultimate bound $\alpha_1^{-1}(\alpha_2(\mu))$.
 - ▶ The ultimate function is a class K fcn of μ → the smaller the value of μ , the smaller the ultimate bound
 - \blacktriangleright As $\mu ~\longrightarrow~$ 0, the ultimate bound approaches zero.
- The main application of this theorem arises in studying the stability of perturbed system.

- 4 戸下 4 戸下

Example for Ultimate Boundedness

$$\dot{x}_1 = x_2 \dot{x}_2 = -(1+x_1^2)x_1 - x_2 + M\cos\omega t$$

where M > 0

• Let
$$V(x) = x^T \begin{bmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} x + \frac{1}{2}x_1^4 = x^T P x + \frac{1}{2}x_1^4$$

▶ V(x) is p.d. and radially unbounded \rightsquigarrow there exist class \mathcal{K}_{∞} fcns. α_1 and α_2 satisfying (8).

►
$$\dot{V} = -x_1^2 - x_1^4 - x_2^2 + (x_1 + 2x_2)M\cos\omega t \le -\|x\|_2^2 - x_1^4 + M\sqrt{5}\|x\|_2$$

► where $(x_1 + 2x_2) = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \sqrt{5}\|x\|_2$

• We want to use part of $-\|x\|_2^2$ to dominate $M\sqrt{5}\|x\|_2$ for large $\|x\|$

•
$$\dot{V} \leq -(1- heta)\|x\|_2^2 - x_1^4 - heta\|x\|_2^2 + M\sqrt{5}\|x\|_2$$
, for $0 < heta < 1$

► Then
$$\dot{V} \leq -(1-\theta) \|x\|_2^2 - x_1^4 \quad \forall \quad \|x\|_2 \geq \frac{M\sqrt{5}}{\theta} \rightsquigarrow \mu = M\sqrt{5}/\theta$$

Example for Ultimate Boundedness

- ▶ ∴ the solutions are u.u.b.
- Next step: finding ultimate bound:

$$V(x) \ge x^T P x \ge \lambda_{min}(P) ||x||_2^2$$
$$V(x) \le x^T P x + \frac{1}{2} ||x||_2^4 \le \lambda_{max}(P) ||x||_2^2 + \frac{1}{2} ||x||_2^4$$

• $\alpha_1(r) = \lambda_{min}(P)r^2$ and $\alpha_2(r) = \lambda_{max}(P)r^2 + \frac{1}{2}r^4$

• : ultimate bound: $b = \alpha_1^{-1}(\alpha_2(\mu)) = \sqrt{\lambda_{max}(P)\mu^2 + \mu^4/2\lambda_{min}(P)}$

伺 ト イヨト イヨト