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Nonautonomous systems

» Consider the nonautonomous system
x = f(t,x) (1)

where f : [0,00) x D — R" is p.c. in t and locally Lip. in x on
[0,00) x D, and D C R" is a domain containing the origin x = 0.

» The origin is an Equ. pt. of (1), if
f(t,0)0=0, VvVt >0

» A nonzero Equ. pt. or more generally nonzero solution can be
transformed to x = 0 by proper coordinate transformation.
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Nonautonomous Systems
» Suppose x4(7) is a solution of the system

dy
dr g(ﬂ)’)
defined for all 7 > a.

» The change of variables x = y — x4(7); t = 7 — a transform the original
system into

x=g(r,y) — x4(7) = g(t + a,x + xq(t + a)) — xq4(7) = (¢, x)

» Note that x4(t +a) = g(t+a,xs(t+a)), Vt> 0
» Hence, x =0 is an Equ. pt. of the transformed system

> If x4(t) is not constant, the transformed system is always nonautonomous
even when the original system is autonomous, i.e. when g(7,y) = g(y).

» Hence, a tackling problem is more difficult to solve.
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Nonautonomous Systems

» The origin x = 0 is a stable Equ. pt. of x = f(t, x) if for each ¢ > 0 and
any to >0, 3 § = d(tp,e) >0s.t.

Ix(t)l <6 = [Ix(t)l| < e VE=>1o (2)

» Note that 0 = d(to, €) for any to > 0.

» Example:
x = (6t sint —2t)x =

x(t) = x(to)exp [/:(67 sint — 27)dT

0
= x(to)exp [6sint — 6t cost — t% — 6sinty + 6ty costy + tg]
» For any tp, the term —t? is dominant = the exp. term is bounded
iz ty = Ix(8)] < |x(to)|c(to) ¥ t > to
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Nonautonomous Systems

» Definition: The Equ. pt. x =0 of X = f(t,x) is
1. Uniformly stable if, for each € < 0, there is a § = §(¢) > 0 independent of

to S.t.
Ix(to)|| <0 == [Ix(t)]| <€ Vt>to

2. Asymptotically stable if it is stable and there is a positive constant
¢ = c(tp) such that x(t) — 0 as t — oo for all |x(t)]| < c.

3. Uniformly asymptotically stable if it is uniformly stable and there is a
positive constant ¢, independent of ty s.t. for all ||x(t)| < ¢, x(t) — 0 as
t — oo, uniformly in to; that is for each > 0, thereis T = T(n) > 0 s.t.

()| <m, Ve=to+ T(n), Vix(t)l <c
4. Globally uniformly asymptotically stable if it is uniformly stable, d(e)

can be chosen to satisfy lim d(e) = oo, and for each pair of positive
€E— 00

numbers 1 and ¢, there is T = T(n,c) > 0 s.t.
XDl <n, VE=t0+ T(n,¢), Vix(to)ll <c
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Nonautonomous Systems

» Uniform properties have some desirable ability to withstand the
disturbances.

» since the behavior of autonomous systems are independent of initial time
tp, all the stability proprieties for autonomous systems are uniform

X

. 1+t

[/ dr] = x(to) Tt
Since [x(t)| < |x(to)] Vt> to = x =0 is stable

It follows that x(t) — 0 as t — oo = x =0 s a.s.

» Example: x = —

x(t)

However, the convergence of x(t) to zero is not uniform w.r.t. to

vV v v VY

since T is not independent of ty, i.e., larger ty requires more time to get
close enough to the origin.
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Unlike autonomous systems, the solution of non-autonomous systems
starting at x(tp) = xo depends on both t and tp.

» Stability definition shall be refined s.t. they hold uniformly in tp.

Two special classes of comparison functions known as class K and class
IKCL are very useful in such definitions.

Definition: A continuous function o : [0,a) — [0, 00) is said to
belong to class IC if it is strictly increasing and a(0) = 0. It is said to
belong to class Ko if a= 00 and a(r) — oo asr — oo.
Definition: A continuous function 3 : [0,a) X [0,00) — [0,00) is said
to belong to class KL if, for each fixed s, the mapping (3(r,s) belong to
class K w.r.t. r and, for each fixed r, the mapping (3(r,s) is decreasing
w.r.t. s and 3(r,s) — 0ass — oo.
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Nonautonomous systems

» Examples:

» The function a(r) = tan=!(r) belongs to class K but not to class K.
» The function a(r) = r¢, ¢ > 0 belongs to class K.
» The function 8(r,s) = re™*, ¢ > 0 belong to class KL.
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Nonautonomous Systems

» The mentioned definitions can be stated by using class K and class KL
functions:
» Lemma: The Equ. pt. x =0 of x = f(t,x) is
1. Uniformly stable iff there exist a class K function « and a positive
constant ¢, independent of tj s.t.

Ix(O)] < a(lix(®)l), Vt=1t >0, V|x(t)| <c

2. Uniformly asymptotically stable iff there exists a class L function g
and a positive constant ¢, independent of t; s.t.

XN < Bx (@)t~ 1), Ve> 120, Vix(p)<c  (3)

3. globally uniformly asymptotically stable iff equation (3) is satisfied for
any initial state x(tp).
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Nonautonomous Systems

> A special class of uniform asymptotic stability arises when the class KL
function 3 takes an exponential form, 3(r,s) = kre 5.

» Definition: The Equ. pt. x =0 of X = f(t, x) is exponentially stable if
there exist positive constants ¢, k, A s.t.

Ix(D)]l < klix(to)lle ), Vix(to) || < ¢ (4)

» and is globally exponentially stable if equation (4) is satisfied for any
initial state x(tp).

» Lyapunov theorem for autonomous system can be extended to
nonautonomous systems, besides more mathematical complexity

» The extension involving uniform stability and uniform asymptotic stability
is considered.

» Note that: the powerful Lasalle's theorem is not applicable for

nonautonomous systems. Instead, we will introduce Balbalet's lemma,
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Nonautonomous Systems

v

A function V/(t,x) is said to be positive semi-definite if V(t,x) > 0
A function V/(t,x) satisfying Wi(x) < V(t,x) where Wi(x) is a
continuous positive definite function, is said to be positive definite

A p.d. function V/(t,x) is said to be radially unbounded if W;(x) is
radially unbounded.

A function V/(t,x) satisfying V/(t,x) < Wh(x) where Ws(x) is a
continuous positive definite function, is said to be decrescent

v

v

v

v

A function V/(t,x) is said to be negative semi-definite if —V/(t, x) is
p.s.d.
A function V/(t,x) is said to be negative definite if —V/(t, x) is p.d.

v
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Lyapunov Theorem for Nonautonomous Systems
» Theorem:

» Stability: Let x =0 be an Equ. pt. for x = f(t,x) and D € R" be a
domain containing x = 0. Let V : [0,00) x D — R be a continuously
differentiable function s.t.:

1. Vispd. V(x,t) > a(||x]]), «is class K
2. V= Bt+8\/f(t x) is n.s.d
then x = 0 is stable.
» Uniform Stability: If, furthermore
3. V is decrescent V(x,t) < B(||x]]), Bisclass K
then the origin is uniformly stable.

» Uniform Asymptotic Stability: If, furthermore conditions 2,3 is

strengthened by

V < — Ws(x)

where W is a p.d. fen. In other word, V is n.d., then the origin is
uniformly asymptotically stable

Farzaneh Abdollahi Nonlinear Control Lecture 5 13/42



Outline Nonautonomous systems | S Conversi ore balat's Lemma Bounded d Ultimate Boi
(o] Tele] O

Lyapunov Theorem for Nonautonomous Systems

» Theorem (continued):
» Global Uniform Asymptotic Stability: If, the conditions above are
satisfied globally Vx € R", and
4. V is radially unbounded a is class Koo
then the origin is globally uniformly asymptotically stable.
» Exponential Stability: If, the conditions above are satisfied with
w;(r) = kjr¢, i=1,...,3 for some positive constants k; & c:

kllxl® < V(tx) < kollx
ov oV
— + —f < —k ¢ D
5+ 5 f(tx) < — kX, vx € D,
then x = 0 is exponentially stable
» Moreover, if the assumptions hold globally, then the origin is globally
exponentially stable
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Nonautonomous Systems
» Example: Consider x=—[1+g(t)] 53
where g(t) is cont. and g(t) > Oforall t > 0.
» Let V(x) = x2/2, then
V=—[1+gt)x* <—x* Vx e R &t >0

> All assumptions of the theorem are satisfied with Wi (x) = Wah(x) = V/(x)
and Ws(x) = x*. Hence, the origin is g.u.a.s.
» Example: Consider x1 = —x1—g(t)x
X2 = X1—X2
where g(t) is cont. diff, and satisfies
0 < g(t) < k, and g(t) < g(t),Vt >0
> Let V(tx) = 52 + [1+ g(£)] 3
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Nonautonomous Systems

» Example (Cont d)
XF4+x3 < V(t,x) < ¢+ (1+k)x3, VxeR?

» V/(t, x) is p.d., decrescent, and radially unbounded.
V= —2x1 + 2x1x0 — [2 4+ 2g(t) — &(t)] x2

> We have 2+ 2g(t) — g(t) > 2+2g(t) —g(t) > 2. Then,

x 17T 2 1 X
VAR, Y. 2 1 - 1 A
V= 2x1+2X1XQ2x2—[X2] [_1 5 ][Xz}

where Q is p.d. = V/(t,x) is n.d.

» All assumptions of the theorem are satisfied globally with p.d. quadratic

fcns Wy, Wh,, and Wj.

» Recall: for a quadratic fcn x7 Px Apin(P)||x]1? < xT Px < Amax(P)||x?

The conditions of exponential stability are satisfied with ¢ = 2,
", origin is g.e.s.
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Example: Importance of decrescence condition

» Consider x(t) = £(t)

» g(t) is cont. diff fcn., coincides with
e~ t/2 except around some peaks where it "
reaches 1. s.t.: ()

Jo~ g2(r)dr < J§* e™"dr + ch’o 137 =2
X2
> Let V(X, t) = m[?} fO dr]W
is p.d (V(x,t) > x?)

» V =—x2is nd. '
(1) The function g 2(¢)

» But x(t) = g(to)x(t)

» .. origin is not u.a.s.
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Linear Time-Varying Systems x = A(t)x

» The sol. is the so called state transition matrix ¢(t, to),i.e.,
x(t) = ¢(t, to)x(to)

» Theorem: The Equ. pt. x =0 is g.u.a.s iff the state transition matrix
satisfies ||¢(t, to)|| < ke~ 7(t=%) WVt > t5 > 0 for some positive const.
k&

» u.a.s. of x =0 is equivalent to e.s. for linear systems.

» Tools/intutions of Tl systems are no longer valid for TV systems.

» Example: X+ c(t)x+ kox =0

A mass-spring-damper system with t.v. damper c(t) > 0.

» origin is an Equ. pt. of the system

» Physical intuition may suggest that the origin is a.s. as long as the
damping c(t) remains strictly positive (implying a constant dissipation of
energy) as is for autonomous mass-spring-damper systems.
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Linear Time-Varying Systems

» Example (cont'd)
» HOWEVER, this is not necessarily true:

X+ (24 e')x + kox =0
» The sol. for x(0) = 2,%(0) = —1is x(t) = 1 + e~ * which approaches to
x =1!

» Example: —1+ 1.5cos?t 1 — 1.5sint cost
—1— 1.5sint cost —1+ 1.5sin’t

» Forall t, MA(t)} = —.254.25v/7 = )&\, are independent of t &
lie in LHP.
» HOWEVER, x = 0 is unstable

e®t cost et sint ]

—edt sint et cost

o0.0) = |
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Linear Time-Varying Systems

> For linear time-varying systems, eigenvalues of A(t) cannot
be used as a measure of stability.

» A simple result: If all eigenvalues of the symmetric matrix A(t) + AT (t)
(all of which are real) remain strictly in LHP, then the LTV system is a.s:

I >0, Vi, Vt >0, MAGR)+HAT()) < A

» Consider the Lyap. fcn candidate V = x7 x:
V=x"x+x"x=x" (A(t) + AT(t)) x<-Ax'x=-\V
hence, Vt > 0, 0 < x"x=V(t) < V(0)e

» x tends to zero exponentially. Only a sufficient condition, though
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Linear Time-Varying Systems

» Theorem: Let x =0 be a e.s. Equ. pt. of x = A(t)x. Suppose, A(t) is
cont. & bounded. Let Q(t) be a cont., bounded, p.d. and symmetric
matrix, e 0 < c3l < Q(t) < cal, VY t> 0. Then, there exists a cont.
diff., bounded, symmetric, p.d. matrix P(t) satisfying

P(t) = —(AT()P(t) + P(t)A(t) + Q(t))

Hence, V/(t,x) = x" P(t)x is a Lyap. fcn for the system satisfying e.s.
theorem

» P(t) is symmetric, bounded, p.d. matrix , i.e.
O0<al <P(t)<cl, YVt >0
> callx]? < V(tx) < ellx]?
> V(t,x) = xT [P(t) + P(A() + AT()P(8)] x = —xTQ(e)x < = cs|Ix|1
» The conditions of exponential stability are satisfied with ¢ = 2~-, the origin
is g.e.s.
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Linear Time-Varying Systems

> As a special case when A(t) = A, then ¢(r,t) = e(7"94 which satisfies
llo(t, to)|| < e 7(t=1) when A is a stable matrix.
» Choosing Q = QT > 0, then P(t) is given by
P = /00 e(Tft)AT Q e(Tft)AdT — /OO eATs Q eAst
t 0

independent of t and is a solution to the Lyap. equation.
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Linearization for Nonautonomous Systems

» Consider x = f(t,x) where f : [0,00) x D — R" is cont. diff. and
D={x € R"| ||x|]| < r}. Let x =0 be an Equ. pt. Also, let the
Jacobian matrix be bounded and Lip. on D uniformly in t, i.e.

of
— < >
||8X(t,x)|y < kVxeD, Vt >0

of of
— - < — >
||8X(t,x1) ax(t,x2)|| < Lxa—x| Vxi,x2 € D, YVt >0

Let A(t) = a—)’Z(t,x)|X:0. Then, x =0 is e.s. for the nonlinear system
if it is an e.s. Equ. pt. for the linear system x = A(t)x.
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Converse Theorems

» Converse theorems are the inverse of Lyap. theorems.

» They guarantee the existence of Lyapunov function satisfying certain
conditions, but they do not help in finding these fcns.

» Theorem: Let x =0 be an Equ. pt. of x = f(t,x) where
f:]0,00) x D — R" is cont. diff, D ={x € R"| ||x|| <r} and the
Jacobian matrix g—i is bounded on D uniformly in t. Let k, v, and ry be
pos constants with ry < r/k. Let Dy = {x € R" | ||x|| < ro}. Assume that
the trajectories satisfy
Ix(t)]| < Kk ||x(to)||e "t~ ®), ¥ x(t)) € Do, ¥Vt >ty > 0. Then, 3 a
fen V . [0,00) x Dy — R satisfying:

allxl? < Vit x) < allx?
ov oV
97 LX) < - 2
LAt < -l
A
—_— X
ox 4

for some pos., const. ci, ..., cq. Moreover, if r = co and the origin is g.e.s.,
then V/(t,x) is defined and satisfies the the above inequalities on R". If
f(t,x) = f(x), then V(t,x) = V(x).
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Converse Theorems

» Now, exponential stability of the linearization is a necessary and sufficient
condition for e.s. of x =0

» Theorem: Let x =0 be an Equ. pt. of x = f(t,x) with conditions as

above. Let A(t) = % o Then, x =0 is an e.s. Equ. pt. for the
.

X
nonlinear system iff it is an e.s. Equ. pt. for the linear system X = A(t)x.
» For autonomous systems e.s. condition is satisfied iff A is Hurwitz.

» Example:

> Recall that x =0 is a.s.

» However, linearization results in x = 0 whose A is not Hurwitz.

» Using the above theorem, we conclude that x = 0 is not exponentially
stable for nonlinear system.
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Summary
» Lyapunov Theorem for Nonautonomous Systems x = f(x, t):

>

Stability: Let x =0 be an Equ. pt. and D € R" be a domain containing
x=0. Let V:[0,00) x D — R be a continuously differentiable function
s.t.: Vispd. , and Visn.s.d

» Uniform Stability: If, furthermore V' is decrescent
» Uniform Asymptotic Stability: If, furthermore V is n.d.
» Global Uniform Asymptotic Stability: If, the conditions above are

satisfied globally Vx € R", and V is radially unbounded
Exponential Stability: If for some positive constants k; & c:

killx[[ < V(t,x) < kx|

av oV

—+ —f(t < —k Vv D

ot + Ox (7X) = 3||X|| ) X € )
then x = 0 is exponentially stable

Moreover, if the assumptions hold globally, then the origin is globally
exponentially stable
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Summary
» Linear Time-Varying Systems x = A(t)x

» Theorem: The Equ. pt. x =0 is g.u.a.s iff the state transition matrix
satisfies ||p(t, to)|| < ke V(t=%) Yt > t; > 0 for some positive const.
k&~

> If all eigenvalues of the symmetric matrix A(t) + A'(t) remain strictly in
LHP, then the LTV system is a.s

» for LTV systems, eigenvalues of A(t) alone cannot be used as a measure of
stability.

» Theorem: Let x =0 be a e.s. Equ. pt. of X = A(t)x. Suppose, A(t) is
cont. & bounded. Let Q(t) be a cont., bounded, p.d. and symmetric
matrix, i,e 0 < il < Q(t) < cl, Vt> 0. Then, there exists a cont.
diff., bounded, symmetric, p.d. matrix P(t) satisfying

P(t) = —(AT()P(t) + P(D)A(1) + Q(t))

Hence, V(t,x) = xT P(t)x is a Lyap. fcn for the system satisfying e.s.
theorem
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Barbalat's Lemma

» For autonomous systems, invariant set theorems are power tools to study
asymptotic stability when V is n.s.d.

» The invariant set theorem is not valid for nonautonomous systems.

» Hence, asymptotic stability of nonautonomous systems is generally more
difficult than that of autonomous systems.

» An important result that remedy the situation: Barbalat’s Lemma

» Asymptotic Properties of Functions and Their Derivatives:

» For diff. fcn f of time t, always keep in mond the following three facts!
1. f — 0 = f converges

The fact that f — 0 does not imply f(t) has a limit as t — oo.

Example: f(t) = sin(In t)~ f = <=2

However, the fcn f(t) keeps oscillating (slower and slower).

Example: For an unbounded function

f(t) =Vt sin(In t), ~ f = S'-;’(’\"/;) + mf}'% 9 — 0as t — oo

— 0 ast — o

vvyVvVyy
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Asymptotic Properties of Functions and Their Derivatives:

2. f converges = f — 0
» The fact that f(t) has a finite limit at t — oo does not imply that
f— 0.
» Example: f(t) = e ! sin(e’’) — Oast — oo
> while its derivative f = —e™* sin(e?!) + 2e* cos(e®!) is unbounded.

3. If f is lower bounded and decreasing (f < 0), then it converges to a limit.

» However, it does not say whether the slope of the curve will diminish or not.

Given that a fcn tends towards a finite limit, what additional property
guarantees that the derivatives converges to zero?
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Barbalat's Lemma

» Barbalat’s Lemma: [f the differentiable fcn has a finite limit as
t — oo, and if f is uniformly cont., then f — Q0 ast — oc.

» proved by contradiction

» A function g(t) is continuous on [0, c0) if

Vtg > 0, VR> 0, 3n(R,t1)>0,Vt >0, [t—t]<n =
lg(t) —g(t1)l <R

» A function g(t) is uniformly continuous on [0, c0) if

VR>0,3dn(R)>0,Vty >0, Vt >0, |[t—t|l<n =
lg(t) —g(t1)] <R

i.e. an n can be found independent of specific point t;.
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Barbalat's Lemma

» A sufficient condition for a diff. fcn. to be uniformly continuous is
that its derivative be bounded

» This can be seen from Mean-Value Theorem:
Vt, Vti, 3t (between t and t1) s.t. g(t) — g(t1) = &(t2)(t — t1)

» ifg < RVt > 0 letn= R% independent of t; to verify the definition
above.

» .. An immediate and practical corollary of Barbalat’s lemma: If the
differentiable fcn f(t) has a finite limit as t — oo and f exists and is
bounded, then f — Qast — o0
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Using Barbalat's lemma for Stability Analysis

» Lyapunov-Like Lemma: [f a scaler function V/(t,x) satisfies the
following conditions

1. V(t,x) is lower bounded
2. V/(t,x) is negative semi-definite
3. V(t,x) is uniformly continuous in time
then V(t,x) — 0ast — oo.
» Example:
» Consider a simple adaptive control systems:

e = —e+0w(t)
0 = —ew(t)

where e is the tracking error, 6 is the parameter error, and w(t) is a
bounded continuous fen.
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Example (Cont'd)
» Consider the lower bounded fcn:
V = &+¢?
V = 2e(—e+0w)+20(—ew(t)) = —2¢* < 0

v

2V(t) < V(0), therefore, e and 6 are bounded.

» Invariant set theorem cannot be used to conclude the convergence of e,
since the dynamic is nonautonomous.

» To use Barbalat’s lemma, check the uniform continuity of V.
V = —4e(—e+ 6w)

» V is bounded, since w is bounded by assumption and e and 6 are shown
to be bounded ~~ V is uniformly continuous

» Applying Barbalat's lemma: V=0 = e — 0ast — oo.

» Important: Although e — 0, the system is not a.s. since 6 is only

shown to be bounded.
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Boundedness and Ultimate Boundedness

» Lyapunov analysis can be used to show boundedness of the solution even
when there is no Equ. pt.

» Example:
x=—x+9sint, x(tp)=a, a>dJ > 0

which has no Equ. pt and
x(t) = e (t0a44 / ~(Tsinrdr

ttoaJr(;/ —(tT

— e (t-t)y4 s [1fe—(f—t0)} < a Vt >t

X
~—~
~
o
IN

» The solution is bounded for all t > tg, uniformly in tp.

» The bound is conservative due to the exponentially decaying terms.
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Example Cont'd
> Pick any number bs.t. 6 < b< a,itcan be(eenéc at

< b, t > tg+ 1
X(OI< b6 Vi = totin(

v

b is also independent of ty
» The solution is said to be uniformly ultimately bounded
> b is called the ultimate bound

The same properties can be obtained via Lyap. analysis. Let V = x /2
V = xx = —x? 4 x3 sint < —x* + §|x|

v

v

V is not n.d., bc. near the origin, positive linear term J|x| is dominant.

v

However, V is negative outside the set {|x| < 0}.

Choose, ¢ > §2/2, solutions starting in the set {V/(x) < ¢} will remain
there in for all future time since V is negative on the boundary V = c.

v

> Hence, the solution is ultimately bounded.

Farzaneh Abdollahi Nonlinear Control Lecture 5 35/42



Lemma Boundedness and Ultimate Bo

Boundedness and Ultimate Boundedness

» Definition: The solutions of X = f(t, x) where f : (0,00) x D — R" is
piecewise continuous in t and locally Lipschitz in x on (0,00) x D, and
D € R" is a domain that contains the origin are

» uniformly bounded if there exist a positive constant ¢, independent of
to > 0, and for every a € (0, c), there is 8 = 5(a) > 0, independent of tp,
s.t.

Ix(t) < a = [Ix(O)] < B, Vt= t (5)

» uniformly ultimately bounded if there exist positive constants b and c,
independent of t; > 0, and for every a € (0,c), thereis T = T(a, b) > 0,
independent of ty, s.t.

Ix()| < a = |x(t)] < b, Vt> to+T (6)

» globally uniformly bounded if (5) holds for arbitrary large a.
» globally uniformly ultimately bounded if (6) holds for arbitrary large a.
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How to Find Ultimate Bound?

» In many problems, negative definiteness
of V is guaranteed by using norm
inequalities, i.e.:

V(it,x) < —Ws(x), Vu < |x]| < r,Vt> ty (7)

» If r is sufficiently larger than p, then ¢
and e can be found s.t. the set /
AN={e < V < c} is nonempty and !
contained in { < ||x|| < r}.

» If the Lyap. fcn satisfy: ;
a1(|Ix]])) < V(t,x) < az(]|x]|) for some
class K functions a1 and as.

» We are looking for a bound on ||x|| based
on aj and «j s.t. satisfies (7).
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How to Find Ultimate Bound?

> We have: V(x) < ¢ = aa(|lx]]) < ¢ < x| < a7'(c)

. ¢ = ay(r) ensures that Q. C B,.

» On the other hand we have:
x| < p = V(x) < aa(p)

» Hence, taking € = ap(u) ensures that B, C Q. .
» To obtain ¢ < ¢, we must have u < a,*(ai(r)).

» Hence, all trajectories starting in Q. enter Q. within a finite time T as
discussed before.
» To obtain the ultimate bound on x(t), .
V(x) < € = a(llx]]) < e [Ix] <ag(e)

> Recall that € = aa(u), hence: x € Q. = ||x|| < a7 (a2(p))
. The ultimate bound can be taken as b = a7 '(az(u)).
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Ultimate Boundedness
» Theorem: Let D € R" be a domain containing the origin and
V :[0,00) x D — R be a cont. diff. fcn s.t.

ar(lixll) = V(t.x) < ao(|lx]]) (8)
%‘t/+g‘x/f(t,x) < ~Ws(x), Vx| >4 >0 (9)

YVt > 0 and Vx in D, where a1 and oy are class K fens and Ws(x) is a

cont. p.d. fcn. Take r > 0 s.t. B_,lc D and suppose that
< ay”(aa(r))

Then, there exists a class L fcn § and for every initial state x(to)
satisfying ||x(o)|| < a5 *(a1(r)), there is T > 0 (dependent on x(to) and
pst) Xl < Bx()lt— ). Vi<t < tod T

Ix(t)ll < arl(az(n)) Ytz o+ T

Moreover, if D = R" and a1 € K, then the above inequalities hold for any
initial state x(ty
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Ultimate Boundedness

» The inequalities of the theorem show that

» x(t) is uniformly bounded for all t > t,

» uniformly ultimately bounded with the ultimate bound a; *(aa(p)).

» The ultimate function is a class K fcn of pu~~ the smaller the value of g,
the smaller the ultimate bound

» As . — 0, the ultimate bound approaches zero.

» The main application of this theorem arises in studying the stability of
perturbed system.
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Example for Ultimate Boundedness

X1 = X2
X = —(1+x¥)x1 —xo+ Mcoswt
where M > 0 3 1
> Let V(X):XT[E i]x+éxf:XTPX+%Xf

v

V(x) is p.d. and radially unbounded ~~ there exist class Ko, fcns. a1 and
ao satisfying (8).
> V= —xF—x} =3+ (x1 +2x0)Mcoswt < —||x|3 — x} + MV5||x|)2

> where (x; +2x%) =[1 2] [ 2 } < V5|x]2

v

We want to use part of —||x||3 to dominate M+/5]|x]|2 for large ||x]|
> V< —(1-0)|x|13 - xt — 0||x]13 + MV/5||x|l2, for 0 < 6 < 1
Then V < —(1— 0)l|x[3 — x{ ¥ lIx]l2 > M5 p = M5/
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Example for Ultimate Boundedness

» . the solutions are u.u.b.

» Next step: finding ultimate bound:
V(x) = xTPx > Amin(P)Ix]3
1 1
V(x) < xTPx+ SlIxllz < Amax(P)IX[13 + 5 [1x112

> ai(r) = Amin(P)r? and a2( ) = Amax(P)r? + 1%
» .. ultimate bound: b = 041 (c2(p)) \//\max Y2 + 12 /2 X\ min(P)
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