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Outline Classical Logic Fuzzy Logic

Classical Logic
I Logic is the study of methods and principles of reasoning

I reasoning means obtaining new propositions from existing propositions.

I In classical logic,
I The propositions are evaluated by true or false.
I The relationships between propositions are usually expressed by a truth

table.

I Logic Formulas: is obtained by combining −,
∨

and
∧

in appropriate
algebraic expressions

I Tautology: the always true proposition represented by a logic
formula, regardless of the truth values of the basic propositions
participating in the formula

I Example: (p → q)↔ (p̄ ∨ q)

I Contradiction: the always false proposition represented by a logic
formula, regardless of the truth values of the basic propositions
participating in the formula
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Classical Logic

I Inference rules: the forms of tautologies which are used for making
deductive inferences

I Some commonly used inference rules are:
I Modus Ponens: (p ∧ (p → q))→ q

I Premise 1: x is A
I Premise 2:IF x is A THEN y is B
I Conclusion: y is B

I Modus Tollens: (q̄ ∧ (p → q))→ p̄
I Premise 1: y is not B
I Premise 2:IF x is A THEN y is B
I Conclusion: x is not A

I Hypothetical Syllogism: ((p → q) ∧ (q → r))→ (p → r)
I Premise 1: IF x is A THEN y is B
I Premise 2: IF y is B THEN z is C
I Conclusion: IF x is A THEN z is C
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I In fuzzy logic
I The propositions are fuzzy propositions that are evaluated by

memberships between 0 and 1.
I The ultimate goal is to provide foundations for approximate reasoning

with imprecise propositions

I Consider A,A′,B,B ′ are fuzzy sets
I The fundamental principles are

I Generalized Modus Ponens:
I Premise 1: x is A′

I Premise 2: IF x is A THEN y is B
I Conclusion y is B s.t. the closer A′ to A  the closer B ′ to B

I A′ and B ′ can be

x is A′ (Premise 1) y is B ′ (Conclusion)

p1 x is A y is B

p2 x is very A y is very B

p3 x is very A y is B

p4 x is more or less A y is more or less B

p5 x is more or less A y is B

p6 x is not A y is unknown

p7 x is not A y is not B
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I The fundamental principles are
I Generalized Modus Ponens:

I Premise 1: x is A′

I Premise 2: IF x is A THEN y is B
I Conclusion y is B s.t. the closer A′ to A  the closer B ′ to B

I A′ and B ′ can be

x is A′ (Premise 1) y is B ′ (Conclusion)

p1 x is A y is B

p2 x is very A y is very B

p3 x is very A y is B

p4 x is more or less A y is more or less B

p5 x is more or less A y is B

p6 x is not A y is unknown

p7 x is not A y is not B

I If a causal relation between ”x is A” and ”y is B” is not strong in
Premise 2, the satisfaction of p3 and p5 is allowed.

I p7 is based on ”IF x is A THEN y is B, ELSE y is not B.”
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Fuzzy Logic

I Generalized Modus Tollens:
I Premise 1: y is B ′

I Premise 2: IF x is A THEN y is B
I Conclusion x is A′ s.t. the more different B from B ′  the more

different A from A′

I A′ and B ′ can be
y is B ′ (Premise 1) x is A′ (Conclusion)

t1 y is B x is A
t2 y is not very B x is very not A
t3 y is not more or less B x is not more or less A
t4 y is B x is unknown
t5 y is not B x is not A
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I Generalized Hypothetical Syllogism:
I Premise 1: IF x is A THEN y is B
I Premise 2: IF y is B ′ THEN z is C
I Conclusion: IF x is A THEN z is C ′ s.t. the closer B to B ′  the

closer C to C ′

I A′ and B ′ can be

y is B ′ (Premise 1) z is C ′ (Conclusion)

s1 y is B z is C
s2 y is very B z is more or less C
s3 y is very B z is C
s4 y is more or less B z is very C
s5 y is more or less B z is C
s6 y is not B z is unknown
s5 y is not B z is not C

I For s2

1. change Premise 1 to IF x is very A THEN y is very B
2. ∴ in Conclusion: IF x is very A THEN z is C
3. To cancel very, use more or less
4. ∴ IF x is A THEN z is more or less C
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I Generalized Hypothetical Syllogism:

I Premise 1: IF x is A THEN y is B
I Premise 2: IF y is B ′ THEN z is C
I Conclusion: IF x is A THEN z is C ′ s.t. the closer B to B ′  the

closer C to C ′

I A′ and B ′ can be

y is B ′ (Premise 1) z is C ′ (Conclusion)

s1 y is B z is C
s2 y is very B z is more or less C
s3 y is very B z is C
s4 y is more or less B z is very C
s5 y is more or less B z is C
s6 y is not B z is unknown
s5 y is not B z is not C

I For s2

1. change Premise 1 to IF x is very A THEN y is very B
2. ∴ in Conclusion: IF x is very A THEN z is C
3. To cancel very, use more or less
4. ∴ IF x is A THEN z is more or less C
I The mentioned intuitive criteria are based on approximate reasoning

used in daily life They are not necessarily true for classical cases
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I How do we determine the membership
functions of the fuzzy propositions in the
conclusions?

I The Compositional Rule of Inference
I It is a generalization of the following

procedure
I For a curve y = f (x) from x ∈ U to y ∈ V
I x = a and y = f (x)  y = b = f (a).
I Now assume a is an interval and f (x) is

an interval-valued function
I First find a cylindrical set aE with base a
I find I : intersection of AE with the

interval-valued curve.
I The interval b: project I on V

a

b

X ɛ U

yɛ V
f(x)

Farzaneh Abdollahi Computational Intelligence Lecture 5 8/17



Outline Classical Logic Fuzzy Logic

I How do we determine the membership
functions of the fuzzy propositions in the
conclusions?

I The Compositional Rule of Inference
I It is a generalization of the following

procedure
I For a curve y = f (x) from x ∈ U to y ∈ V
I x = a and y = f (x)  y = b = f (a).
I Now assume a is an interval and f (x) is

an interval-valued function
I First find a cylindrical set aE with base a
I find I : intersection of AE with the

interval-valued curve.
I The interval b: project I on V

a

X ɛ U

yɛ V

f(x)

Farzaneh Abdollahi Computational Intelligence Lecture 5 8/17



Outline Classical Logic Fuzzy Logic

I How do we determine the membership
functions of the fuzzy propositions in the
conclusions?

I The Compositional Rule of Inference
I It is a generalization of the following

procedure
I For a curve y = f (x) from x ∈ U to y ∈ V
I x = a and y = f (x)  y = b = f (a).
I Now assume a is an interval and f (x) is

an interval-valued function
I First find a cylindrical set aE with base a
I find I : intersection of AE with the

interval-valued curve.
I The interval b: project I on V

a

X ɛ U

yɛ V

f(x)

aE

Farzaneh Abdollahi Computational Intelligence Lecture 5 8/17



Outline Classical Logic Fuzzy Logic

I How do we determine the membership
functions of the fuzzy propositions in the
conclusions?

I The Compositional Rule of Inference
I It is a generalization of the following

procedure
I For a curve y = f (x) from x ∈ U to y ∈ V
I x = a and y = f (x)  y = b = f (a).
I Now assume a is an interval and f (x) is

an interval-valued function
I First find a cylindrical set aE with base a
I find I : intersection of AE with the

interval-valued curve.
I The interval b: project I on V

a

X ɛ U

yɛ V

f(x)

aE

I

Farzaneh Abdollahi Computational Intelligence Lecture 5 8/17



Outline Classical Logic Fuzzy Logic

I How do we determine the membership
functions of the fuzzy propositions in the
conclusions?

I The Compositional Rule of Inference
I It is a generalization of the following

procedure
I For a curve y = f (x) from x ∈ U to y ∈ V
I x = a and y = f (x)  y = b = f (a).
I Now assume a is an interval and f (x) is

an interval-valued function
I First find a cylindrical set aE with base a
I find I : intersection of AE with the

interval-valued curve.
I The interval b: project I on V

a

X ɛ U

yɛ V

f(x)

aE

I

b

Farzaneh Abdollahi Computational Intelligence Lecture 5 8/17



Outline Classical Logic Fuzzy Logic

Compositional Rule of Inference.

I Assume the A′ is a fuzzy set in U and Q is a fuzzy relation in U × V .

I Then A′E is cylindrical extension of A′: µA′E
(x , y) = µA′(x)

I I = A′E ∩ Q µI = t{µA′E
(x , y), µQ(x , y)} = t{µA′(x), µQ(x , y)}

I B ′ proj. of I on V : µB′(y) = supx∈U t{µA′(x), µQ(x , y)}
I It is compositional rule of inference.
I Generalized Modus Ponens:

I Fuzzy set A′:premise x is A′; fuzzy relation A→ B ∈ U × V : premise
IF x is A THEN y is B; fuzzy set B ′ ∈ V : conclusion y is B ′

µB′(y) = supx∈U t[µA′(x), µA→B(x , y)]

I Generalized Modus Tollens:
I Fuzzy set B ′:premise y is B ′; fuzzy relation A→ B ∈ U × V : premise

IF x is A THEN y is B; fuzzy set A′ ∈ U: conclusion x is A′

µA′(x) = supy∈V t[µB′(y), µA→B(x , y)]
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I Generalized Hypothetical Syllogism:
I Fuzzy relation A→ B ∈ U × V : premise IF x is A THEN y is B; Fuzzy

relation B ′ → C ∈ V ×W : premise IF y is B ′ THEN z is C ; Fuzzy
relation A→ C ′ ∈ U ×W : conclusion IF x is A THEN z is C ′;
µA→C ′(x , z) = supy∈V t[µA→B(x , y), µB′→C (y , z)]

I Diff. implication principles, definitions of B ′,A′,C ′ and diff t-norms
yields diff. results

I Generalized Modus Ponens:
1. t-norm: min; Mamdani product imp.

1.1 A′ = A  µB′(y) = supx∈U [µA(x)µB(y)] = µB(y)
1.2 A′= very A  µB′ = supx∈U{min[µ2

A(x), µA(x)µB(y)]}
supx∈U{µA(x)} = 1 and x can take any values in U, for any
y ∈ V ,∃x ∈ U s.t.
µA(x) ≥ µB(y) µB′(y) = supx∈U [µA(x)µB(y)] = µB(y)

1.3 A′ is more or less A
 µ1/2

A (x) ≥ µA(x) ≥ µA(x)µB(x) µB′(y) = µB(y)
1.4 A′ = Ā for fixed y ∈ V , µA(x) ↑ µA(x)µB(y) ↑ .1− µA(x) ↓,

supx∈U min is obtained when

1− µA(x) = µA(x)µB(y) µB′(y) = µB (y)
1+µB (y)
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p1,p3, and p5 are achieved
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Generalized Modus Ponens

2 t-norm: min; Zadeh imp., Assume supx∈U [µA(x)] = 1
2.1 A′ = A µB′(y) = supx∈U min{µA(x),max[min(µA(x), µB(y)), 1− µA(x)]}

I supx∈U [µA(x)] = 1 supx∈U min is achieved at x0 ∈ U when
µA(x0) = max[min(µA(x0), µB(y)), 1− µA(x0)]

I If µA(x0) < µB(y) µA(x0) = max[µA(x0), 1− µA(x0)], it is true when
µA(x0) ≥ 0.5, since supx∈U [µA(x)] = 1 µB(y) > µA(x0) = 1 impossible!

I µA(x0) ≥ µB(y) µA(x0) = max[µB(y), 1− µA(x0)], If
µB(y) < 1− µA(x0) µA(x0) = 1− µA(x0) µA(x0) = 0.5; If
µB(y) ≥ 1− µA(x0) µA(x0) = max[0.5, µB(y)]

I ∴µB′(y) = µA(x0) = max[0.5, µB(y)]
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Generalized Modus Ponens

2 t-norm: min; Zadeh imp., Assume supx∈U [µA(x)] = 1
2.2 A′ = very A

µB′(y) = supx∈U min{µ2
A(x),max[min(µA(x), µB(y)), 1− µA(x)]}

I supx∈U [µA(x)] = 1 supx∈U min is achieved at x0 ∈ U when
µ2

A(x0) = max[min(µA(x0), µB(y)), 1− µA(x0)]
I If µA(x0) < µB(y) µ2

A(x0) = max[µA(x0), 1− µA(x0)], it is true when
µA(x0) = 1,  µB(y) > 1 impossible!

I µA(x0) ≥ µB(y) µ2
A(x0) = max[µB(y), 1− µA(x0)], If

µB(y) < 1− µA(x0) µ2
A(x0) = 1− µA(x0) µA(x0) =

√
5−1
2
, µB′(y) =

µ2
A(x0) = 3−

√
5

2
; If µB(y) ≥ 1− µA(x0) µB′(y) = µ2

A(x0) = µB(y) ≥ 3−
√

5
2

I ∴µB′(y) = µ2
A(x0) = max[ 3−

√
5

2
, µB(y)]
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Generalized Modus Ponens
2 t-norm: min; Zadeh imp., Assume supx∈U [µA(x)] = 1

2.3 A′ = more or less A
µB′(y) = supx∈U min{µ1/2

A (x),max[min(µA(x), µB(y)), 1− µA(x)]}
I supx∈U [µA(x)] = 1 supx∈U min is achieved at x0 ∈ U when

µ
1/2
A (x0) = max[min(µA(x0), µB(y)), 1− µA(x0)]

I similar to the previous case If µA(x0) < µB(y) is impossible!
I µA(x0) ≥ µB(y) µ1/2

A (x0) = max[µB(y), 1− µA(x0)],

If µB(y) < 1− µA(x0) µ1/2
A (x0) = 1− µA(x0) µA(x0) = 3−

√
5

2
, µB′(y) =

µ
1/2
A (x0) =

√
5−1
2

;

If µB(y) ≥ 1− µA(x0) µB′(y) = µ
1/2
A (x0) = µB(y) ≥

√
5−1
2

I ∴µB′(y) = µ
1/2
A (x0) = max[

√
5−1
2
, µB(y)]

2.4 A′ = Ā
µB′(y) = supx∈U min{1− µA(x),max[min(µA(x), µB(y)), 1− µA(x)]}

I µA(x0) = 0 1− µA(x0) = 1 and max[min(µA(x), µB(y)), 1− µA(x)] = 1
I ∴µB′(y) = 1

p6 is satisfied
Farzaneh Abdollahi Computational Intelligence Lecture 5 13/17



Outline Classical Logic Fuzzy Logic

Generalized Modus Tollens
1. t-norm: min; Mamdani product imp.

1.1 B ′ = B̄  µA′(x) = supy∈V [1− µB(y), µA(x)µB(y)]
I supy∈V min is at y0 ∈ V s.t.

1− µB(y0) = µA(x)µB(y0) µB(y0) = 1
1+µA(x)

I ∴µA′(x) = 1− µB(y0) = µA(x)
1+µA(x)

1.2 B ′= is not very B  µA′(x) = supy∈V {min[1− µ2
B(y), µA(x)µB(y)]}

I supy∈V min is at y0 ∈ V s.t.

1− µ2
B(y0) = µA(x)µB(y0) µB(y0) =

√
µ2

A
(x)+4−µA(x)

2

I ∴µA′(x) = 1− µB(y0)µA(x) =
µA(x)
√
µ2

A
(x)+4−µ2

A(x)

2

1.3 B ′ is more or less B
 µA′(x) = supy∈V {min[1− µ1/2

B (y), µA(x)µB(y)]}
I supy∈V min is at y0 ∈ V s.t.

1− µ1/2
B (y0) = µA(x)µB(y0) µB(y0) =

1+2µA(x)−
√
µ2

A
(x)+1

2µ2
A
(x)

I ∴µA′(x) = µA(x)µB(y0) =
1+2µA(x)−

√
µ2

A
(x)+1

2µA(x)
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Generalized Modus Tollens

1. t-norm: min; Mamdani product imp.
1.4 B ′ = B  µA′(x) = supy∈V {min[µB(y), µA(x)µB(y)]} =

supy∈V µB(y)µA(x) = µA(x)
I ∴µA′(x) = µA(x)
I t1 is satisfied : y is B x is A
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Generalized Hypothetical Syllogism

1. t-norm: min; Mamdani product imp.
1.1 B ′ = B  µA→C ′(x , z) = supy∈V {min[µA(x)µB(y), µB(y)µC (z)]} =

(supy∈V µB(y)) min[µA(x), µC (z)]
I supy∈V [µB(y)] = 1 µA→C ′(x , z) = min[µA(x), µC (z)]

1.2 B ′ = very B  µA→C ′(x , z) = supy∈V {min[µA(x)µB(y), µ2
B(y)µC (z)]}

I If µA(x) > µC (z) µA(x)µB(y) > µ2
B(y)µC (z)

I ∴µA→C ′(x , z) = supy∈V [µ2
B(y)µC (z)] = µC (z)

I If µA(x) ≤ µC (z) supy∈V min is at

y0 ∈ V , µA(x)µB(y0) = µ2
B(y0)µC (z)

I ∴µB(y0) = µA(x)
µC (z)
 µA→C ′(x , z) = µA(x)µB(y0) =

µ2
A(x)

µC (z)

I ∴µA→C ′(x , z) =

{
µC (z) if µC (z) < µA(x)
µ2

A(x)

µC (z)
if µC (z) ≥ µA(x)
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Generalized Hypothetical Syllogism

1. t-norm: min; Mamdani product imp.
1.3 B ′ = more or less B
 µA→C ′(x , z) = supy∈V {min[µA(x)µB(y), µ

1/2
B (y)µC (z)]}

I Using similar method to B ′ =very B

I µA→C ′(x , z) =

{
µA(x) if µA(x) < µC (z)
µ2

C (z)

µA(x)
if µA(x) ≥ µC (z)

1.4 B ′ = B̄  µA→C ′(x , z) = supy∈V {min[µA(x)µB(y), (1− µB(y))µC (z)]}
I supy∈V min is achieved at µB(y0) = µC (z)

µA(x)+µC (z)

I ∴µA→C ′(x , z) = µA(x)µC (z)
µA(x)+µC (z)
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