
Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Nonlinear Control
Lecture 4: Stability Analysis I

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2009

Farzaneh Abdollahi Nonlinear Control Lecture 4 1/71



Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Autonomous Systems
Lyapunov Stability
Variable Gradient Method
Region of Attraction

Invariance Principle

Linear System and Linearization

Lyapunov and Lasalle Theorem Application
Example: Robot Manipulator
Control Design Based on Lyapunov’s Direct Method
Estimating Region of Attraction

Farzaneh Abdollahi Nonlinear Control Lecture 4 2/71



Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Stability
I Stability theory is divided into three parts:

1. Stability of equilibrium points
2. Stability of periodic orbits
3. Input/output stability

I An equilibrium point (Equ. pt.) is:
I Stable if all solutions starting at nearby points stay nearby.
I Asymptotically Stable if all solutions starting at nearby points not only stay

nearby, but also tend to the Equ. pt. as time approaches infinity.
I Exponentially Stable, if the rate of converging to the Equ. pt. is

exponentially.
I Lyapunov stability theorems give sufficient conditions for stability,

asymptotic stability, and so on.

I Lyapunov stability analysis can be used to show boundedness of the
solution even when the system has no equilibrium points.

I The theorems provide necessary conditions for stability are so-called
converse theorems.
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I The most popular method for studying
stability of nonlinear systems is introduced by
a Russian mathematician named Alexander
Mikhailovich Lyapunov

I Lyapunov’s work ”The General Problem of
Motion Stability published in 1892 includes
two methods:

I Linearization Method: studies nonlinear
local stability around an Equ. point from
stability properties of its linear
approximation

I Direct Method: not restricted to local
motion. Stability of nonlinear system is
studied by proposing a scalar energy-like
function for the system and examining
its time variation

I His work was then introduced by other
scientists like Poincare and Lasalle

http://en.wikipedia.org/wiki/Aleksandr_Lyapunov
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Autonomous Systems

I Consider the autonomous system:
ẋ = f (x)

where f : D −→ Rn is a locally Lip. function on a domain D ⊂ Rn.

I Let x̄ ∈ D be an Equ. point, that is f (x̄) = 0.

I Objective: To characterize stability of x̄ .
I without loss of generality (wlog), let x̄ = 0

I If x̄ 6= 0, introduce a coordinate transformation: y = x − x̄ , then
I ẏ = ẋ = f (y + x̄) = g(y) with g(0) = 0
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I The Equ. point x = 0 of ẋ = f (x) is:
I stable, if for each ε > 0, ∃ δ = δ(ε) > 0

s.t.

‖x(0)‖ < δ =⇒ ‖x(t)‖ < ε ∀t ≥ 0

I unstable, if it is not stable
I asymptotically stable, if it is stable and
δ can be chosen s.t.

‖x(0)‖ < δ =⇒ lim
t−→∞

x(t) = 0

I ∴ Lyapunov stability means that the
system trajectory can be kept arbitrary
close to the origin by starting sufficiently
close to it.

I An Equ. point which is Lypunov stabile
but not asymptotically stable is called
Marginally stable
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I Example: Van Der Pol Oscillator
I Recall from Lecture 2: Van der pol

oscillator dynamics:
ẋ1 = x2

ẋ2 = −x1 + (1− x1)2x2

I All system trajectories start except from
origin, asymptotically approaches a limit
cycle.

I ∴ Even the system states remain around
the Equ. point in a certain sense, the
can not stay arbitrarily close to it.

I So the Equ. point is unstable.

I Implicit in Lyapunov stability condition is
that the sol. are defined ∀t ≥ 0.

I This is not guaranteed by local Lip.
I The additional condition imposed by

Lyapunov theorem will ensure global existence
of sol.
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Lyapunov Stability
I Physical Motivation

I Consider the pendulum example (recall Lecture 2):

ẋ1 = x2

ẋ2 =
−g

l
sinx1 −

k

m
x2

I In first period it has two Equ. pts. (x1 = 0, x2 = 0) & (x1 = π, x2 = 0)

I For frictionless pendulum, i.e. k = 0 : trajectories are closed orbits in
neighborhood of 1st Equ. pt.  ε− δ requirement for stability is satisfied.

I However, it is not asymptotically stable.

I For Pendulum with friction, i.e. k > 0
the 1st Eq. pt. is a stable focus  ε− δ requirement for asymptotic
stability is satisfied.
the 2nd Eq. pt. is a saddle point  ε− δ requirement is not satisfied  it
is unstable

Farzaneh Abdollahi Nonlinear Control Lecture 4 8/71



Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

I To generalize the phase-plane analysis, consider the energy associated
with the pendulum:

E (x) =
1

2
x2
2 +

∫ x1

0

g

l
sin y dy =

1

2
x2
2 +

g

l
(1− cosx1), E (0) = 0

I If k = 0, system is conservative, i.e. there is no dissipation of energy:
I E = constant during the motion of the system.
I ∴ dE

dt = 0 along the traj. of the system.

I If k > 0, energy is being dissipated
I dE

dt < 0 along the traj. of the system.
I ∴ E starts to decrease until it eventually reaches zero, at that pt. x = 0.

I Lyapunov showed that certain other function can be used instead of
energy function to determine stability of an Equ. pt.
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Lyapunov’s Direct Method:

I Let x = 0 be an Equ. pt. for ẋ = f (x). Let V : D −→ R, D ⊂ Rn be a
continuously differentiable function on a neighborhood D of x = 0, s.t.

1. V (0) = 0
2. V (x) > 0 in D − {0}
3. V̇ (x)≤0 in D

Then x = 0 is stable.
Moreover, if V̇ (x)<0 in D − {0} then x = 0 is asymptotically stable.

I The continuously differentiable function V (x) is called a Lyapunov
function.

I The surface V (x) = c , for some c > 0 is called a Lyapunov surface or
level surface.
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Lyapunov Stability

I when V̇ ≤ 0 
when a trajectory crosses a Lyapunov surface V (x) = c , it moves inside
the set Ωc = {x ∈ Rn|V (x) ≤ c} and traps inside Ωc .

I when V̇ < 0 
trajectories move from one level surface to an inner level with smaller c
till V (x) = c shrinks to zero as time goes on

Farzaneh Abdollahi Nonlinear Control Lecture 4 11/71



Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Lyapunov Stability
I A function satisfying V (0) = 0 & V (x) > 0 in D − {0} is said to be

Positive Definite (p.d.)

I If it satisfies a weaker condition V (x) ≥ 0 for x 6= 0 is said to be Positive
Semi-Definite (p.s.d.)

I A function is Negative Definite (n.d.) or Negative Semi-Definite (n.s.d.)
if −V (x) is p.d. or p.s.d., respectively.

I Lyapunov theorem states that:
The origin is stable if there is a continuously differentiable, p.d. function
V (x) s.t. V̇ (x) is n.s.d., and is asymptotically if V̇ (x) is n.d.

I Note that when x is a vector:

V̇ (x) =
∂V

∂x
f (x) =

n∑
i=1

∂V

∂xi
ẋi =

n∑
i=1

∂V

∂xi
fi =

[
∂V
∂x1

· · · ∂V
∂xn

] f1
...

fn
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Lyapunov Stability

I A class of scalar functions for which sign definition can be easily checked
is ”quadratic functions:”

V (x) = xT Px =
n∑

i=1

n∑
j=1

xixjPij

where P = PT is a real matrix.

I V (x) is p.d./p.s.d. iff λi{P} > 0 or λi{P} ≥ 0, i = 1...n

I λi{P} > 0 or λi{P} ≥ 0, i = 1...n iff all leading principle minors of P
are positive or non-negative, respectively.

I If V (x) is p.d. (p.s.d.), we say the matrix P is p.d. (p.s.d.) and write
P > 0 (P ≥ 0).
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Example 1

V (x) = ax2
1 + 2x1x3 + ax2

2 + 4x2x3 + ax2
3

=
[

x1 x2 x3

]  a 0 1
0 a 2
1 2 a

 x1

x2

x3

 = xT Px

I The leading principle minors are

det(a) = a; det

[
a 0
0 a

]
= a2; det

 a 0 1
0 a 2
1 2 a

 = a(a2 − 5)

∴V (x) is p.s.d. if a ≥
√

5, V (x) is p.d. if a >
√

5
I For n.d. the leading principle minors of

I −P should be positive. OR
I P should alternate in sign with the first one neg. (odds: neg., even: pos.)

∴V (x) is n.s.d. if a ≤ −
√

5, V (x) is n.d. if a < −
√

5,
V (x) is sign indefinite for −

√
5 < a <

√
5
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Example 2

I Consider ẋ = −g(x) where g(x) is locally Lip. on
(−a, a) & g(0) = 0, xg(x) > 0, ∀x 6= 0, x ∈ (−a, a). stability?

I origin is Equ. pt.
I Solution 1:

I starting on either side of the origin will have to move toward the origin due
to the sign of ẋ

I ∴ Origin is an isolated Eq. pt. and is asymptotically stable.

I Solution 2: using Lypunov theorem:
I Consider the function V (x) =

∫ x

0
g(y)dy over D = (−a, a).

I V (x) is continuously differentiable, V (0) = 0 and V (x) > 0, ∀x 6= 0 . V
is a valid Lyapunov candidate

I To see if it is really a Lyap. fcn, we have to take its derivative along system
trajectory: V̇ (x) = ∂V

∂x (−g(x)) = −g2(x) < 0, ∀x ∈ D − {0}
I ∴ V (x) is a valid Lyap. fcn  the origin is asymptotically stable.
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Example 3: Frictionless Pendulum

ẋ1 = x2

ẋ2 =
−g

l
sinx1

I Study stability of the Eq. pt. at the origin.

I A natural Lyap. fcn is the energy fcn:

V (x) =
g

l
(1− cosx1) +

1

2
x2
2

I V (0) = 0 and V (x) is p.d. over the domain −2π ≤ x1 ≤ 2π.

I ∴V̇ = g
l ẋ1sinx1 + x2ẋ2 = g

l x2sinx1 − g
l x2sinx1 = 0

I V (x) satisfies the condition of the Lyap. Theorem  origin is stable
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Example 4: Pendulum with Friction
ẋ1 = x2

ẋ2 =
−g

l
sinx1 −

k

m
x2

I Take the energy fcn as a Lyap. fcn candidate

V (x) =
g

l
(1− cosx1) +

1

2
x2
2

I V̇ = − k
mx2

2

I V̇ (x) is n.s.d. It is not since n.d. since V̇ = 0 for x2 = 0 and all x1 6= 0.
the origin is only stable.

I But, phase portrait showed asymptotic stability!!

I Toward this end, let’s choose:

V (x) =
1

2
xT Px +

g

l
(1− cosx1)
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I where P =

[
P11 P12

P12 P22

]
is p.d. (P11 > 0, P22 > 0, P11P22 − P2

12 > 0)

V̇ =
1

2
(ẋT Px + xT Pẋ) +

g

l
ẋ1sinx1 =

g

l
(1− P22)x2sinx1

− g

l
P12x1sinx1 + (P11 − P12

k

m
)x1x2 + (P12 − P22

k

m
)x2

2

I Select P s.t. V̇ is n.d. (cancel sign indefinite factors: x2sinx1 and x1x2)

I P22 = 1, P11 = k
mP12, 0 < P12 <

k
m (for V (x) to be p.d., take

P12 = 1
2

k
m )

∴V̇ = −1

2

g

l

k

m
x1sinx1 −

1

2

k

m
x2
2

I x1sinx1 > 0 ∀ 0 < |x1| < π, defining a domain D by
D = {x ∈ R2| |x1| < π}

I ∴ V (x) is p.d. and V̇ is n.d. over D. Thus, origin is asymptotically
stable (a.s.) by the theorem.
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How Search for A Lyapunov Function?

I Lyapunov theorem is only sufficient.

I Failure of a Lyap. fcn candidate to satisfy the theorem does not mean
the Eq. pt. is unstable.

I Variable Gradient Method
I Idea is working backward:

I Investigated an expression for V̇ (x) and go back to choose the parameters
of V (x) so as to make V̇ (x) n.d.

I Let V = V (x) and g(x) = ∇xV =
(

∂V
∂x

)T
I Then V̇ = ∂V

∂x f = gT f
I Choose g(x) s.t. it would be the gradient of a p.d. fcn V and make V̇ n.d.
I g(x) is the gradient of a scalar fcn iff the Jacobian matrix ∂g

∂x is symmetric:

∂gi

∂xj
=
∂gj

∂xi
, ∀i , j = 1, ..., n
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Variable Gradient Method
I Select g(x) s.t. gT (x)f (x) is n.d.

I Then, V (x) is computed from the integral:

V (x) =

∫ x

0
g(y)dy =

∫ x

0

n∑
i=1

gi (y)dyi

I The integration is taken over any path joining the origin to x . This can
be done along the axes:

V (x) =

∫ x1

0
g1(y1, 0, ..., 0)dy1 +

∫ x2

0
g2(x1, y2, 0, ..., 0)dy2

+ ...+

∫ xn

0
gn(x1, x2, ..., yn)dyn

I By leaving some parameters of g undetermined, one would try to choose
them so that V is p.d.
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Example 5:

ẋ1 = x2

ẋ2 = −h(x1)− ax2

where a > 0, h(.) is locally Lip.,
h(0) = 0, yh(y) > 0, ∀ y 6= 0, y ∈ (−b, c), b, c > 0.

I The pendulum is a special case of this system.

I Find proper Lypunov function?

I Applying variable gradient method, we must find g(x) s.t. ∂g1
∂x2

= ∂g2
∂x1

I V̇ (x) = g1(x)x2 − g2(x)(h(x1) + ax2) < 0, ∀x 6= 0 and

V (x) =

∫ x

0
gT (y)dy > 0 for x 6= 0

I Choose g(x) =

[
α(x)x1 + β(x)x2

γ(x)x1 + δ(x)x2

]
where α, β, γ, δ to be determined
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I To satisfy the symmetry req., we need

β(x) +
∂α

∂x2
x1 +

∂β

∂x2
x2 = γ(x) +

∂γ

∂x1
x1 +

∂δ

∂x1
x2

I V̇ (x) =
α(x)x1x2 + β(x)x2

2 − aγ(x)x1x2 − aδ(x)x2
2 − δ(x)x2h(x1)− γ(x)x1h(x1)

I To cancel the cross terms, let
α(x)x1 − aγ(x)x1 − δ(x)h(x1) = 0

I ∴V̇ (x) = −(aδ(x)− β(x))x2
2 − γ(x)x1h(x1)

I For simplification, let δ(x) = δ = cte, γ(x) = γ = cte, β(x) = β = cte

I ∴α(x) only depends on x1

I symmetry is satisfied if β = γ.

g(x) =

[
aγx1 + δh(x1) + γx2

γx1 + δx2

]
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I By integration, we get

V (x) =

∫ x1

0
(aγy1 + δh(y1))dy1 +

∫ x2

0
(γx1 + δy2)dy2

=
1

2
aγx2

1 + δ

∫ x1

0
h(y)dy + γx1x2 +

1

2
δx2

2

=
1

2
xT Px + δ

∫ x1

0
h(y)dy

I where P =

[
aγ γ
γ δ

]
.

I Choosing δ > 0, 0 < γ < aδ =⇒ V is p.d. & V̇ is n.d.

I e.g., taking γ = akδ, 0 < k < 1 yields

V (x) = δ
2xT

[
ka2 ka
ka 1

]
x + δ

∫ x1

0 h(y)dy

I over D = {x ∈ Rn| − b < x1 < c} conditions of the theorem are satisfied
 x = 0 is asymptotically stable.
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Region of Attraction
I For asymptotically stable Equ. pt.:

How far from the origin can the trajectory be and still converges to the origin as
t −→∞ ?

I Let φ(t, x) be the sol. of ẋ = f (x) starting at x0.
Then, the Region of Attraction (RoA) is defined as
the set of all pts. x s.t. lim

t−→∞
φ(t, x) = 0

I Lyap. fcn can be used to estimate the RoA:
I If there is a Lyap. fcn. satisfying asymptotic stability over domain D,
I and set Ωc = {x ∈ Rn|V (x) ≤ c} is bounded and contained in D
I ∴ all trajectories starting in Ωc remains there and converges to 0 at t →∞.

I Under what condition the RoA be Rn( i.e., the Equ. pt. is globally
asymptotically stable (g.a.s))?

I the conditions of stability theory must hold globally, i.e. D = Rn.
I This not enough!
I for large c , the set Ωc should be kept bounded.

i.e., reduction of V (x) should also result in reduction of ‖x‖.
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Region of Attraction
I Example: V (x) =

x2
1

1+x2
1

+ x2
2

I It’s clear that V (x) can get smaller, but x grows unboundedly

I Babashin-Krasovskii Theorem: Let x = 0 be an Eq. pt. of ẋ = f (x).
Let V : Rn −→ R be a continuously differentiable fcn. s.t.:

I V (0) = 0
I V (x) > 0, ∀x 6= 0
I ‖x‖ −→ ∞ =⇒ V (x) −→∞ (i.e. it is radially unbounded)
I V̇ < 0, ∀x 6= 0

then x = 0 is globally asymptotically stable
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Example 6 : Globally Asymptotically Stable
I Reconsider Example 5 (ẋ = −g(x) where g(x) is locally Lip. on

(−a, a) & g(0) = 0, xg(x) > 0, ∀x 6= 0, x ∈ (−a, a))
I but assume that xg(x) > 0 hold for all x 6= 0.

I The Lyap. fcn:

V (x) =
δ

2
xT

[
ka2 ka
ka 1

]
x + δ

∫ x1

0

h(y)dy

is p.d. ∀x ∈ R2

I V (x) is radially unbounded.
I V̇ = −aδ(1− k)x2

2 − akδx1h(x1) < 0, ∀x ∈ R2

I ∴ origin is g.a.s.

I Important: Since the origin is g.a.s., then it must be the unique Eq. pt.
of the system

I g.a.s. is not satisfied for multiple Equ. pt. problem such as pendulum.
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Instability Theorem
I Chetaev’s Theorem Let x = 0 be an Equ. pt. of ẋ = f (x). Let V : D −→ R

be a continuously differentiable fcn such that V (0) = 0 and V (x0) > 0 for some
x0 with arbitrary small ‖x0‖. Define a set ν = {x ∈ Br |V (x) > 0} where
Br = {x ∈ Rn|‖x‖ < r} and suppose that V̇ (x) is p.d. in ν. Then, x = 0 is
unstable.

I Example:
ẋ1 = x1 + g1(x)

ẋ2 = −x2 + g2(x)

where |gi (x)| ≤ k‖x‖22 in a neighborhood D of origin
I The inequality implies, gi (0) = 0 =⇒ origin is an Equ. pt.

I Consider: V (x) = 1
2 (x2

1 − x2
2 )

I On the line x2 = 0,V (x) > 0.
I V̇ (x) = x2

1 + x2
2 + x1g1(x)− x2g2(x)

I Since |x1g1(x)− x2g2(x)| ≤
2∑

i=1

|xi ||gi (x)| ≤ 2k‖x‖32

I ∴ V̇ (x) ≥ ‖x‖22 − 2k‖x‖32 = ‖x‖22(1− 2k‖x‖2)
I Choosing r s.t. Br ⊂ D and r < 1

2k =⇒ origin is unstable.
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Invariance Principle
I Recall the pendulum example:

ẋ1 = x2

ẋ2 =
−g

l
sinx1 −

k

m
x2

V̇ (x) = −k
m x2

2 which is n.s.d.
I ∴ Lyap. theorem shows only stability. However,

I V̇ is negative everywhere except at x2 = 0 where V̇ = 0.
I To get V̇ = 0, the trajectory must be confined to x2 = 0
I Now, from the model x2(t) ≡ 0 =⇒ ẋ1 ≡ 0 =⇒ x1(t) = cte and

x2(t) ≡ 0 =⇒ ẋ2 ≡ 0 =⇒ sinx1 ≡ 0
I Hence, on the segment −π < x1 < π of x2 = 0 line, the system can

maintain V̇ = 0 only at x = 0.

I Therefore, V (x) decrease to zero and x(t) −→ 0 as t −→∞.

I The idea follows from LaSalle’s Invariance Principle
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Invariance Principle
I Recall that: A point z̄ is called a positive limit point of a sol. x if
∃ a sequence tn, s.t. limn−→∞ tn −→ ∞ and limn−→∞ x(tn) = z̄

I Set of all positive limit points of x(t) is called the positive limit set of x(t)
I A set M is said to be a positively invariant set with respect to ẋ = f (x),

if x(0) ∈ M =⇒ x(t) ∈ M, ∀t ≥ 0
I If a solution belongs to M at some time instant, then it belongs to M for

all future time.

I An a.s. Equ. pt is the positive limit set of every solution starting
sufficiently close to the Equ. pt.

I Also a stable limit cycle is the positive limit set of every solution
starting sufficiently close to the limit cycle. (in which case it is not
converging to any specific point).

I ∴ Equ. points and limit cycle are invariant sets

I Also the set Ω = {x ∈ Rn|V (x) ≤ c} with V̇ ≤ 0 ∀x ∈ Ω is a positively
invariant set.
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Lasalle’s Theorem:

I Let Ω be a compact set with property that every solution of ẋ = f (x)
starting in Ω remains in Ω for all future time.

I Let V : Ω −→ R be a continuously differentiable fcn s.t. V̇ (x) ≤ 0 in Ω.
I Let E be the set of all pts in Ω where V̇ (x) = 0
I Let M be the largest invariant in E .

Then, every sol. starting in Ω approaches M as t −→∞
I Unlike Lyap. theorem, Lasalle’s theorem does not require V (x) to be p.d

I To show a.s. of the origin −→ show largest invariant set in E is the
origin.

I ∴ Show that no solution can stay forever in E other than x = 0.
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Barbashin and Krasovskii Corollaries

I Corollary 1: Let x = 0 be an Equ. pt of ẋ = f (x). Let V : D → R be a
continuously differentiable p.d. fcn on a domain D containing the origin
x = 0, s.t. V̇ (x) ≤ 0 in D. Let S = {x ∈ D|V̇ = 0} and suppose that no
solution can stay identically in S, other than the trivial solution x(t) = 0.
Then, the origin is a.s.

I Corollary 2: Let x = 0 be an Equ. pt. of ẋ = f (x). Let V : Rn −→ R
be a continuously differentiable, radially unbounded, p.d. fcn s.t.
V̇ (x) ≤ 0 ∀x ∈ Rn. Let S = {x ∈ Rn|V̇ = 0} and suppose that no
solution can stay in S forever except x = 0. Then, the origin is g.a.s.
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Example 6:

I Consider ẋ1 = x2

ẋ2 = −g(x1)− h(x2)

where g(.) & h(.) are locally Lip. and satisfy
g(0) = 0, yg(y) > 0 ∀y 6= 0, y ∈ (−a, a)

h(0) = 0, yh(y) > 0 ∀y 6= 0, y ∈ (−a, a)

I The system has an isolated Equ. pt. at origin. Let

V (x) =
1

2
x2
2 +

∫ x1

0
g(y)dy

I D = {x ∈ R2| − a < xi < a} =⇒ V (x) > 0 in D
I V̇ = g(x1)x2 + x2(−g(x1)− h(x2)) = −x2h(x2) ≤ 0
I Thus, V̇ is n.s.d. and the origin is stable by Lyap. theorem
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Example 6:

I Using Lasalle’s theorem, define S = {x ∈ D|V̇ = 0}
I V̇ = 0 =⇒ x2h(x2) = 0 =⇒ x2 = 0, since −a < x2 < a
I Hence S = {x ∈ D|x2 = 0}. Suppose x(t) is a traj. ∈ S ∀t
I ∴ x2(t) ≡ 0 =⇒ ẋ1 ≡ 0 =⇒ x1(t) = c , where c ∈ (−a, a). Also

x2(t) ≡ 0 =⇒ ẋ2 ≡ 0 =⇒ g(c) = 0 =⇒ c = 0

I ∴ Only solution that can stay in S ∀ t ≥ 0 is the origin =⇒ x = 0 is a.s.

I Now, Let a =∞ and assume g satisfy:∫ y

0
g(z)dz −→∞ as |y | −→ ∞.

I The Lyap. fcn V (x) = 1
2x2

2 +
∫ x1

0 g(y)dy is radially unbounded.

I V̇ ≤ 0 in R2 and note that S = {x ∈ R2|V̇ = 0} = {x ∈ R2|x2 = 0}
contains no solution other than origin =⇒ x = 0 is g.a.s.
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Invariance Principle

I Lasalle’s theorem can also extend the Lyap. theorem in three different
directions

1. It gives an estimate f the RoA not necessarily in the form of
Ωc = {x ∈ Rn| V (x) ≤ c}. The set can be any positively invariant set
which leads to less conservative estimate.

2. Can determine stability of Equ. set, rather than isolated Equ. pts.
3. The function V (x) does not have to be positive definite.

I Example 7: shows how to use Lasalle’s theorem for system with Equ.
sets rather than isolated Equ. pts

I A simple adaptive control problem:

ẋ = ax + u a unknown

with the adaptive control law

u = −kx ; k̇ = γx2, γ > 0
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Example 7:
I Let x1 = x , x2 = k , we get:

ẋ1 = −(x2 − a)x1

ẋ2 = γx2
1

I The line x1 = 0 is an Equ. set
I Show that the traj. of closed-loop system approaches this set as t −→ ∞

I i.e. the adaptive system regulates y to zero (x1 −→ 0 as t −→ ∞).

I Consider the Lyap. fcn candidate:

V (x) =
1

2
x2
1 +

1

2γ
(x2 − b)2

where b > a.
I V̇ = −x2

1 (b − a) ≤ 0
I The set Ω = {x ∈ Rn|V (x) ≤ c} is a compact positively invariant set
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Example 7:
I V (x) is radially unbounded =⇒ Lasalle’s theorem conditions are satisfied

with the set E as E = {x ∈ Ω|x1 = 0}

I Since any pt on x1 = 0 line is an Equ. pt, E is an invariant set: M = E .

I Hence, every trajectory starting in Ω approaches E as t −→ ∞, i.e.
x1(t) −→ 0 as t −→ ∞.

I V is radially unbounded =⇒ the result is global

I Note that in the above example the Lyapunov function depends on a
constant b which is required to satisfy b > a

I But it is not known  we may not know the constant b explicitly, but we
know that it always exists.

I This highlights another feature of Lyapunov’s method:
I In some situations, we may be able to assert the existence of a Lyapunov

function that satisfies the conditions, even though we may not explicitly
know that function.
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Linear System and Linearization

I Given ẋ = Ax , the Equ. pt. is at origin

I It is isolated iff det A 6= 0,

I System has an Equ. subspace if det A = 0, the subspace is the null
space of A.

I The system cannot have multiple isolated Equ. pt. since

I Linearity requires that if x1 and x2 are Equ. pts., then all pts. on the line
connecting them should also be Equ. pts.

I Theorem: The Equ. pt. x = 0 of ẋ = Ax is table iff all eigenvalues of
A satisfy Re{λi} ≤ 0 and every eigenvalue with Re{λi} = 0 and algebric
multiplicity qi ≥ 2, rank(A− λi I ) = n − qi , where n is dimension of x.
The Equ. pt. x = 0 is globally asymptotically stable iff Reλi < 0.
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Linear Systems and Linearization

I When all eigenvalues of A satisfy Reλi < 0, A is called a Hurwitz matrix.
I Asymptotic stability can be verified by using Lyapunov’s method :

I Consider a quadratic Lyap. fcn candidate:

V (x) = xT P x , P = PT > 0

V̇ = ẋT Px + xT Pẋ , xT (AT P + PA)x , −xT Q x

where

AT P + P A = −Q, Q = QT Lyapunov Equation

I If Q is p.d., then we conclude that x = 0 is g.a.s.
I We can proceed alternatively as follows:
I Start by choosing Q = QT , Q > 0, then solve the Lyap. eqn. for P.
I If P > 0, then x = 0 is g.a.s.
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Linear Systems and Linearization
I Theorem: A matrix A is a stable matrix, i.e. Re λi < 0 iff for every

given Q = QT > 0, ∃ P = PT > 0 that satisfies the Lyap. eq.
Moreover, if A is a stable matrix, then P is unique.

I Example 8:
A =

[
0 −1
1 −1

]

I Let Q =

[
1 0
0 1

]
= QT > 0

I denote P =

[
P11 P12

P12 P22

]
= PT > 0

I The Lyap. eq. AT P + P A = −Q becomes

2 P12 = −1

−P11 − P12 + P22 = 0

−2 P12 − 2P22 = −1
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Linear Systems and Linearization

 0 2 0
−1 −1 1
0 −2 −2

 P11

P12

P22

 =

 −1
0
−1

 =⇒

 P11

P12

P22

 =

 1.5
−.5

1

 (1)

I Let P = PT =

[
1.5 −.5
−.5 1

]
> 0 =⇒ x = 0 is g.a.s

I Remark: Computationally, there is no advantages in computing the
eigenvalues of A over solving Lyap. eq.
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Linear Systems and Linearization
I Consider ẋ = f (x) where f : D −→ Rn, D ⊂ Rn, is continuously diff. Let

x = 0 is in the interior of D and f (0) = 0.

I Recall the Mean Value Theorem:
If f : Rn −→ Rn is diff at each x of S ⊂ Rn, let x & y be two pts. in S
s.t. the line segment ⊂ S . Then, ∃ a pt. z of the line segment s.t.

f (y)− f (x) =
∂f

∂x

∣∣∣∣
x=z

(y − x)

From M.V.T. we have, f (x) = f (0) + ∂f
∂x

∣∣
x=z

x , where z is a pt. on the
line connecting x to 0.

I Since f (0) = 0
f (x) =

∂f

∂x

∣∣∣∣
x=z

x =
∂f

∂x

∣∣∣∣
x=0

x +

[
∂f

∂x

∣∣∣∣
x=z

− ∂f

∂x

∣∣∣∣
x=0

]
x

, A x + g(x)

where A = ∂f
∂x

∣∣
x=0

, g(x) =
[
∂f
∂x

∣∣
x=z
− ∂f

∂x

∣∣
x=0

]
x
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Linear Systems and Linearization

I We have ‖g(x)‖ ≤ ‖ ∂f
∂x

∣∣
x=z
− ∂f

∂x

∣∣
x=0
‖‖x‖

I Since f is continuous =⇒ ‖g(x)‖
‖x‖ −→ 0 as ‖x‖ −→ 0

I ∴ In a small neighborhood of x = 0, the nonlinear system ẋ = f (x) can
be linearized by ẋ = Ax .

I Theorem (Lyapunov’s First Method):
I Let x = 0 be an Equ. pt. for ẋ = f (x) where f : D −→ Rn is

continuously differentiable and D is a nghd of origin. Let A = ∂f
∂x

∣∣
x=0

,
then

1. x = 0 is a.s. if Reλi < 0, i = 1, ..., n
2. x = 0 is unstable if Reλi > 0, for one or more eigenvalues
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Linear Systems and Linearization
I Example 9: ẋ = ax3

I Linearization about x = 0 yields:

A =
∂f

∂x

∣∣∣∣
x=0

= 3ax2
∣∣
x=0

= 0

I Linearization fails to determine stability
I If a < 0, x = 0 is a.s.
I To see this, let V (x) = x4 =⇒ V̇ = 4x3ẋ = 4ax6 < 0
I If a > 0, x = 0 is unstable using the above Lyap. fcn
I If a <= 0, x = 0 is stable, starting at any x , remains in x

I Example 10:

ẋ1 = x2

ẋ2 = −
(g

l

)
sin x1 −

(
k

m
x2

)
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Linear Systems and Linearization
I Linearization about 2 Equ. pts. (0, 0) & (π, 0):

A =
∂f

∂x
=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
0 1

−g
l cos x1 − k

m

]
I At (0, 0)

I A =

[
0 1
− g

l − k
m

]
,  λ− 1, 2 = − 1

2
k
m ±

1
2

√
( k

m )2 − 4 g
l

I ∴ ∀g , k , l ,m > 0 =⇒ Re(λ1, λ2) < 0 =⇒ x = 0 is a.s.
I If k = 0 =⇒ Re(λ1, λ2) = 0 =⇒ eigenvalues on jω axis
∴ stability cannot be determined.

I At (π, 0) , change the variable to z1 = x1 − π, z2 = x2

I A =

[
0 1
g
l − k

m

]
, λ− 1, 2 = − 1

2
k
m ±

1
2

√
( k

m )2 + 4 g
l

I ∴ ∀g , k , l ,m > 0 =⇒ there is one eigenvalue in the open right-half plane
=⇒ x = 0 is unstable.
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Summary

I Lyapunov Direct Method:The origin of an autonomous system ẋ = f (x)
is stable if there is a continuously differentiable, p.d. function V (x) s.t.

V̇ (x) is n.s.d., and] is asymptotically if V̇ (x) is n.d.
I V (x) is p.d./p.s.d. iff λi{P} > 0/λi{P} ≥ 0 iff all leading principle minors

of P are positive / non-negative.
I Variable Gradient Method: To find a Lyap fcn: Choose g(x) s.t.

1. ∂gi
∂xj

=
∂gj

∂xi

2. gT (x)f (x) is n.d.
3. V (x) =∫ x1

0
g1(y1, 0, ..., 0)dy1 +

∫ x2

0
g2(x1, y2, 0, ..., 0)dy2 + ...+

∫ xn

0
gn(x1, x2, ..., yn)dyn

is P.d.

I Babashin-Krasovskii Theorem: Let x = 0 be an Eq. pt. of ẋ = f (x).
Let V : Rn −→ R be a continuously differentiable fcn. s.t.: V (0) = 0,
V (x) > 0, ∀x 6= 0, ‖x‖ −→ ∞ =⇒ V (x) −→∞ (i.e. it is radially
unbounded), V̇ < 0, ∀x 6= 0 then x = 0 is globally asymptotically stable
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Summery
I Another method for study a.s is defined based on Lasalle Theorem:
I Corollary 1: Let x = 0 be an Equ. pt of ẋ = f (x). Let V : D → R be a

continuously differentiable p.d. fcn on a domain D containing the origin
x = 0, s.t. V̇ (x) ≤ 0 in D.Let S = {x ∈ D|V̇ = 0} and suppose that no
solution can stay identically in S, other than the trivial solution x(t) = 0.
Then, the origin is a.s.

I The origin is g.a.s. if D = Rn, and V (x) is radially unbounded.

I Theorem: A matrix A is a stable matrix, i.e. Re λi < 0 iff for every given
Q = QT > 0, ∃ P = PT > 0 that satisfies the Lyap. eq.
(AT P + P A = −Q, Q = QT ). Moreover, if A is a stable matrix, then
P is unique.

I Theorem (Lyapunov’s First Method): Let x = 0 be an Equ. pt. for
ẋ = f (x) where f : D −→ Rn is continuously differentiable and D is a
nghd of origin. Let A = ∂f

∂x

∣∣
x=0

, then

1. ) x = 0 is a.s. if Reλi < 0, i = 1, ..., n
2. ) x = 0 is unstable if Reλi > 0, for one or more eigenvalues
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Example: Robot Manipulator
I Dynamics:

M(q)q̈ + C (q, q̇)q̇ + Bq̇ + g(q) = u (2)

where M(q) is the n × n inertia matrix of the manipulator

I C (q, q̇)q̇ is the vector of Coriolis and centrifugal forces

I g(q) is the term due to the Gravity

I Bq̇ is the viscous damping term

I u is the input torque, usually provided by a DC motor

I Objective: To regulate the joint position q around desired position qd .

I A common control strategy PD+Gravity:

u = KP q̃− KD q̇ + g(q)

where q̃ = qd − q is the error between the desired and actual position

I KP and KD are diagonal positive proportional and derivative gains.
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Example: Robot Manipulator
I Consider the following Lyap. fcn candidate:

V =
1

2
q̇T M(q)q̇ +

1

2
q̃T KP q̃

I The first term is the kinetic energy of the robot and the second term
accounts for “artificial potential energy” associated with virtual spring in
PD control law (proportional feedback Kpq̃)

I Physical properties of a robot manipulator:

1. The inertia matrix M(q) is positive definite
2. The matrix Ṁ(q)− 2C(q, q̇) is skew symmetric

I V is positive in Rn except at the goal position q = qd , q̇ = 0

V̇ = q̇T M(q)q̈ +
1

2
q̇T Ṁ(q)q̇− q̇T KP q̃

I Substituting M(q)q̈ from (2) into the above equation yields

V̇ = q̇T (u − C (q, q̇)q̇− Bq̇− g(q)) +
1

2
q̇T Ṁ(q)q̇− q̇T KP q̃

= q̇T (u − Bq̇− KP q̃− g(q)) +
1

2
q̇T (Ṁ(q)− 2C (q, q̇))q̇
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Example: Robot Manipulator

V̇ = q̇T (u − Bq̇− KP q̃− g(q))q̇

I where Ṁ − 2C is skew symmetric  q̇T (Ṁ(q)q̇− C (q, q̇))q̇ = 0

I Substitute PD control law for u, we get:

V̇ = −q̇T (KD + B)q̇ ≤ 0 (3)

I The goal position is stable since V is non-increasing
I Use the invariant set theorem:

I Suppose V ≡ 0, then (3) implies that q̇ ≡ 0 and hence q̈ ≡ 0
I From Equ. of motion (2) with PD control, we have

M(q)q̈ + C (q, q̇)q̇ + Bq̇ = KP q̃− KD q̇

we must then have 0 = KP q̃ which implies that q̃ = 0, q̇ = 0.
I V is radially unbounded.
I ∴ Global asymptotic stability is ensured.
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Example: Robot Manipulator
I In case, the gravitational terms is not canceled, V̇ is modified to:

V̇ = −q̇T (KD + B + g(q))q̇ ≤ 0

I The presence of gravitational term means PD control alone cannot
guarantee asymptotic tracking.

I In practice, there would be a steady state error.

I Assuming that the closed loop system is stable, the robot configuration q
will satisfy

KP(qd − q) = g(q)

I The physical interpretation of the above equation is that:
I The configuration q must be such that the motor generates a steady state

“holding torque” KP(qd − q) sufficient to balance the gravitational torque
g(q).

I ∴ the steady state error can be reduced by increasing KP .
Farzaneh Abdollahi Nonlinear Control Lecture 4 50/71



Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Control Design Based on Lyapunov’s Direct Method

I Basically there are two approaches to design control using
Lyapunov’s direct method

I Choose a control law, then find a Lyap. fcn to justify the
choice

I Candidate a Lyap. fcn, then find a control law to satisfy the
Lyap. stability conditions.

I Both methods have a trial and error flavor
I In robot manipulator example the first approach was applied:

I First a PD controller was chosen based on physical intuition
I Then a Lyap. fcn. is found to show g.a.s.
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Control Design Based on Lyapunov’s Direct Method
I Example: Regulator Design

I Consider the problem of stabilizing the system:
ẍ − ẋ3 + x2 = u

I In other word, make the origin an asymptotically stable Equ. pt.

I Recall the example: ẋ1 = x2

ẋ2 = −g(x1)− h(x2)

where g(.) & h(.) are locally Lip. and satisfy
g(0) = 0, yg(y) > 0 ∀y 6= 0, y ∈ (−a, a)

h(0) = 0, yh(y) > 0 ∀y 6= 0, y ∈ (−a, a)

I Asymptotic stability of such system could be shown by selecting the
following Lyap. fcn:

V (x) =
1

2
x2
2 +

∫ x1

0
g(y)dy
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Example: Regulator Design
I Let x1 = x , x2 = ẋ . The above example motivates us to select the

control law u as
u = u1(ẋ) + u2(x)

where

ẋ(ẋ3 + u1(ẋ)) < 0 for ẋ 6= 0

x(u2(x)− x2) < 0 for x 6= 0

I The globally stabilizing controller can be designed even in the presence of
some uncertainties on the dynamics:

ẍ + α1ẋ3 + α2x2 = u

where α1 and α2 are unknown, but s.t. α1 > − 2 and |α2| < 5

I This system can be globally stabilized using the control law:
u = −2ẋ3 − 5(x + x3)
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Estimating Region of Attraction

I Sometimes just knowing a system is a.s. is not enough. At least an
estimation of RoA is required.

I Example: Occurring fault and finding ”critical clearance time”

I Let x = 0 be an Equ. pt. of ẋ = f (x). Let φ(t, x) be the sol starting at x
at time t=0. The Region Of Attraction (RoA) of the origin denoted by
RA is defined by:

RA = {x ∈ Rn|φ(t, x) −→ 0 as t −→ ∞}

I Lemma: If x = 0 is an a.s. Eq. pt. of ẋ = f (x), then its RoA RA is an
open, connected, invariant set. Moreover, the boundary of RoA, ∂RA, is
formed by trajectories of ẋ = f (x).

I ∴ one way to determine RoA is to characterize those trajectories that lie
on ∂RA.
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Example: Van-der-Pol

I Dynamics of oscillator in reverse time

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2

I The system has an Equ. pt at origin and an unstable limit cycle.

I The origin is a stable focus −→ it is a.s.
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Example: Van-der-Pol

I Checking by linearizaton method

A =
∂f

∂x

∣∣∣∣
x=0

[
0 −1
1 −1

]
I λ = −1/2± j

√
3/2  Re λi < 0

I Clearly, RoA is bounded since trajectories outside the limit cycle drift
away from it

I ∴ ∂RA is the limit cycle
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Example 11:

ẋ1 = −x1(1− x2
1 − x2

2 )

ẋ2 = −x2(1− x2
1 − x2

2 )

I There is one Equ. pt. at the origin and a continuum of Equ. pts on unit
circle. Using

x1 = r cosθ , x2 = r sinθ =⇒ ṙ = −r(1− r2), θ̇ = 0

I All traj. starting with r < 1 approach the origin as t −→ ∞.

I All traj. starting with r > 1 approach ∞ as t −→ ∞.

I All traj. starting with r = 1 remain at r = 1 ∀t

I ∴RA is the interior of the unit circle

I Using Lyap. methods, one can find an estimate of RoA

I By an estimate of RA, we mean a set Ω ⊂ RA s.t. every traj. starting in
Ω approaches to origin as t −→ ∞.

I Note that D is not an estimate of RA
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Example 12:
ẋ1 = x2

ẋ2 = −x1 +
1

3
x3
1 − x2

I There are 3 isolated Equ. pts. (0, 0), (
√

3, 0), (−
√

3, 0).

I (0, 0) is a stable focus, the other two are saddle pts.

I ∴ Origin is a.s. and other two are unstable (follows from linearization).

I stable trajectories of the saddle points form two separatrices that are ∂RA

I RoA is unbounded
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Example 12:
I Recall the example:

ẋ1 = x2

ẋ2 = −h(x1)− ax2

V =
δ

2
xT

[
ka2 ka
ka 1

]
x + δ

∫ x1

0
hdy

I Let

V = 1
2xT

[
1
2

1
2

1
2 1

]
x +

∫ x1

0

(
y − 1

3y3
)

dy

=3
4x2

1 − 1
12x4

1 + 1
2x1x2 + 1

2x2
2

I We get: V̇ = −1
2x2

1

(
1− 1

3x2
1

)
− 1

2x2
2

I Define D = {x ∈ R2| −
√

3 < x1 <
√

3}
I ∴ V (x) > 0 and V̇ (x) < 0 in D − {0},
I From the phase portrait =⇒ D is not a

subset of RA. Tell me why?!!
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Estimating RoA
I Traj starting in D move from one Lyap. surface to V (x) = c1 to an inner

surface V (x) = c2 with c2 < c1.

I However, there is no guarantee that the traj. will remain in D forever.

I Once, the traj leaves D, no guarantee that V̇ remains negative.

I This problem does not occur in RA since RA is an invariant set.

I The simplest estimate is given by the set

Ωc = {x ∈ Rn|V (x) ≤ c}

where Ωc isbounded and connected and Ωc ∈ D
I Note that {V (c) ≤ c} may have more than one component, only the

bounded component which belong to in D is acceptable.
I Example: If V (x) = x2/(1 + x4).and D = {|x | < 1}
I The set {V (x) ≤ 1/4} has two components {|x | ≤

√
2−
√

3} and

{|x | ≤
√

2 +
√

3} only {|x | ≤
√

2−
√

3} is acceptable.
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Estimating RoA
I To find RoA, first we need to find a domain D in which V̇ is n.d.

I Then, a bounded set Ωc ⊂ D shall be sought

I We are interested in largest set Ωc , i.e. the largest value of c since Ωc is
an estimate of RA.

I V is p.d. everywhere in R2.

I If V (x) = xT Px , let D = {x ∈ R2| ‖x‖ ≤ r}. Once, D is obtained,
then select Ωc ⊂ D by c < min

‖x‖=r
V (x)

I In words, the smallest V (x) = c which fits into D.

I Since
xT Px ≥ λmin(P)‖x‖2

I We can choose
c < λmin(P)r2

I To enlarge the estimate of RA =⇒ find largest ball on which V̇ is n.d.
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Example 13:

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2

I From the linearization ∂f
∂x

∣∣
x=0

=

[
0 −1
1 −1

]
is stable

I Taking Q = I and solve the Lyap. equation:

PA + AT P = −I =⇒ P =

[
1.5 −.5
−.5 1

]
I λmin(P) = 0.69

I V̇ = −(x2
1 + x2

2 )− (x3
1 x2 − 2x2

1 x2
2 ) ≤ −‖x‖22 + |x1||x1x2||x1 − 2x2| ≤

−‖x‖22 +
√

5
2 ‖x‖

4
2

I where |x1| ≤ ‖x‖2, |x1x2| ≤ ‖x‖22/2, |x1− 2x2| ≤
√

5‖x‖2
I V̇ is n.d. on a ball D of radius

r2 = 2/
√

5 = 0.894 c < 0.894× 0.69 = 0.617
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Example 13:

I To find less conservative estimate of Ωc :

I Let x1 = ρ cosθ, x2 = ρ sinθ

V̇ = −ρ2 + ρ4cos2θsinθ (sinθ − cosθ)

≤ −ρ2 + ρ4
∣∣cos2θsinθ

∣∣ |sinθ − cosθ|
≤ −ρ2 + ρ4(.3849)(2.2361)

≤ −ρ2 + .861ρ4 < 0 for ρ2 <
1

.861

I c = .8 < .69
.861 = .801

I Thus the set:
Ωc = {x ∈ R2| V (x) ≤ .8} is an estimate of RA.
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Example 13:
I A lesser conservative estimation of RoA:

I plot the contour of V̇ = 0
I plot V (x) = c for increasing c to find largest c where V̇ < 0

I The c obtained by this method is c = 2.25.
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Example 14:
ẋ1 = −2x1 + x1x2

ẋ2 = x2 + x1x2

I There are two Equ. pts., (0, 0), (1, 2).

I At (1, 2) A =

[
0 −1
2 0

]
=⇒ unstable

(
λ1,2 = ±

√
2
)

(saddle pt.)

I At (0, 0) A =

[
−2 0
0 −1

]
=⇒ a.s.

I Taking Q = I and solving Lyap Eq. AT P + PA = −I⇒P =

[
1
4 0
0 1

2

]
I ∴ The Lyap. fcn is V (x) = xT Px

I We have V̇ = −(x2
1 + x2

2 ) + 1
2(x2

1 x2 + 2x1x2
2 )

I Find largest D s.t.V̇ is n.d. in D.

I Let x1 = ρ cosθ, x2 = ρ sinθ
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Example 14:

V̇ = −ρ2 + ρ3cosθsinθ

(
sinθ +

1

2
cosθ

)
≤ −ρ2 +

1

2
ρ3 |sin2θ|

∣∣∣∣sinθ +
1

2
cosθ

∣∣∣∣
≤ −ρ2 +

√
5

4
ρ3 < 0 for ρ <

4√
5

I Since λmin(P) = 1
4 =⇒, we choose

c = .79 < 1
4 ×

(
4√
5

)2
= .8

I Thus the set:
Ωc = {x ∈ R2| V (x) ≤ .79} ⊂ RA.

I Estimating RoA by the set Ωc is simple but conservative

I Alternatively Lasalle’s theorem can be used. It provides an estimate of RA

by the set Ω which is compact and positively invariant set.Farzaneh Abdollahi Nonlinear Control Lecture 4 66/71
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Example 15:

ẋ1 = x2

ẋ2 = −4(x1 + x2)− h(x1 + x2)

where h : R −→ R s.t. h(0) = 0, &xh(x) ≥ 0 ∀|x | ≤ 1

I Consider the Lyap fcn candidate:

V (x) = xT

[
2 1
1 1

]
x = 2x2

1 + 2x1x2 + x2
2

I Then V̇ = −2x2
1 − 6(x1 + x2)2 − 2(x1 + x2)h(x1 + x2)

−2x2
1 − 6(x1 + x2)2, ∀|x1 + x2| ≤ 1 = −xT

[
8 6
6 6

]
x

I ∴ V̇ is n.d. in the set G = {x ∈ R2| |x1 + x2| ≤ 1}.
I (0, 0) is a.s., to estimate RA, first do it from Ωc .

Farzaneh Abdollahi Nonlinear Control Lecture 4 67/71



Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Example 15:

I Find the largest c s.t. Ωc ⊂ G . Now, c is given by
c = min

|x1+x2|=1
V (x) or

c = min

{
min

x1+x2=1
V (x), min

x1+x2=−1
V (x)

}
I The first minimization yields

min
x1+x2=1

V (x) = min
x1

{
2x2

1 + 2x1(1− x1) + (1− x1)2
}

= 1 and

min
x1+x2=−1

V (x) = 1

I Hence, Ωc with c = 1 is an estimate of RA.

I A better (less conservative) estimate of RA is possible.
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Example 15:
I The key point is to observe that traj inside G cannot leave it through

certain segment of the boundary |x1 + x2| = 1.

I Let σ = x1 + x2 =⇒ ∂G is given by σ = 1 and σ = −1

I We have d

dt
σ2 = 2σ(ẋ1 + ẋ2) = 2σx2 − 8σ2 − 2σh(σ)

≤ 2σx2 − 8σ2, ∀|σ| ≤ 1

I On the boundary σ = 1 =⇒ dσ2

dt ≤ 2x2 − 8 ≤ 0 ∀x2 ≤ 4

I Hence, the traj on σ = 1 for which x2 ≤ 4 cannot move outside the set G
since σ2 is non-increasing

I Similarly, on the boundary σ = −1 we have
dσ2

dt ≤ − 2x2 − 8 ≤ 0 ∀x2 ≥ −4

I Hence, the traj on σ = −1 for which x2 ≥ −4 cannot move outside the
set G .
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Example 15:

I To define the boundary of G , we need to find two other segments to close
the set.

I We can take them as the segments of Lyap. fcn surface

I Let c1 be s.t. V (x) = c1 intersects the boundary of x1 + x2 = 1 at x2 = 4
and let c2 be s.t. V (x) = c2 intersects the boundary of x1 + x2 = −1 at
x2 = −4

I Then, we define V (x) = min c1, c2, we have

c1 = V (x)|
x1 = −3
x2 = 4

= 10 &c2 = V (x)|
x1 = 3

x2 = −4

= 10
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Example 15:
I The set Ω is defined by

Ω = {x ∈ R2|V (x) ≤ 10 &|x1 + x2| ≤ 1}

I This set is closed and bounded and positively invariant. Also, V̇ is n.d.
in Ω since Ω ⊂ G =⇒ Ω ⊂ RA.
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