

Computational Intelligence Lecture 5:Fuzzy Logic

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

Farzaneh	

э

A E > A E >

Classical Logic

Fuzzy Logic The Compositional Rule of Inference Generalized Modus Ponens Generalized Modus Tollens Generalized Hypothetical Syllogism

3

∃ ► < ∃ ►</p>

- T

Classical Logic

- Logic is the study of methods and principles of reasoning
 - reasoning means obtaining new propositions from existing propositions.
- In classical logic,
 - The propositions are evaluated by true or false.
 - The relationships between propositions are usually expressed by a truth table.
- ► Logic Formulas: is obtained by combining -, V and A in appropriate algebraic expressions
- Tautology: the always true proposition represented by a logic formula, regardless of the truth values of the basic propositions participating in the formula
 - Example: $(p \rightarrow q) \leftrightarrow (\bar{p} \lor q)$
- Contradiction: the always false proposition represented by a logic formula, regardless of the truth values of the basic propositions participating in the formula

Classical Logic

- Inference rules: the forms of tautologies which are used for making deductive inferences
- Some commonly used inference rules are:
 - ▶ Modus Ponens: $(p \land (p \rightarrow q)) \rightarrow q$
 - Premise 1: x is A
 - Premise 2:IF x is A THEN y is B
 - ► Conclusion: y is B
 - Modus Tollens: $(\bar{q} \land (p \rightarrow q)) \rightarrow \bar{p}$
 - Premise 1: y is not B
 - Premise 2:IF x is A THEN y is B
 - Conclusion: x is not A
 - ▶ Hypothetical Syllogism: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
 - Premise 1: IF x is A THEN y is B
 - Premise 2: IF y is B THEN z is C
 - Conclusion: IF x is A THEN z is C

(4 回) (4 回) (4 回)

In fuzzy logic

- ► The propositions are fuzzy propositions that are evaluated by memberships between 0 and 1.
- The ultimate goal is to provide foundations for approximate reasoning with imprecise propositions
- Consider A, A', B, B' are fuzzy sets
- The fundamental principles are
 - Generalized Modus Ponens:
 - ▶ Premise 1: x is A'
 - Premise 2: IF x is A THEN y is B
 - Conclusion y is B s.t. the closer A' to $A \rightsquigarrow$ the closer B' to B

		x is A' (Premise 1)	y is B' (Conclusion)	
► A' and B' can be	p1	x is A	y is B	
	p2	x is very A	y is very B	
	р3	x is very A	y is B	
	p4	x is more or less A	y is more or less B	
	p5	x is more or less A	y is B	
	рб	x is not A	y is unknown	
	р7	x is not $A \triangleleft \Box$	∢ 🗃 → ⊣y≞is not B 🚊 🗳	
Computational Intelligence Lecture F				

► The fundamental principles are

- Generalized Modus Ponens:
 - Premise 1: x is A'
 - Premise 2: IF x is A THEN y is B
 - Conclusion y is B s.t. the closer A' to $A \rightsquigarrow$ the closer B' to B

		x is A' (Premise 1)	y is B' (Conclusion)			
	p1	x is A	y is B			
be	p2	x is very A	y is very B			
	р3	x is very A	y is B			
	p4	x is more or less A	y is more or less B			
	p5	x is more or less A	y is B			
	рб	x is not A	y is unknown			
	р7	x is not A	y is not B			

► A' and B' can be

- ► If a causal relation between "x is A" and "y is B" is not strong in Premise 2, the satisfaction of p3 and p5 is allowed.
- ▶ p7 is based on "IF x is A THEN y is B, ELSE y is not B."

Fuzzy Logic

► Generalized Modus Tollens:

- Premise 1: y is B'
- Premise 2: IF x is A THEN y is B
- ► Conclusion x is A' s.t. the more different B from B' → the more different A from A'
- A' and B' can be

	y is B' (Premise 1)	x is A' (Conclusion)	
t1	y is B	x is A	
t2	y is not very B	x is very not A	
t3	y is not more or less B	x is not more or less A	
t4	y is B	x is unknown	
t5	y is not B	x is not A	

伺下 イヨト イヨト

3

Generalized Hypothetical Syllogism:

- Premise 1: IF x is A THEN y is B
- Premise 2: IF y is B' THEN z is C
- Conclusion: IF x is A THEN z is C' s.t. the closer B to B' → the closer C to C'

		y is B' (Premise 1)	z is C' (Conclusion)
► A' and B' can be	s1	y is B	z is C
	s2	y is very B	z is more or less C
	s3	y is very B	z is C
	s4	y is more or less B	z is very C
	s5	y is more or less B	z is C
	sб	y is not B	z is unknown
	s5	y is not B	z is not C

- ► For *s*2
 - 1. change Premise 1 to IF x is very A THEN y is very B
 - 2. \therefore in Conclusion: IF x is very A THEN z is C
 - 3. To cancel very, use more or less
 - 4. \therefore IF x is A THEN z is more or less C

- 4 同 ト 4 ヨ ト 4 ヨ ト

Outline	Classical Logic		Fuzzy Logic		
	 Premise 1: IF x is A THEN y is B Premise 2: IF y is B' THEN z is C 				
	• Conclusion: IF x is A THEN z is C' s.t. the closer B to $B' \rightarrow$ the				
	closer C to C'				
			y is B' (Premise 1)	z is C' (Conclusion)	
		s1	y is B	z is C	
		s2	y is very B	z is more or less C	
	► A' and B' can be	s3	y is very B	z is C	
		s4	y is more or less B	z is very C	
		s5	y is more or less B	z is C	
		sб	y is not B	z is unknown	
		s5	y is not B	z is not C	
	F A				

► For *s*2

- 1. change Premise 1 to IF x is very A THEN y is very B
- 2. \therefore in Conclusion: IF x is very A THEN z is C
- 3. To cancel very, use more or less
- 4. \therefore IF x is A THEN z is more or less C
- The mentioned intuitive criteria are based on approximate reasoning used in daily life They are not necessarily true for classical cases =

How do we determine the membership functions of the fuzzy propositions in the conclusions?

► The Compositional Rule of Inference

- It is a generalization of the following procedure
 - For a curve y = f(x) from $x \in U$ to $y \in V$
 - x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - First find a cylindrical set a_E with base a
 - ▶ find *I*: intersection of A_E with the interval-valued curve.
 - ▶ The interval *b*: project *I* on *V*

How do we determine the membership functions of the fuzzy propositions in the conclusions?

► The Compositional Rule of Inference

- It is a generalization of the following procedure
 - For a curve y = f(x) from $x \in U$ to $y \in V$
 - x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - First find a cylindrical set a_E with base a
 - ▶ find *I*: intersection of A_E with the interval-valued curve.
 - ▶ The interval *b*: project *I* on *V*

- ₹ ⊒ →

How do we determine the membership functions of the fuzzy propositions in the conclusions?

► The Compositional Rule of Inference

- It is a generalization of the following procedure
 - For a curve y = f(x) from $x \in U$ to $y \in V$
 - x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - First find a cylindrical set a_E with base a
 - ▶ find *I*: intersection of A_E with the interval-valued curve.
 - ▶ The interval *b*: project *I* on *V*

- How do we determine the membership functions of the fuzzy propositions in the conclusions?
- ► The Compositional Rule of Inference
 - It is a generalization of the following procedure
 - For a curve y = f(x) from $x \in U$ to $y \in V$
 - x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - First find a cylindrical set a_E with base a
 - ▶ find *I*: intersection of A_E with the interval-valued curve.
 - The interval b: project I on V

- How do we determine the membership functions of the fuzzy propositions in the conclusions?
- ► The Compositional Rule of Inference
 - It is a generalization of the following procedure
 - For a curve y = f(x) from $x \in U$ to $y \in V$
 - x = a and $y = f(x) \rightsquigarrow y = b = f(a)$.
 - Now assume a is an interval and f(x) is an interval-valued function
 - First find a cylindrical set a_E with base a
 - ▶ find *I*: intersection of A_E with the interval-valued curve.
 - The interval b: project I on V

▶ Assume the A' is a fuzzy set in U and Q is a fuzzy relation in $U \times V$.

Fuzzy Logic

- ▶ Then A'_E is cylindrical extension of A': $\mu_{A'_E}(x, y) = \mu_{A'}(x)$
- $\blacktriangleright I = A'_E \cap Q \rightsquigarrow \mu_I = t\{\mu_{A'_E}(x, y), \mu_Q(x, y)\} = t\{\mu_{A'}(x), \mu_Q(x, y)\}$
- ► B' proj. of I on $V : \mu_{B'}(y) = \sup_{x \in U} t\{\mu_{A'}(x), \mu_Q(x, y)\}$
- It is compositional rule of inference.
- Generalized Modus Ponens:
 - ► Fuzzy set *A*':premise *x* is *A*'; fuzzy relation $A \rightarrow B \in U \times V$: premise IF *x* is *A* THEN *y* is *B*; fuzzy set $B' \in V$: conclusion *y* is *B*' $\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{A \rightarrow B}(x, y)]$
- Generalized Modus Tollens:
 - ► Fuzzy set *B*':premise *y* is *B*'; fuzzy relation $A \rightarrow B \in U \times V$: premise IF *x* is *A* THEN *y* is *B*; fuzzy set $A' \in U$: conclusion *x* is *A*' $\mu_{A'}(x) = \sup_{y \in V} t[\mu_{B'}(y), \mu_{A \rightarrow B}(x, y)]$

・ロト ・ 雪 ト ・ ヨ ト ・ 日 ト

- Generalized Hypothetical Syllogistin
 - Fuzzy relation $A \rightarrow B \in U \times V$: premise IF x is A THEN y is B; Fuzzy relation $B' \rightarrow C \in V \times W$: premise IF y is B' THEN z is C; Fuzzy relation $A \rightarrow C' \in U \times W$: conclusion IF x is A THEN z is C': $\mu_{A \to C'}(x, z) = \sup_{y \in V} t[\mu_{A \to B}(x, y), \mu_{B' \to C}(y, z)]$

Fuzzy Logic

- ▶ Diff. implication principles, definitions of B', A', C' and diff t-norms vields diff. results
- Generalized Modus Ponens:
 - 1. t-norm: min; Mamdani product imp.

1.1
$$A' = A \rightsquigarrow \mu_{B'}(y) = \sup_{x \in U} [\mu_A(x)\mu_B(y)] = \mu_B(y)$$

1.2 $A' = \operatorname{very} A \rightsquigarrow \mu_{B'} = \sup_{x \in U} \{\min[\mu_A^2(x), \mu_A(x)\mu_B(y)]\}$
 $\sup_{x \in U} \{\mu_A(x)\} = 1 \text{ and } x \text{ can take any values in } U, \text{ for any } y \in V, \exists x \in U \text{ s.t.}$
 $\mu_A(x) \ge \mu_B(y) \rightsquigarrow \mu_{B'}(y) = \sup_{x \in U} [\mu_A(x)\mu_B(y)] = \mu_B(y)$
1.3 $A' \text{ is more or less } A$
 $\rightsquigarrow \mu_A^{1/2}(x) \ge \mu_A(x) \ge \mu_A(x)\mu_B(x) \rightsquigarrow \mu_{B'}(y) = \mu_B(y)$
1.4 $A' = \overline{A} \text{ for fixed } y \in V, \mu_A(x) \uparrow \rightsquigarrow \mu_A(x)\mu_B(y) \uparrow .1 - \mu_A(x) \downarrow,$
 $\sup_{x \in U} \min \text{ is obtained when}$
 $1 - \mu_A(x) = \mu_A(x)\mu_B(y) \leadsto \mu_{B'}(y) = \frac{\mu_B(y)}{1 + \mu_B(y)}$

- ► Fuzzy relation $A \to B \in U \times V$: premise IF x is A THEN y is B; Fuzzy relation $B' \to C \in V \times W$: premise IF y is B' THEN z is C; Fuzzy relation $A \to C' \in U \times W$: conclusion IF x is A THEN z is C'; $\mu_{A \to C'}(x, z) = \sup_{y \in V} t[\mu_{A \to B}(x, y), \mu_{B' \to C}(y, z)]$
- ► Diff. implication principles, definitions of B', A', C' and diff t-norms yields diff. results
- **Generalized Modus Ponens:**
 - 1. t-norm: min; Mamdani product imp.

1.1
$$A' = A \rightsquigarrow \mu_{B'}(y) = \sup_{x \in U} [\mu_A(x)\mu_B(y)] = \mu_B(y)$$

1.2 $A' = \operatorname{very} A \rightsquigarrow \mu_{B'} = \sup_{x \in U} \{\min[\mu_A^2(x), \mu_A(x)\mu_B(y)]\}$
 $\sup_{x \in U} \{\mu_A(x)\} = 1 \text{ and } x \text{ can take any values in } U, \text{ for any } y \in V, \exists x \in U \text{ s.t.}$
 $\mu_A(x) \ge \mu_B(y) \rightsquigarrow \mu_{B'}(y) = \sup_{x \in U} [\mu_A(x)\mu_B(y)] = \mu_B(y)$
1.3 $A' \text{ is more or less } A$
 $\rightsquigarrow \mu_A^{1/2}(x) \ge \mu_A(x) \ge \mu_A(x)\mu_B(x) \rightsquigarrow \mu_{B'}(y) = \mu_B(y)$
1.4 $A' = \overline{A} \text{ for fixed } y \in V, \mu_A(x) \uparrow \rightsquigarrow \mu_A(x)\mu_B(y) \uparrow .1 - \mu_A(x) \downarrow,$
 $\sup_{x \in U} \min \text{ is obtained when } 1 - \mu_A(x) = \mu_A(x)\mu_B(y) \rightsquigarrow \mu_{B'}(y) = \frac{\mu_B(y)}{1 + \mu_B(y)}$

Generalized Modus Ponens

- 2 t-norm: min; Zadeh imp., Assume $\sup_{x \in U}[\mu_A(x)] = 1$
 - 2.1 $A' = A \mu_{B'}(y) = \sup_{x \in U} \min\{\mu_A(x), \max[\min(\mu_A(x), \mu_B(y)), 1 \mu_A(x)]\}$
 - ▶ $\sup_{x \in U} [\mu_A(x)] = 1 \rightarrow \sup_{x \in U} \min \text{ is achieved at } x_0 \in U \text{ when } \mu_A(x_0) = \max[\min(\mu_A(x_0), \mu_B(y)), 1 \mu_A(x_0)]$
 - ▶ If $\mu_A(x_0) < \mu_B(y) \rightsquigarrow \mu_A(x_0) = \max[\mu_A(x_0), 1 \mu_A(x_0)]$, it is true when $\mu_A(x_0) \ge 0.5$, since $\sup_{x \in U} [\mu_A(x)] = 1 \rightsquigarrow \mu_B(y) > \mu_A(x_0) = 1$ impossible!
 - $\mu_A(x_0) \ge \mu_B(y) \rightsquigarrow \mu_A(x_0) = \max[\mu_B(y), 1 \mu_A(x_0)], \text{ If }$ $\mu_B(y) < 1 - \mu_A(x_0) \leadsto \mu_A(x_0) = 1 - \mu_A(x_0) \leadsto \mu_A(x_0) = 0.5; \text{ If }$ $\mu_B(y) \ge 1 - \mu_A(x_0) \leadsto \mu_A(x_0) = \max[0.5, \mu_B(y)]$
 - $\therefore \mu_{B'}(y) = \mu_A(x_0) = \max[0.5, \mu_B(y)]$

Generalized Modus Ponens

2 t-norm: min; Zadeh imp., Assume
$$\sup_{x \in U} [\mu_A(x)] = 1$$

2.2 $A' = \operatorname{very} A$
 $\mu_{B'}(y) = \sup_{x \in U} \min \{\mu_A^2(x), \max[\min(\mu_A(x), \mu_B(y)), 1 - \mu_A(x)]\}$
• $\sup_{x \in U} [\mu_A(x)] = 1 \rightsquigarrow \sup_{x \in U} \min \text{ is achieved at } x_0 \in U \text{ when}$
 $\mu_A^2(x_0) = \max[\min(\mu_A(x_0), \mu_B(y)), 1 - \mu_A(x_0)]$
• If $\mu_A(x_0) < \mu_B(y) \rightsquigarrow \mu_A^2(x_0) = \max[\mu_A(x_0), 1 - \mu_A(x_0)]$, it is true when
 $\mu_A(x_0) = 1, \ \Rightarrow \mu_B(y) > 1 \text{ impossible!}$
• $\mu_A(x_0) \ge \mu_B(y) \rightsquigarrow \mu_A^2(x_0) = \max[\mu_B(y), 1 - \mu_A(x_0)]$, If
 $\mu_B(y) < 1 - \mu_A(x_0) \rightsquigarrow \mu_A^2(x_0) = 1 - \mu_A(x_0) \rightsquigarrow \mu_A(x_0) = \frac{\sqrt{5}-1}{2}, \mu_{B'}(y) =$
 $\mu_A^2(x_0) = \frac{3 - \sqrt{5}}{2}; \text{ If } \mu_B(y) \ge 1 - \mu_A(x_0) \rightsquigarrow \mu_{B'}(y) = \mu_A^2(x_0) = \mu_B(y) \ge \frac{3 - \sqrt{5}}{2}$

<ロ> <同> <同> < 同> < 同>

2

12/17

Generalized Modus Ponens

2 t-norm: min; Zadeh imp., Assume sup $_{x \in U}[\mu_A(x)] = 1$

2.3
$$A' = \text{more or less } A$$

 $\mu_{B'}(y) = \sup_{x \in U} \min\{\mu_A^{1/2}(x), \max[\min(\mu_A(x), \mu_B(y)), 1 - \mu_A(x)]\}$

- ► $\sup_{x \in U} [\mu_A(x)] = 1 \rightarrow \sup_{x \in U} \min$ is achieved at $x_0 \in U$ when $\mu_A^{1/2}(x_0) = \max[\min(\mu_A(x_0), \mu_B(y)), 1 - \mu_A(x_0)]$
- similar to the previous case If $\mu_A(x_0) < \mu_B(y)$ is impossible!
- $\mu_A(x_0) \ge \mu_B(y) \rightsquigarrow \mu_A^{1/2}(x_0) = \max[\mu_B(y), 1 \mu_A(x_0)],$ If $\mu_B(y) < 1 - \mu_A(x_0) \rightsquigarrow \mu_A^{1/2}(x_0) = 1 - \mu_A(x_0) \rightsquigarrow \mu_A(x_0) = \frac{3 - \sqrt{5}}{2}, \mu_{B'}(y) = \mu_A^{1/2}(x_0) = \frac{\sqrt{5} - 1}{2};$ If $\mu_B(y) \ge 1 - \mu_A(x_0) \leadsto \mu_{B'}(y) = \mu_A^{1/2}(x_0) = \mu_B(y) \ge \frac{\sqrt{5} - 1}{2}$ • $\therefore \mu_{B'}(y) = \mu_A^{1/2}(x_0) = \max[\frac{\sqrt{5} - 1}{2}, \mu_B(y)]$

2.4
$$A' = \overline{A}$$

 $\mu_{B'}(y) = \sup_{x \in U} \min\{1 - \mu_A(x), \max[\min(\mu_A(x), \mu_B(y)), 1 - \mu_A(x)]\}$
 $\models \mu_A(x_0) = 0 \longrightarrow 1 - \mu_A(x_0) = 1 \text{ and } \max[\min(\mu_A(x), \mu_B(y)), 1 - \mu_A(x)] = 1$
 $\models \therefore \mu_{B'}(y) = 1$

p6 is satisfied

伺下 くヨト くヨト

Generalized Modus Tollens

1. t-norm: min; Mamdani product imp.

1.1
$$B' = \bar{B} \rightsquigarrow \mu_{A'}(x) = \sup_{y \in V} [1 - \mu_B(y), \mu_A(x)\mu_B(y)]$$

 $\Rightarrow \sup_{y \in V} \min \text{ is at } y_0 \in V \text{ s.t.}$
 $1 - \mu_B(y_0) = \mu_A(x)\mu_B(y_0) \rightsquigarrow \mu_B(y_0) = \frac{1}{1 + \mu_A(x)}$
 $\Rightarrow \therefore \mu_{A'}(x) = 1 - \mu_B(y_0) = \frac{\mu_A(x)}{1 + \mu_A(x)}$
1.2 $B' = \text{ is not very } B \rightsquigarrow \mu_{A'}(x) = \sup_{y \in V} \{\min[1 - \mu_B^2(y), \mu_A(x)\mu_B(y)]\}$
 $\Rightarrow \sup_{y \in V} \min \text{ is at } y_0 \in V \text{ s.t.}$
 $1 - \mu_B^2(y_0) = \mu_A(x)\mu_B(y_0) \rightsquigarrow \mu_B(y_0) = \frac{\sqrt{\mu_A^2(x) + 4} - \mu_A(x)}{2}$
 $\Rightarrow \therefore \mu_{A'}(x) = 1 - \mu_B(y_0)\mu_A(x) = \frac{\mu_A(x)\sqrt{\mu_A^2(x) + 4} - \mu_A^2(x)}{2}$
1.3 $B' \text{ is more or less } B$
 $\rightsquigarrow \mu_{A'}(x) = \sup_{y \in V} \{\min[1 - \mu_B^{1/2}(y), \mu_A(x)\mu_B(y)]\}$
 $\Rightarrow \sup_{y \in V} \min \text{ is at } y_0 \in V \text{ s.t.}$
 $1 - \mu_B^{1/2}(y_0) = \mu_A(x)\mu_B(y_0) \rightsquigarrow \mu_B(y_0) = \frac{1 + 2\mu_A(x) - \sqrt{\mu_A^2(x) + 1}}{2\mu_A^2(x)}$
 $\Rightarrow \therefore \mu_{A'}(x) = \sup_{y \in V} \{\min[1 - \mu_B^{1/2}(y), \mu_A(x)\mu_B(y)]\}$

Generalized Modus Tollens

- 1. t-norm: min; Mamdani product imp.
 - 1.4 $B' = B \rightsquigarrow \mu_{A'}(x) = \sup_{y \in V} \{\min[\mu_B(y), \mu_A(x)\mu_B(y)]\} = \sup_{y \in V} \mu_B(y)\mu_A(x) = \mu_A(x)$

$$\bullet :: \mu_{A'}(x) = \mu_A(x)$$

• t1 is satisfied : y is $B \rightsquigarrow x$ is A

A E F A E F

1. t-norm: min; Mamdani product imp. 1.1 $B' = B \rightsquigarrow \mu_{A \rightarrow C'}(x, z) = \sup_{y \in V} \{\min[\mu_A(x)\mu_B(y), \mu_B(y)\mu_C(z)]\} =$ $(\sup_{y \in V} \mu_B(y)) \min[\mu_A(x), \mu_C(z)]$ • $\sup_{y \in V} [\mu_B(y)] = 1 \rightarrow \mu_{A \rightarrow C'}(x, z) = \min[\mu_A(x), \mu_C(z)]$ 1.2 $B' = \operatorname{very} B \rightsquigarrow \mu_{A \to C'}(x, z) = \sup_{v \in V} \{\min[\mu_A(x)\mu_B(y), \mu_B^2(y)\mu_C(z)]\}$ • If $\mu_A(x) > \mu_C(z) \rightsquigarrow \mu_A(x) \mu_B(y) > \mu_B^2(y) \mu_C(z)$ • $\mu_{A \to C'}(x, z) = \sup_{y \in V} [\mu_B^2(y)\mu_C(z)] = \mu_C(z)$ • If $\mu_A(x) \leq \mu_C(z) \rightsquigarrow \sup_{v \in V} \min$ is at $y_0 \in V, \mu_A(x)\mu_B(y_0) = \mu_B^2(y_0)\mu_C(z)$ • $\therefore \mu_B(y_0) = \frac{\mu_A(x)}{\mu_C(z)} \rightsquigarrow \mu_{A \to C'}(x, z) = \mu_A(x)\mu_B(y_0) = \frac{\mu_A^2(x)}{\mu_C(z)}$ • $\therefore \mu_{A \to C'}(x, z) = \begin{cases} \mu_C(z) & \text{if } \mu_C(z) < \mu_A(x) \\ \frac{\mu_A^2(x)}{\mu_C(z)} & \text{if } \mu_C(z) \ge \mu_A(x) \end{cases}$

Fuzzy Logic

・ 同 ト ・ ヨ ト ・ ヨ ト …

Generalized Hypothetical Syllogism

- 1. t-norm: min; Mamdani product imp.
 - 1.3 B' = more or less B $\Rightarrow \mu_{A \to C'}(x, z) = \sup_{y \in V} \{\min[\mu_A(x)\mu_B(y), \mu_B^{1/2}(y)\mu_C(z)]\}$ \blacktriangleright Using similar method to B' = very B $\models \mu_{A \to C'}(x, z) = \begin{cases} \mu_A(x) & \text{if } \mu_A(x) < \mu_C(z) \\ \frac{\mu_C^2(z)}{\mu_A(x)} & \text{if } \mu_A(x) \ge \mu_C(z) \end{cases}$ 1.4 $B' = \overline{B} \Rightarrow \mu_{A \to C'}(x, z) = \sup_{y \in V} \{\min[\mu_A(x)\mu_B(y), (1 - \mu_B(y))\mu_C(z)]\}$ $\models \sup_{y \in V} \min \text{ is achieved at } \mu_B(y_0) = \frac{\mu_C(z)}{\mu_A(x) + \mu_C(z)}$ $\models \therefore \mu_{A \to C'}(x, z) = \frac{\mu_A(x)\mu_C(z)}{\mu_A(x) + \mu_C(z)}$