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Nonautonomous systems

I Consider the nonautonomous system

ẋ = f (t, x) (1)

where f : [0,∞)× D −→ Rn is p.c. in t and locally Lip. in x on
[0,∞)× D, and D ⊂ Rn is a domain containing the origin x = 0.

I The origin is an Equ. pt. of (1), at t = 0 if

f (t, 0) = 0, ∀ t ≥ 0

I A nonzero Equ. pt. or more generally nonzero solution can be
transformed to x = 0 by proper coordinate transformation.
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Nonautonomous Systems
I Suppose xd(τ) is a solution of the system

dy

dτ
= g(τ, y)

defined for all τ ≥ a.

I The change of variables x = y − xd(τ); t = τ − a transform the original
system into

ẋ = g(τ, y)− ẋd(τ) = g(t + a, x + xd(t + a))− ẋd(τ) , f (t, x)

I Note that ẋd(t + a) = g(t + a, xd(t + a)), ∀ t ≥ 0

I Hence, x = 0 is an Equ. pt. of the transformed system

I If xd(t) is not constant, the transformed system is always nonautonomous
even when the original system is autonomous, i.e. when g(τ, y) = g(y).

I Hence, a tackling problem is more difficult to solve.
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Nonautonomous Systems
I The origin x = 0 is a stable Equ. pt. of ẋ = f (t, x) if for each ε > 0 and

any t0 ≥ 0, ∃ δ = δ(t0, ε) ≥ 0 s.t.

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε ∀t ≥ t0 (2)

I Note that δ = δ(t0, ε) for any t0 ≥ 0.

I Example:

ẋ = (6t sint − 2t)x =⇒

x(t) = x(t0)exp

[∫ t

t0

(6τ sinτ − 2τ)dτ

]
= x(t0)exp

[
6sint − 6t cost − t2 − 6sint0 + 6t0 cost0 + t2

0

]
I For any t0, the term −t2 is dominant =⇒ the exp. term is bounded
∀ t ≥ t0 =⇒ |x(t)| < |x(t0)|c(t0) ∀ t ≥ t0
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Nonautonomous Systems
I Definition: The Equ. pt. x = 0 of ẋ = f (t, x) is

1. Uniformly stable if, for each ε < 0, there is a δ = δ(ε) > 0 independent of
t0 s.t.

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ε ∀t ≥ t0

2. Asymptotically stable if it is stable and there is a positive constant
c = c(t0) such that x(t)→ 0 as t →∞ for all ‖x(t0)‖ < c .

3. Uniformly asymptotically stable if it is uniformly stable and there is a
positive constant c , independent of t0 s.t. for all ‖x(t0)‖ < c , x(t) −→ 0 as
t −→∞, uniformly in t0; that is for each η > 0, there is T = T (η) > 0 s.t.

‖x(t)‖ ≤ η, ∀t ≥ t0 + T (η), ∀‖x(t0)‖ < c

4. Globally uniformly asymptotically stable if it is uniformly stable, δ(ε)
can be chosen to satisfy lim

ε−→∞
δ(ε) =∞, and for each pair of positive

numbers η and c , there is T = T (η, c) > 0 s.t.
‖x(t)‖ ≤ η, ∀t ≥ t0 + T (η, c), ∀‖x(t0)‖ < c
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Nonautonomous Systems
I Uniform properties have some desirable ability to withstand the

disturbances.

I since the behavior of autonomous systems are independent of initial time
t0, all the stability proprieties for autonomous systems are uniform

I Example: ẋ = − x

1 + t
=⇒

x(t) = x(t0)exp

[∫ t

t0

−1

1 + τ
dτ

]
= x(t0)

1 + t0
1 + t

I Since |x(t)| ≤ |x(t0)| ∀ t ≥ t0 =⇒ x = 0 is stable

I It follows that x(t) −→ 0 as t −→∞ =⇒ x = 0 is a.s.

I However, the convergence of x(t) to zero is not uniform w.r.t. t0
I since T is not independent of t0, i.e., larger t0 requires more time to get

close enough to the origin.
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I Unlike autonomous systems, the solution of non-autonomous systems
starting at x(t0) = x0 depends on both t and t0.

I Stability definition shall be refined s.t. they hold uniformly in t0.

I Two special classes of comparison functions known as class K and class
KL are very useful in such definitions.

I Definition: A continuous function α : [0, a) −→ [0,∞) is said to
belong to class K if it is strictly increasing and α(0) = 0. It is said to
belong to class K∞ if a =∞ and α(r) −→ ∞ as r −→ ∞.

I Definition: A continuous function β : [0, a) × [0,∞) −→ [0,∞) is said
to belong to class KL if, for each fixed s, the mapping β(r , s) belong to
class K w.r.t. r and, for each fixed r , the mapping β(r , s) is decreasing
w.r.t. s and β(r , s) −→ 0 as s −→ ∞.
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I Examples:
I The function α(r) = tan−1(r) belongs to class K but not to class K∞.
I The function α(r) = r c , c > 0 belongs to class K∞.
I The function β(r , s) = r ce−s , c > 0 belong to class KL.
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Nonautonomous Systems

I The mentioned definitions can be stated by using class K and class KL
functions:

I Lemma: The Equ. pt. x = 0 of ẋ = f (t, x) is

1. Uniformly stable iff there exist a class K function α and a positive
constant c , independent of t0 s.t.

‖x(t)‖ ≤ α(‖x(t0)‖), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c

2. Uniformly asymptotically stable iff there exists a class KL function β
and a positive constant c , independent of t0 s.t.

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c (3)

3. globally uniformly asymptotically stable iff equation (3) is satisfied for
any initial state x(t0).
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Nonautonomous Systems
I A special class of uniform asymptotic stability arises when the class KL

function β takes an exponential form, β(r , s) = kre−λs .

I Definition: The Equ. pt. x = 0 of ẋ = f (t, x) is exponentially stable if
there exist positive constants c , k, λ s.t.

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀‖x(t0)‖ < c (4)

I and is globally exponentially stable if equation (4) is satisfied for any
initial state x(t0).

I Lyapunov theorem for autonomous system can be extended to
nonautonomous systems, besides more mathematical complexity

I The extension involving uniform stability and uniform asymptotic stability
is considered.

I Note that: the powerful Lasalle’s theorem is not applicable for
nonautonomous systems. Instead, we will introduce Balbalet’s lemma.
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Nonautonomous Systems

I A function V (t, x) is said to be positive semi-definite if V (t, x) ≥ 0

I A function V (t, x) satisfying W1(x) ≤ V (t, x) where W1(x) is a
continuous positive definite function, is said to be positive definite

I A p.d. function V (t, x) is said to be radially unbounded if W1(x) is
radially unbounded.

I A function V (t, x) satisfying V (t, x) ≤ W2(x) where W2(x) is a
continuous positive definite function, is said to be decrescent

I A function V (t, x) is said to be negative semi-definite if −V (t, x) is
p.s.d.

I A function V (t, x) is said to be negative definite if −V (t, x) is p.d.
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Lyapunov Theorem for Nonautonomous Systems
I Theorem:

I Stability: Let x = 0 be an Equ. pt. for ẋ = f (t, x) and D ∈ Rn be a
domain containing x = 0. Let V : [0,∞)× D −→ R be a continuously
differentiable function s.t.:

1. V is p.d. ≡ V (x , t) ≥ α(‖x‖), α is class K
2. V̇ = ∂V

∂t
+ ∂V

∂x
f (t, x) is n.s.d

then x = 0 is stable.
I Uniform Stability: If, furthermore

3. V is decrescent ≡ V (x , t) ≤ β(‖x‖), β is class K
then the origin is uniformly stable.

I Uniform Asymptotic Stability: If, furthermore conditions 2, 3 is
strengthened by

V̇ ≤ −W3(x)

where W3 is a p.d. fcn. In other word, V̇ is n.d., then the origin is
uniformly asymptotically stable
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Lyapunov Theorem for Nonautonomous Systems

I Theorem (continued):
I Global Uniform Asymptotic Stability: If, the conditions above are

satisfied globally ∀x ∈ Rn, and

4. V is radially unbounded ≡ α is class K∞
then the origin is globally uniformly asymptotically stable.

I Exponential Stability: If, the conditions above are satisfied with
wi (r) = ki r

c , i = 1, ..., 3 for some positive constants ki & c :

k1‖x‖c ≤ V (t, x) ≤ k2‖x‖c

∂V

∂t
+
∂V

∂x
f (t, x) ≤ − k3‖x‖c , ∀x ∈ D,

then x = 0 is exponentially stable
I Moreover, if the assumptions hold globally, then the origin is globally

exponentially stable
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Nonautonomous Systems

I Example: Consider ẋ = − [1 + g(t)] x3

where g(t) is cont. and g(t) ≥ 0 for all t ≥ 0.
I Let V (x) = x2/2, then

V̇ = − [1 + g(t)] x4 ≤ −x4, ∀ x ∈ R & t ≥ 0

I All assumptions of the theorem are satisfied with W1(x) = W2(x) = V (x)
and W3(x) = x4. Hence, the origin is g.u.a.s.

I Example: Consider ẋ1 = −x1 − g(t)x2

ẋ2 = x1 − x2

where g(t) is cont. diff, and satisfies
0 ≤ g(t) ≤ k, and ġ(t) ≤ g(t), ∀ t ≥ 0

I Let V (t, x) = x2
1 + [1 + g(t)] x2

2
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Nonautonomous Systems
I Example (Cont’d)

x2
1 + x2

2 ≤ V (t, x) ≤ x2
1 + (1 + k)x2

2 , ∀x ∈ R2

I V (t, x) is p.d., decrescent, and radially unbounded.

V̇ = −2x2
1 + 2x1x2 − [2 + 2g(t)− ġ(t)] x2

2

I We have 2 + 2g(t)− ġ(t) ≥ 2 + 2g(t)− g(t) ≥ 2. Then,

V̇ ≤ −2x2
1 + 2x1x2 − 2x2

2 = −
[

x1

x2

]T [
2 −1
−1 2

] [
x1

x2

]
, −xT Qx

where Q is p.d. =⇒ V̇ (t, x) is n.d.
I All assumptions of the theorem are satisfied globally with p.d. quadratic

fcns W1, W2,, and W3.
I Recall: for a quadratic fcn xT Px λmin(P)‖x‖2 ≤ xT Px ≤ λmax(P)‖x‖2

The conditions of exponential stability are satisfied with c = 2,
∴ origin is g.e.s.
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Example: Importance of decrescence condition

I Consider ẋ(t) =
ġ(t)

g(t)
x

I g(t) is cont. diff fcn., coincides with
e−t/2 except around some peaks where it
reaches 1. s.t.:∫∞
0 g2(r)dr <

∫∞
0 e−r dr +

∑∞
n=1

1
2n = 2

I Let V (x , t) = x2

g2(t)
[3−

∫ t
0 g2(r)dr ] V

is p.d (V (x , t) > x2)

I V̇ = −x2 is n.d.

I But x(t) = g(t)
g(t0)

x(t0)

I ∴ origin is not u.a.s.
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Linear Time-Varying Systems ẋ = A(t)x
I The sol. is the so called state transition matrix φ(t, t0),i.e.,

x(t) = φ(t, t0)x(t0)

I Theorem: The Equ. pt. x = 0 is g.u.a.s iff the state transition matrix
satisfies ‖φ(t, t0)‖ ≤ ke−γ(t−t0) ∀t ≥ t0 > 0 for some positive const.
k&γ

I u.a.s. of x = 0 is equivalent to e.s. for linear systems.

I Tools/intutions of TI systems are no longer valid for TV systems.

I Example: ẍ + c(t)ẋ + k0x = 0

A mass-spring-damper system with t.v. damper c(t) ≥ 0.

I origin is an Equ. pt. of the system

I Physical intuition may suggest that the origin is a.s. as long as the
damping c(t) remains strictly positive (implying a constant dissipation of
energy) as is for autonomous mass-spring-damper systems.
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Linear Time-Varying Systems
I Example (cont’d)

I HOWEVER, this is not necessarily true:

ẍ + (2 + et)ẋ + k0x = 0

I The sol. for x(0) = 2, ẋ(0) = −1 is x(t) = 1 + e−t which approaches to
x = 1!

I Example:
[
−1 + 1.5cos2t 1− 1.5sint cost
−1− 1.5sint cost −1 + 1.5sin2t

]
I For all t, λ{A(t)} = −.25± j .25

√
7 =⇒ λ1&λ2 are independent of t &

lie in LHP.
I HOWEVER, x = 0 is unstable

φ(t, 0) =

[
e.5t cost e−t sint
−e.5t sint e−t cost

]
Farzaneh Abdollahi Nonlinear Control Lecture 5 19/41



Outline Nonautonomous systems LTV Systems Barbalat’s Lemma Boundedness and Ultimate Boundedness

Linear Time-Varying Systems

I Important: For linear time-varying systems, eigenvalues of A(t) cannot
be used as a measure of stability.

I A simple result: If all eigenvalues of the symmetric matrix A(t) + AT (t)
(all of which are real) remain strictly in LHP, then the LTV system is a.s:

∃λ > 0, ∀i , ∀ t ≥ 0, λi{A(t) + AT (t)} ≤ − λ

I Consider the Lyap. fcn candidate V = xT x :

V̇ = xT ẋ + ẋT x = xT (A(t) + AT (t)) x ≤ −λ xT x = −λV

hence, ∀ t ≥ 0, 0 ≤ xT x = V (t) ≤ V (0)e−λt

I x tends to zero exponentially. Only a sufficient condition, though
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Linear Time-Varying Systems

I Theorem: Let x = 0 be a e.s. Equ. pt. of ẋ = A(t)x. Suppose, A(t) is
cont. & bounded. Let Q(t) be a cont., bounded, p.d. and symmetric
matrix, i.e 0 < c3I ≤ Q(t) ≤ c4I , ∀ t ≥ 0. Then, there exists a cont.
diff., bounded, symmetric, p.d. matrix P(t) satisfying

Ṗ(t) = −(AT (t)P(t) + P(t)A(t) + Q(t))

Hence, V (t, x) = xT P(t)x is a Lyap. fcn for the system satisfying e.s.
theorem

I P(t) is symmetric, bounded, p.d. matrix , i.e.
0 < c1I ≤ P(t) ≤ c2I , ∀ t ≥ 0

I ∴c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2

I V̇ (t, x) = xT
[
Ṗ(t) + P(t)A(t) + AT (t)P(t)

]
x = −xT Q(t)x ≤ − c3‖x‖2

I The conditions of exponential stability are satisfied with c = 2 , the origin
is g.e.s.
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Linear Time-Varying Systems

I As a special case when A(t) = A, then φ(τ, t) = e(τ−t)A which satisfies
‖φ(t, t0)‖ ≤ e−γ(t−t0) when A is a stable matrix.

I Choosing Q = QT > 0, then P(t) is given by

P =

∫ ∞
t

e(τ−t)AT
Q e(τ−t)Adτ =

∫ ∞
0

eAT s Q eAsds

independent of t and is a solution to the Lyap. equation.
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Linearization for Nonautonomous Systems

I Consider ẋ = f (t, x) where f : [0,∞)× D −→ Rn is cont. diff. and
D = {x ∈ Rn | ‖x‖ < r}. Let x = 0 be an Equ. pt. Also, let the
Jacobian matrix be bounded and Lip. on D uniformly in t, i.e.

‖∂f

∂x
(t, x)‖ ≤ k ∀ x ∈ D, ∀ t ≥ 0

‖∂f

∂x
(t, x1)− ∂f

∂x
(t, x2)‖ ≤ L‖x1 − x2‖ ∀ x1, x2 ∈ D, ∀ t ≥ 0

Let A(t) = ∂f
∂x (t, x)

∣∣
x=0

. Then, x = 0 is e.s. for the nonlinear system
if it is an e.s. Equ. pt. for the linear system ẋ = A(t)x .
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I Now, exponential stability of the linearization is a necessary and sufficient
condition for e.s. of x = 0

I Theorem: Let x = 0 be an Equ. pt. of ẋ = f (t, x) with conditions as

above. Let A(t) = ∂f (t,x)
∂x

∣∣∣
x=0

. Then, x = 0 is an e.s. Equ. pt. for the

nonlinear system iff it is an e.s. Equ. pt. for the linear system ẋ = A(t)x.

I For autonomous systems e.s. condition is satisfied iff A is Hurwitz.

I Example:

ẋ = −x3

I Recall that x = 0 is a.s.
I However, linearization results in ẋ = 0 whose A is not Hurwitz.
I Using the above theorem, we conclude that x = 0 is not exponentially

stable for nonlinear system.
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Summary
I Lyapunov Theorem for Nonautonomous Systems ẋ = f (x , t):

I Stability: Let x = 0 be an Equ. pt. and D ∈ Rn be a domain containing
x = 0. Let V : [0,∞)×D −→ R be a continuously differentiable function
s.t.: V is p.d. , and V̇ is n.s.d

I Uniform Stability: If, furthermore V is decrescent
I Uniform Asymptotic Stability: If, furthermore V̇ is n.d.
I Global Uniform Asymptotic Stability: If, the conditions above are

satisfied globally ∀x ∈ Rn, and V is radially unbounded
I Exponential Stability: If for some positive constants ki & c :

k1‖x‖c ≤ V (t, x) ≤ k2‖x‖c

∂V

∂t
+
∂V

∂x
f (t, x) ≤ − k3‖x‖c , ∀x ∈ D,

then x = 0 is exponentially stable
I Moreover, if the assumptions hold globally, then the origin is globally

exponentially stable
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Summary
I Linear Time-Varying Systems ẋ = A(t)x

I Theorem: The Equ. pt. x = 0 is g.u.a.s iff the state transition matrix
satisfies ‖φ(t, t0)‖ ≤ ke−γ(t−t0) ∀t ≥ t0 > 0 for some positive const.
k&γ

I If all eigenvalues of the symmetric matrix A(t) + AT (t) remain strictly in
LHP, then the LTV system is a.s

I for LTV systems, eigenvalues of A(t) alone cannot be used as a measure of
stability.

I Theorem: Let x = 0 be a e.s. Equ. pt. of ẋ = A(t)x . Suppose, A(t) is
cont. & bounded. Let Q(t) be a cont., bounded, p.d. and symmetric
matrix, i.e 0 < c3I ≤ Q(t) ≤ c4I , ∀ t ≥ 0. Then, there exists a cont.
diff., bounded, symmetric, p.d. matrix P(t) satisfying

Ṗ(t) = −(AT (t)P(t) + P(t)A(t) + Q(t))

Hence, V (t, x) = xT P(t)x is a Lyap. fcn for the system satisfying e.s.
theorem
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Barbalat’s Lemma
I For autonomous systems, invariant set theorems are power tools to study

asymptotic stability when V̇ is n.s.d.

I The invariant set theorem is not valid for nonautonomous systems.

I Hence, asymptotic stability of nonautonomous systems is generally more
difficult than that of autonomous systems.

I An important result that remedy the situation: Barbalat’s Lemma

I Asymptotic Properties of Functions and Their Derivatives:
I For diff. fcn f of time t, always keep in mond the following three facts!

1. ḟ −→ 0 ; f converges
I The fact that ḟ −→ 0 does not imply f (t) has a limit as t −→ ∞.
I Example: f (t) = sin(ln t) ḟ = cos(ln t)

t
−→ 0 as t −→ ∞

I However, the fcn f (t) keeps oscillating (slower and slower).
I Example: For an unbounded function

f (t) =
√

t sin(ln t),  ḟ = sin(ln t)

2
√

t
+ cos(ln t)√

t
−→ 0 as t −→ ∞
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Asymptotic Properties of Functions and Their Derivatives:

2. f converges ; ḟ −→ 0
I The fact that f(t) has a finite limit at t −→ ∞ does not imply that

ḟ −→ 0.
I Example: f (t) = e−t sin(e2t) −→ 0 as t −→ ∞
I while its derivative ḟ = −e−t sin(e2t) + 2et cos(e2t) is unbounded.

3. If f is lower bounded and decreasing (ḟ ≤ 0), then it converges to a limit.
I However, it does not say whether the slope of the curve will diminish or not.

Given that a fcn tends towards a finite limit, what additional property
guarantees that the derivatives converges to zero?
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Barbalat’s Lemma

I Barbalat’s Lemma: If the differentiable fcn has a finite limit as
t −→ ∞, and if ḟ is uniformly cont., then ḟ −→ 0 as t −→ ∞.

I proved by contradiction

I A function g(t) is continuous on [0,∞) if

∀ t1 ≥ 0, ∀ R > 0, ∃ η(R, t1) > 0, ∀ t ≥ 0, |t − t1| < η =⇒
|g(t)− g(t1)| < R

I A function g(t) is uniformly continuous on [0,∞) if

∀ R > 0, ∃ η(R) > 0, ∀ t1 ≥ 0, ∀ t ≥ 0, |t − t1| < η =⇒
|g(t)− g(t1)| < R

i.e. an η can be found independent of specific point t1.
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Barbalat’s Lemma

I A sufficient condition for a diff. fcn. to be uniformly continuous is
that its derivative be bounded

I This can be seen from Mean-Value Theorem:

∀ t, ∀t1, ∃ t2 (between t and t1) s.t. g(t)− g(t1) = ġ(t2)(t − t1)

I if ġ ≤ R1 ∀ t ≥ 0, let η = R
R1

independent of t1 to verify the definition
above.

I ∴ An immediate and practical corollary of Barbalat’s lemma: If the
differentiable fcn f (t) has a finite limit as t −→ ∞ and f̈ exists and is
bounded, then ḟ −→ 0 as t −→ ∞
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Using Barbalat’s lemma for Stability Analysis

I Lyapunov-Like Lemma: If a scaler function V (t, x) satisfies the
following conditions

1. V (t, x) is lower bounded
2. V̇ (t, x) is negative semi-definite
3. V̇ (t, x) is uniformly continuous in time

then V̇ (t, x) −→ 0 as t −→ ∞.
I Example:

I Consider a simple adaptive control systems:

ė = −e + θw(t)

θ̇ = −ew(t)

where e is the tracking error, θ is the parameter error, and w(t) is a
bounded continuous fcn.
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Example (Cont’d)
I Consider the lower bounded fcn:

V = e2 + θ2

V̇ = 2e(−e + θw) + 2θ(−ew(t)) = −2e2 ≤ 0

I ∴V (t) ≥ V (0), therefore, e and θ are bounded.

I Invariant set theorem cannot be used to conclude the convergence of e,
since the dynamic is nonautonomous.

I To use Barbalat’s lemma, check the uniform continuity of V̇ .

V̈ = −4e(−e + θw)

I V̈ is bounded, since w is bounded by assumption and e and θ are shown
to be bounded  V̇ is uniformly continuous

I Applying Barbalat’s lemma: V̇ = 0 =⇒ e −→ 0 as t −→ ∞.

I Important: Although e −→ 0, the system is not a.s. since θ is only
shown to be bounded.
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Boundedness and Ultimate Boundedness
I Lyapunov analysis can be used to show boundedness of the solution even

when there is no Equ. pt.

I Example:
ẋ = −x + δ sint, x(t0) = a, a > δ > 0

which has no Equ. pt and

x(t) = e−(t−t0)a + δ

∫ t

t0

e−(t−τ)sinτdτ

x(t) ≤ e−(t−t0)a + δ

∫ t

t0

e−(t−τ)dτ

= e−(t−t0)a + δ
[
1− e−(t−t0)

]
≤ a, ∀ t ≥ t0

I The solution is bounded for all t ≥ t0, uniformly in t0.
I The bound is conservative due to the exponentially decaying terms.
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Example Cont’d
I Pick any number b s.t. δ < b < a, it can be seen that

|x(t)| ≤ b, δ ∀ t ≥ t0 + ln

(
a− δ
b − δ

)
I b is also independent of t0

I The solution is said to be uniformly ultimately bounded
I b is called the ultimate bound

I The same properties can be obtained via Lyap. analysis. Let V = x2/2

V̇ = xẋ = −x2 + xδ sint ≤ −x2 + δ|x |

I V̇ is not n.d., bc. near the origin, positive linear term δ|x | is dominant.

I However, V̇ is negative outside the set {|x | ≤ δ}.
I Choose, c > δ2/2, solutions starting in the set {V (x) < c} will remain

there in for all future time since V̇ is negative on the boundary V = c.

I Hence, the solution is ultimately bounded.
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Boundedness and Ultimate Boundedness
I Definition: The solutions of ẋ = f (t, x) where f : (0,∞)× D → Rn is

piecewise continuous in t and locally Lipschitz in x on (0,∞)× D, and
D ∈ Rn is a domain that contains the origin are

I uniformly bounded if there exist a positive constant c , independent of
t0 ≥ 0, and for every a ∈ (0, c), there is β = β(a) > 0, independent of t0,
s.t.

‖x(t0)‖ ≤ a =⇒ ‖x(t)‖ ≤ β, ∀ t ≥ t0 (5)

I uniformly ultimately bounded if there exist positive constants b and c ,
independent of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) > 0,
independent of t0, s.t.

‖x(t0)‖ ≤ a =⇒ ‖x(t)‖ ≤ b, ∀ t ≥ t0 + T (6)

I globally uniformly bounded if (5) holds for arbitrary large a.
I globally uniformly ultimately bounded if (6) holds for arbitrary large a.
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How to Find Ultimate Bound?
I In many problems, negative definiteness

of V̇ is guaranteed by using norm
inequalities, i.e.:

V̇ (t, x) ≤ −W3(x), ∀ µ ≤ ‖x‖ ≤ r , ∀ t ≥ t0 (7)

I If r is sufficiently larger than µ, then c
and ε can be found s.t. the set
Λ = {ε ≤ V ≤ c} is nonempty and
contained in {µ ≤ ‖x‖ ≤ r}.

I If the Lyap. fcn satisfy:
α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) for some
class K functions α1 and α2.

I We are looking for a bound on ‖x‖ based
on α1 and α2 s.t. satisfies (7).
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How to Find Ultimate Bound?

I We have: V (x) ≤ c =⇒ α1(‖x‖) ≤ c ⇐⇒ ‖x‖ ≤ α−1
1 (c)

∴ c = α1(r) ensures that Ωc ⊂ Br .

I On the other hand we have:
‖x‖ ≤ µ =⇒ V (x) ≤ α2(µ)

I Hence, taking ε = α2(µ) ensures that Bµ ⊂ Ωε .

I To obtain ε < c , we must have µ < α−1
2 (α1(r)).

I Hence, all trajectories starting in Ωc enter Ωε within a finite time T as
discussed before.

I To obtain the ultimate bound on x(t),
V (x) ≤ ε =⇒ α1(‖x‖) ≤ ε⇔ ‖x‖ ≤ α−1

1 (ε)

I Recall that ε = α2(µ), hence: x ∈ Ωε =⇒ ‖x‖ ≤ α−1
1 (α2(µ))

∴ The ultimate bound can be taken as b = α−1
1 (α2(µ)).

Farzaneh Abdollahi Nonlinear Control Lecture 5 37/41



Outline Nonautonomous systems LTV Systems Barbalat’s Lemma Boundedness and Ultimate Boundedness

Ultimate Boundedness
I Theorem: Let D ∈ Rn be a domain containing the origin and

V : [0,∞)× D −→ R be a cont. diff. fcn s.t.
α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (8)

∂V

∂t
+
∂V

∂x
f (t, x) ≤ −W3(x), ∀ ‖x‖ ≥ µ > 0 (9)

∀t ≥ 0 and ∀x in D, where α1 and α2 are class K fcns and W3(x) is a
cont. p.d. fcn. Take r > 0 s.t. Br ⊂ D and suppose that

µ < α−1
2 (α1(r))

Then, there exists a class KL fcn β and for every initial state x(t0)
satisfying ‖x(t0)‖ ≤ α−1

2 (α1(r)), there is T ≥ 0 (dependent on x(t0) and
µ s.t.) ‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), ∀ t0 ≤ t ≤ t0 + T

‖x(t)‖ ≤ α−1
1 (α2(µ)) ∀ t ≥ t0 + T

Moreover, if D = Rn and α1 ∈ K∞, then the above inequalities hold for any
initial state x(t0)
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Ultimate Boundedness

I The inequalities of the theorem show that
I x(t) is uniformly bounded for all t ≥ t0
I uniformly ultimately bounded with the ultimate bound α−1

1 (α2(µ)).
I The ultimate function is a class K fcn of µ the smaller the value of µ,

the smaller the ultimate bound
I As µ −→ 0, the ultimate bound approaches zero.

I The main application of this theorem arises in studying the stability of
perturbed system.
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Example for Ultimate Boundedness

ẋ1 = x2

ẋ2 = −(1 + x2
1 )x1 − x2 + M cosωt

where M > 0
I Let V (x) = xT

[
3
2

1
2

1
2 1

]
x + 1

2x4
1 = xT Px + 1

2x4
1

I V (x) is p.d. and radially unbounded  there exist class K∞ fcns. α1 and
α2 satisfying (8).

I V̇ = −x2
1 − x4

1 − x2
2 + (x1 + 2x2)M cosωt ≤ −‖x‖22 − x4

1 + M
√

5‖x‖2
I where (x1 + 2x2) = [1 2]

[
x1

x2

]
≤
√

5‖x‖2

I We want to use part of −‖x‖22 to dominate M
√

5‖x‖2 for large ‖x‖
I V̇ ≤ −(1− θ)‖x‖22 − x4

1 − θ‖x‖22 + M
√

5‖x‖2, for 0 < θ < 1

I Then V̇ ≤ −(1− θ)‖x‖22 − x4
1 ∀ ‖x‖2 ≥ M

√
5

θ  µ = M
√

5/θ
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Example for Ultimate Boundedness

I ∴ the solutions are u.u.b.

I Next step: finding ultimate bound:

V (x) ≥ xT Px ≥ λmin(P)‖x‖22
V (x) ≤ xT Px +

1

2
‖x‖42 ≤ λmax(P)‖x‖22 +

1

2
‖x‖42

I α1(r) = λmin(P)r2 and α2(r) = λmax(P)r2 + 1
2 r4

I ∴ ultimate bound: b = α−1
1 (α2(µ)) =

√
λmax(P)µ2 + µ4/2λmin(P)
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