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Outline Classical Logic

Classical Logic
» Logic is the study of methods and principles of reasoning
» reasoning means obtaining new propositions from existing propositions.
» In classical logic,
» The propositions are evaluated by true or false.
» The relationships between propositions are usually expressed by a truth
table.
» Logic Formulas: is obtained by combining —, \/ and A in appropriate
algebraic expressions
» Tautology: the always true proposition represented by a logic
formula, regardless of the truth values of the basic propositions
participating in the formula
» Example: (p—q) < (pVq)
» Contradiction: the always false proposition represented by a logic
formula, regardless of the truth values of the basic propositions
participating in the formula
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Outline Classical Logic

Classical Logic

> the forms of tautologies which are used for making
deductive inferences

» Some commonly used inference rules are:
» Modus Ponens: (pA(p— q)) — g
> Premise 1: x is A
> Premise 2:IF x is A THEN y is B
» Conclusion: y is B
» Modus Tollens: (GA(p—q)) — P
> Premise 1: y is not B
> Premise 2:IF x is A THEN y is B
» Conclusion: x is not A
» Hypothetical Syllogism: ((p — q)A (g —7r)) — (p— 1)
> Premise 1: IF x is ATHEN y is B
> Premise 2: IF y is B THEN zis C
» Conclusion: IF x is A THEN z is C
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» In fuzzy logic
» The propositions are fuzzy propositions that are evaluated by
memberships between 0 and 1.
» The ultimate goal is to provide foundations for approximate reasoning
with imprecise propositions
» Consider A, A’, B, B’ are fuzzy sets

» The fundamental principles are
» Generalized Modus Ponens:

» Premise 1: x is A’
> Premise 2: IF xis A THEN y is B
» Conclusion y is B s.t. the closer A’ to A ~ the closer B’ to B
] | xis A" (Premise 1) | y is B’ (Conclusion) |

pl xis A yis B
p2 x is very A yis very B

» A and B’ can be p3 x is very A yis B
p4 | x is more or less A y is more or less B
p5 | x is more or less A yis B
p6 x is not A y is unknown
p7 X is not A y-is not B
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» The fundamental principles are
» Generalized Modus Ponens:

» Premise 1: x is A’
> Premise 2: IF xis A THEN y is B
» Conclusion y is B s.t. the closer A’ to A ~ the closer B’ to B
] | xis A" (Premise 1) | y is B’ (Conclusion) |

pl xis A yis B
p2 x is very A yis very B

» A and B’ can be p3 x is very A yis B
p4 | x is more or less A y is more or less B
p5 | x is more or less A yis B
p6 x is not A y is unknown
p7 X is not A y is not B

> If a causal relation between "x is A" and "y is B" is not strong in
Premise 2, the satisfaction of p3 and p5 is allowed.
» p7 is based on "IF x is A THEN y is B, ELSE y is not B.”
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Fuzzy Logic

» Generalized Modus Tollens:
» Premise 1: y is B’
» Premise 2: IF x is A THEN y is B
» Conclusion x is A’ s.t. the more different B from B’ ~+ the more
different A from A’
» A’ and B’ can be

] \ y is B (Premise 1) \ x is A" (Conclusion) ‘
tl yis B xis A
t2 y is not very B X is very not A
t3 | y is not more or less B | x is not more or less A
t4 yis B X is unknown
th y is not B x is not A
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» Generalized Hypothetical Syllogism:

» Premise 1: IF xis A THEN y is B
» Premise 2: IF y is B’ THEN zis C
» Conclusion: IF x is A THEN z is C’ s.t. the closer B to B’ ~ the
closer C to C’
| yis B’ (Premise 1) | zis C’ (Conclusion) |
sl yis B zis C
s2 y is very B z is more or less C
» A and B’ can be s3 .yisveryB .zisC
s4 | y is more or less B zis very C
sb | y is more or less B zis C
sb y is not B z is unknown
sb yisnot B zis not C
» For s2

1. change Premise 1 to IF x is very A THEN y is very B
2. . in Conclusion: IF x is very A THEN z is C

3. To cancel very, use more or less

4. - IF xis A THEN z is more or less C

Farzaneh Abdollahi Computational Intelligence Lecture 5 7/1



- A Amirkabir
Outline Classical e

» Premise 1: IF x is ATHEN y is B
Premise 2: IF y is B’ THEN z is C

» Conclusion: IF x is A THEN z is C’ s.t. the closer B to B’ ~ the
closer C to ('

| [ yis B (Premise 1) | zis C’ (Conclusion) |

sl yis B zis C
s2 y is very B z is more or less C
» A and B’ can be s3 y is very B zis C
s4 | y is more or less B zis very C
sb | y is more or less B zis C
sb y isnot B z is unknown
sb y is not B zisnot C
» For s2
1. change Premise 1 to IF x is very A THEN y is very B

2. .. in Conclusion: IF x is very A THEN z is C

3. To cancel very, use more or less

4. - IF xis A THEN z is more or less C

> The mentioned intuitive criteria are based on approximate reasoning
used in daily life They are not necessarily true for classical cases
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Fuzzy Logic

» How do we determine the membership

functions of the fuzzy propositions in the yev f(x)
conclusions? N
» The Compositional Rule of Inference :
» It is a generalization of the following [
procedure I XeU
a

» Foracurvey =f(x)fromx e Utoy eV

» x=aand y =f(x) ~ y=b="F(a).

» Now assume a is an interval and f(x) is
an interval-valued function

» First find a cylindrical set ag with base a
find I: intersection of Ag with the
interval-valued curve.

» The interval b: project | on V
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Compositional Rule of Inference.

» Assume the A’ is a fuzzy set in U and Q is a fuzzy relation in U x V.
> Then A% is cylindrical extension of A"t 4. (X, y) = par(x)

> | = AN Q= t{ua (x,y), ne(x,y)} = t{pa(x), no(x, y)}

> B’ proj. of lon V : jip/(y) = sup. tpa(x). polx v)}

> It is compositional rule of inference.

>

Generalized Modus Ponens:
» Fuzzy set A:premise x is A’; fuzzy relation A — B € U x V : premise
IF x is A THEN y is B; fuzzy set B’ € V: conclusion y is B’
16 (y) = supyey tlua (x), pa—s(x y)]
Generalized Modus Tollens:
» Fuzzy set B':premise y is B’; fuzzy relation A — B € U x V : premise
IF x is A THEN y is B; fuzzy set A’ € U: conclusion x is A/
par(x) = supy ey tlus (y), pa—s(x, y)]

v
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» Fuzzy relation A — B € U x V : premise IF x is A THEN y is B; Fuzzy
relation B — C € V x W : premise IF y is B’ THEN z is C; Fuzzy
relation A — C’ € U x W : conclusion IF x is A THEN z is C’;

,uAHC’(Xa Z) = SUpycv t[/LAﬂB(Xa }/) ﬂB’HC(ya Z)]
» Diff. implication principles, definitions of B’, A", C’ and diff t-norms
yields diff. results

» Generalized Modus Ponens:
1. t-norm: min; Mamdani product imp.

LL A= Ao e (y) = subyeylpal)us(y)] = ns(y)

1.2 A= very A~ ppr = sup, cg{min[ua(x), pa(x)us(y)l}
sup,cy{ra(x)} =1 and x can take any values in U, for any
yeV,adxe Us.t.
pa(x) > ps(y)~per (y) = supecylpa(x)us(y)l = pns(y)

1.3 A’ is more or less A

1/2
1 2(x) = pa(x) = pa(x)us(x)~ e (v) = ps(y)

1.4 A = Aforfixed y € V,pua(x) T ~pa(x)pus(y) T .1 — pa(x) 1,

sup,cy min is obtained when

1— pa(x) = pa(x)us(y)~per(y) = 22295
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» Fuzzy relation A — B € U x V : premise IF x is A THEN y is B; Fuzzy
relation B — C € V x W : premise IF y is B’ THEN z is C; Fuzzy
relation A — C’ € U x W : conclusion IF x is A THEN z is C’;

/"I/A*’C/(X7 Z) - supyev t[/LAﬂB(Xa }/) ﬂB’HC(ya Z)]
» Diff. implication principles, definitions of B’, A", C’ and diff t-norms
yields diff. results

» Generalized Modus Ponens:
1. t-norm: min; Mamdani product imp.

LL A" A e (y) = subyeylpal)us(y)] = ns(y)

1.2 A= very A~ ppr = sup, cg{min[ua(x), pa(x)us(y)l}
sup,cy{ra(x)} =1 and x can take any values in U, for any
yeV,dxe Us.t.
na(x) = pe(y)~pe(y) = sup.cylpa(x)us(y)l = ns(y)

1.3 A’ is more or less A

1/2
1 2(3) 2 pax) = pa(x)pe(x)=pe () = pe(y)

1.4 A = Aforfixed y € V,pua(x) T ~pa(x)pus(y) T .1 — pa(x) 1,

sup,cy min is obtained when

1— pa(x) = pa(x)us(y)~pe(y) = 2229

aNd D alre dcenleved
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Generalized Modus Ponens

2 t-norm: min; Zadeh imp., Assume sup,y[pa(x)] =1
2.1 A= A pp(y) = supyey min{ua(x), max[min(ua(x), us(y)), 1 — pa(x)]}
> sup,y[pa(x)] = 1~ sup,c min is achieved at xo € U when
pa(x0) = max[min(pa(x0), us(y)), 1 — palxo)]
> If pa(x0) < pe(y)~wpa(x) = max[ua(x), 1 — pa(x0)], it is true when
pa(xo) > 0.5, since sup,cy[na(x)] = 1~us(y) > pa(x) = 1 impossible!
> pa(x0) = pe(y)~palxo) = max[us(y), 1 — pa(x)], If
pe(y) <1 —pa(x0)~pa(x0) =1— pa(x) ~ pa(xo) = 0.5; If
pue(y) = 1 — pa(x0)~pa(x) = max[0.5, us(y)]
> s (y) = palxo) = max[0.5, us(y)]
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Generalized Modus Ponens

2 t-norm: min; Zadeh imp., Assume sup,y[pa(x)] =1
22 Al =very A
pgr(v) = sup,cy min{p4(x), max[min(pa(x), 1s(y)), 1 — pa(x)]}

> sup,cylpa(x)] = 1~ sup, oy min is achieved at xo € U when
1a(x0) = max[min(a(x0), 1&(y)); 1 — pa(xo0)]

> If pa(x0) < pe(y)~pa(xo) = max[ua(xo), 1 — pa(x0)], it is true when
wa(x0) =1, ~pug(y) > 1 impossible!

> pa(x0) > ps(y)~pa(x0) = max{us(y), 1 — pa(xo)], If
ne(y) < 1 - MA(XO)WHA(XO) =1—pa(x0) ~ pa(x0) = 2, per(y)
1A (x0) = N ps(y) > 1 — pa(xo)~per(y) = palx) = ps(y) >

> e (y) = ( 0) = max[3572, g (y)]

3— xf
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Generalized Modus Ponens
2 t-norm: min; Zadeh imp., Assume sup,cy[pa(x)] =1
2.3 A" = more or less A 12
NB’(Y) = SUPxcu min{:uA (X)’ max[min(,uA(X), ,LLB(y))a 1- ,LLA(X)]}
> sup,y[pa(x)] = 1~ sup,c min is achieved at xp € U when
i * (x0) = max[min(pa(x0), #a(y)), 1 — pa(xo)]
> similar to the previous case If pa(xo) < ps(y) is impossible!
> pa(x0) > pa(y)~ s *(x0) = max|us(y), 1 — pa(o)l,

1 1807) <1~ pal0) 1" = 1= paC) = o) = 257 (4) =
1 2(X )
|f pe(y) >1 —MA(Xo)Wusf(y) 1% (x0) = pe(y) >
> e (y) = 7 (x0) = max[Y5, us(y)]
24 A = A

per(y) = supyecy min{l — pa(x), max[min(pa(x), na(y)), 1 — pa(x)]}
> pa(x0) = 01— pa(x) =1 and max[min(ua(x), us(y)), 1 — pa(x)] = 1
> cpe(y) =1
pb is satisfied
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Generalized Modus Tollens
1. t-norm: min; Mamdani product imp.
11 B = B wpa(x) = sup,ey[l — ua(y), pa(x)us(y)]
> sup,cyminisat yo € V sit.
1= ps(y0) = pa(x)us(y0)~1s(¥0) = e
> (X) =1 - (%) = 1l

1.2 B/~ s not very B ~>par(x) = sup,cy{min[l — uz(y), na(x)us(y)]}
> sup,cyminisat yo € V sit.

1— g(y) = MA(X)MB(YO)WMB(YO) Veabhie-uat)
2 l. X
> i (x) = 1 ps(yo)ua(x) = MACNVIAIATI
1.3 B’ is more or less B 12
~piar(x) = supyey{min[l — ug “(y), pa(x)ps(y)]}
> supyevmin isat yo € V s.t.

142p4(x) —4/p53 () +1

L~ g *(y0) = pa(x)s (o)~ (yo) = =7 A
142pa(x) =~/ B2 (x)+1
> (%) = pa(x)pe(y) = —— 5 A
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Generalized Modus Tollens

1. t-norm: min; Mamdani product imp.
L4 B = B pp(x) = supyey{minfup(y), pa(x)us(y)l} =
sup,cv 18(y)pa(x) = pa(x)

> (x) = pa(x)
> t1 is satisfied : y is B~x is A
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Generalized Hypothetical Syllogism

1. t-norm: min; Mamdani product imp.
L1 B' = B ~pasc(x,z) = sup,cy{minfua(x)us(y), ne(y)nc(z)]} =
(supyev ig(y)) min[ua(x), c(2)]
> supyey[us(y)] = 1pac(x,2) = min[pa(x), pc(z)]
1.2 B' = very B ~pascr(x,2) = supycy {min[ua(x)us(y), ng(y)uc(2)]}

> If pa(x) > pe(2)~pa(x)us(y) > pa(y)uc(z)
> e (x,2) = supyey (B (y)uc(2)] = pc(z)

If pa(x) < pc(z)~ sup, ¢y min is at

Yo € V, pa(x)us(yo) = pi(yo)uc(2) ,

> o ps() = Ao (x,2) = pa(x)s(v0) = HAY)
omy = | @) T nel) < )

SpaAcr\ X, Z) = X .

fame LA if pe(2) > pa(x)

nc(z)

v
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Generalized Hypothetical Syllogism

1. t-norm: min; Mamdani product imp.
1.3 B’ = more or less B
“pancr(x, 2) = sup, ey min[ua(ue(y), ug *(V)nc(2)]}
» Using similar method to B’ =very B
pa(x) if pa(x) < pc(z)

> pa-c(x,z) = 22
{ iy I na(x) 2 ne(2)

L4 B' = B ~pasc(x,2) = supyey {minfua(x)ps(y), (1 — ne(y))uc(2)]}

> sup,cy min is achieved at ug(yo) = #(Z)C(Z)
pa(x)pc(z)

> e (62) = G
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