

Nonlinear Control Lecture 4: Stability Analysis I

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2009

きょうきょう

Autonomous Systems

Lyapunov Stability Variable Gradient Method Region of Attraction

Invariance Principle

Linear System and Linearization

Lyapunov and Lasalle Theorem Application Example: Robot Manipulator Control Design Based on Lyapunov's Direct Method Estimating Region of Attraction

Stability

Stability theory is divided into three parts:

- 1. Stability of equilibrium points
- 2. Stability of periodic orbits
- 3. Input/output stability
- An equilibrium point (Equ. pt.) is:
 - Stable if all solutions starting at nearby points stay nearby.
 - Asymptotically Stable if all solutions starting at nearby points not only stay nearby, but also tend to the Equ. pt. as time approaches infinity.
 - Exponentially Stable, if the rate of converging to the Equ. pt. is exponentially.
- Lyapunov stability theorems give sufficient conditions for stability, asymptotic stability, and so on.
- Lyapunov stability analysis can be used to show boundedness of the solution even when the system has no equilibrium points.
- ► The theorems provide necessary conditions for stability are so-called converse theorems.

Lyapunov's work "The General Problem of

Motion Stability published in 1892 includes two methods:

- Linearization Method: studies nonlinear local stability around an Equ. point from stability properties of its linear approximation
- Direct Method: not restricted to local motion. Stability of nonlinear system is studied by proposing a scalar *energy-like* function for the system and examining its time variation
- His work was then introduced by other scientists like Poincare and Lasalle

Farzaneh Abdollahi

http://en.wikipedia.org/wiki/Aleksandr_Lyapunova

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl

 The most popular method for studying stability of nonlinear systems is introduced by a Russian mathematician named Alexander Mikhailovich Lyapunov

Autonomous Systems

• Consider the autonomous system: $\dot{x} = f(x)$

where $f: D \longrightarrow R^n$ is a locally Lip. function on a domain $D \subset R^n$.

- Let $\bar{x} \in D$ be an Equ. point, that is $f(\bar{x}) = 0$.
- **Objective**: To characterize stability of \bar{x} .
- without loss of generality (*wlog*), let $\bar{x} = 0$
 - If $\bar{x} \neq 0$, introduce a coordinate transformation: $y = x \bar{x}$, then
 - $\dot{y} = \dot{x} = f(y + \bar{x}) = g(y)$ with g(0) = 0

くぼう くほう くほう

- The Equ. point x = 0 of $\dot{x} = f(x)$ is:
 - stable, if for each ε > 0, ∃ δ = δ(ε) > 0
 s.t.

 $\|x(0)\| < \delta \Longrightarrow \|x(t)\| < \epsilon \ \forall t \ge 0$

- unstable, if it is not stable
- asymptotically stable, if it is stable and δ can be chosen s.t.

$$\|x(0)\| < \delta \Longrightarrow \lim_{t \to \infty} x(t) = 0$$

- Lyapunov stability means that the system trajectory can be kept arbitrary close to the origin by starting sufficiently close to it.
- An Equ. point which is Lypunov stabile but not asymptotically stable is called

curve 1 - asymptotically stable curve 2 - marginally stable curve 3 - unstable

Farzaneh Abdollahi

Marginally stable

Amirkabir University of Technology

- Example: Van Der Pol Oscillator
 - Recall from Lecture 2: Van der pol oscillator dynamics: x₁ = x₂

$$\dot{x}_2 = -x_1 + (1 - x_1)^2 x_2$$

- All system trajectories start except from origin, asymptotically approaches a limit cycle.
- Even the system states remain around the Equ. point in a certain sense, the can not stay arbitrarily close to it.
- So the Equ. point is unstable.
- ► Implicit in Lyapunov stability condition is that the sol. are defined ∀t ≥ 0.
- ► This is not guaranteed by local Lip.
- The additional condition imposed by Lyapunov theorem will ensure global existence

Unstable origin of the Van der Pol

Lyapunov Stability Physical Motivation

• Consider the pendulum example (recall Lecture 2):

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{-g}{l}sinx_1 - \frac{k}{m}x_2$$

▶ In first period it has two Equ. pts. $(x_1 = 0, x_2 = 0)$ & $(x_1 = \pi, x_2 = 0)$

- For frictionless pendulum, i.e. k = 0 : trajectories are closed orbits in neighborhood of 1st Equ. pt. → ε − δ requirement for stability is satisfied.
- However, it is not asymptotically stable.
- ► For Pendulum with friction, i.e. k > 0the 1st Eq. pt. is a stable focus $\rightsquigarrow \epsilon - \delta$ requirement for asymptotic stability is satisfied. the 2nd Eq. pt. is a saddle point $\rightsquigarrow \epsilon - \delta$ requirement is not satisfied \rightsquigarrow it is unstable Farzaneh Abdollahi

To generalize the phase-plane analysis, consider the energy associated with the pendulum:

$$E(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} \frac{g}{l} \sin y \, dy = \frac{1}{2}x_2^2 + \frac{g}{l}(1 - \cos x_1), \quad E(0) = 0$$

• If k = 0, system is conservative, i.e. there is no dissipation of energy:

- E = constant during the motion of the system.
- $\therefore \frac{dE}{dt} = 0$ along the traj. of the system.
- If k > 0, energy is being dissipated
 - $\frac{dE}{dt} < 0$ along the traj. of the system.
 - $\therefore E$ starts to decrease until it eventually reaches zero, at that pt. x = 0.
- Lyapunov showed that certain other function can be used instead of energy function to determine stability of an Equ. pt.

向下 イヨト イヨト

Lyapunov's Direct Method:

- ▶ Let x = 0 be an Equ. pt. for $\dot{x} = f(x)$. Let $V : D \longrightarrow R$, $D \subset R^n$ be a continuously differentiable function on a neighborhood D of x = 0, s.t.
 - 1. V(0) = 0
 - 2. V(x) > 0 in $D \{0\}$
 - 3. $V(x) \le 0$ in *D*
 - Then x = 0 is stable.

Moreover, if V(x) < 0 in $D - \{0\}$ then x = 0 is asymptotically stable.

- The continuously differentiable function V(x) is called a Lyapunov function.
- ► The surface V(x) = c, for some c > 0 is called a Lyapunov surface or level surface.

・ロト ・回ト ・ヨト ・ヨト

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl

Lyapunov Stability

Level surfaces of a Lyapunov function.

• when $\dot{V} < 0 \rightarrow$

when a trajectory crosses a Lyapunov surface V(x) = c, it moves inside the set $\Omega_c = \{x \in \mathbb{R}^n | V(x) \leq c\}$ and traps inside Ω_c .

• when $\dot{V} < 0 \rightarrow$

trajectories move from one level surface to an inner level with smaller c till V(x) = c shrinks to zero as time goes on $\langle n \rangle \langle n \rangle \langle n \rangle$

Lyapunov Stability

- ► A function satisfying V(0) = 0 & V(x) > 0 in D {0} is said to be Positive Definite (p.d.)
- If it satisfies a weaker condition V(x) ≥ 0 for x ≠ 0 is said to be Positive Semi-Definite (p.s.d.)
- A function is Negative Definite (n.d.) or Negative Semi-Definite (n.s.d.) if −V(x) is p.d. or p.s.d., respectively.
- ► Lyapunov theorem states that: The origin is stable if there is a continuously differentiable, p.d. function V(x) s.t. V(x) is n.s.d., and is asymptotically if V(x) is n.d.
- Note that when x is a vector:

$$\dot{V}(x) = \frac{\partial V}{\partial x} f(x) = \sum_{i=1}^{n} \frac{\partial V}{\partial x_{i}} \dot{x}_{i} = \sum_{i=1}^{n} \frac{\partial V}{\partial x_{i}} f_{i} = \begin{bmatrix} \frac{\partial V}{\partial x_{1}} & \cdots & \frac{\partial V}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} f_{1} \\ \vdots \\ f_{n} \end{bmatrix}$$

Lyapunov Stability

A class of scalar functions for which sign definition can be easily checked is "quadratic functions:"

$$V(x) = x^T P x = \sum_{i=1}^n \sum_{j=1}^n x_i x_j P_{ij}$$

where $P = P^T$ is a real matrix.

- V(x) is p.d./p.s.d. iff $\lambda_i\{P\} > 0$ or $\lambda_i\{P\} \ge 0, i = 1...n$
- λ_i{P} > 0 or λ_i{P} ≥ 0, i = 1...n iff all leading principle minors of P
 are positive or non-negative, respectively.
- ▶ If V(x) is p.d. (p.s.d.), we say the matrix P is p.d. (p.s.d.) and write P > 0 ($P \ge 0$).

▲圖▶ ▲注▶ ▲注▶

Example 1

$$V(x) = ax_1^2 + 2x_1x_3 + ax_2^2 + 4x_2x_3 + ax_3^2$$

= $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} a & 0 & 1 \\ 0 & a & 2 \\ 1 & 2 & a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x^T P x$

► The leading principle minors are det(a) = a; $det\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} = a^2;$ $det\begin{bmatrix} a & 0 & 1 \\ 0 & a & 2 \\ 1 & 2 & a \end{bmatrix} = a(a^2 - 5)$

 $\therefore V(x)$ is p.s.d. if $a \ge \sqrt{5}$, V(x) is p.d. if $a > \sqrt{5}$

For n.d. the leading principle minors of

- -P should be positive. **OR**
- ▶ *P* should alternate in sign with the first one neg. (odds: neg., even: pos.)

$$V(x)$$
 is n.s.d. if $a \le -\sqrt{5}$, $V(x)$ is n.d. if $a < -\sqrt{5}$, $V(x)$ is sign indefinite for $-\sqrt{5} < a < \sqrt{5}$

Example 2

- ▶ Consider $\dot{x} = -g(x)$ where g(x) is locally Lip. on (-a, a) & g(0) = 0, xg(x) > 0, $\forall x \neq 0$, $x \in (-a, a)$. stability?
- ▶ origin is Equ. pt.
- ► Solution 1:
 - starting on either side of the origin will have to move toward the origin due to the sign of x
 - ... Origin is an isolated Eq. pt. and is asymptotically stable.
- Solution 2: using Lypunov theorem:
 - Consider the function $V(x) = \int_0^x g(y) dy$ over D = (-a, a).
 - ► V(x) is continuously differentiable, V(0) = 0 and V(x) > 0, $\forall x \neq 0 \rightarrow .$ V is a valid Lyapunov candidate
 - ► To see if it is really a Lyap. fcn, we have to take its derivative along system trajectory: V(x) = ∂V/∂x(-g(x)) = -g²(x) < 0, ∀x ∈ D {0}</p>
 - \therefore V(x) is a valid Lyap. fcn \rightsquigarrow the origin is asymptotically stable.

イロト 不得下 イヨト イヨト 二日

Example 3: Frictionless Pendulum

$$\begin{array}{rcl} x_1 &=& x_2 \\ \dot{x}_2 &=& \frac{-g}{l}sinx_1 \end{array}$$

- Study stability of the Eq. pt. at the origin.
- A natural Lyap. fcn is the energy fcn:

$$V(x) = \frac{g}{l} (1 - \cos x_1) + \frac{1}{2} x_2^2$$

- ► V(0) = 0 and V(x) is p.d. over the domain $-2\pi \le x_1 \le 2\pi$. ► $\dot{V} = \frac{g}{l} \dot{x}_1 sinx_1 + x_2 \dot{x}_2 = \frac{g}{l} x_2 sinx_1 - \frac{g}{l} x_2 sinx_1 = 0$
- ▶ V(x) satisfies the condition of the Lyap. Theorem \rightsquigarrow origin is **stable**

イロト イポト イヨト イヨト

Example 4: Pendulum with Friction

$$x_1 = x_2$$

$$\dot{x}_2 = \frac{-g}{l}sinx_1 - \frac{k}{m}x_2$$

- ► Take the energy fcn as a Lyap. fcn candidate $V(x) = \frac{g}{l} (1 - cosx_1) + \frac{1}{2}x_2^2$
- $\blacktriangleright \dot{V} = -\frac{k}{m}x_2^2$
- ▶ $\dot{V}(x)$ is n.s.d. It is not since n.d. since $\dot{V} = 0$ for $x_2 = 0$ and all $x_1 \neq 0$. the origin is only **stable**.
- But, phase portrait showed asymptotic stability!!
- ► Toward this end, let's choose:

$$V(x) = \frac{1}{2}x^{T}Px + \frac{g}{l}(1 - \cos x_{1})$$

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

• where
$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix}$$
 is p.d. $(P_{11} > 0, P_{22} > 0, P_{11}P_{22} - P_{12}^2 > 0)$

$$\dot{V} = \frac{1}{2}(\dot{x}^T P x + x^T P \dot{x}) + \frac{g}{l}\dot{x}_1 sinx_1 = \frac{g}{l}(1 - P_{22})x_2 sinx_1 - \frac{g}{l}P_{12}x_1 sinx_1 + (P_{11} - P_{12}\frac{k}{m})x_1x_2 + (P_{12} - P_{22}\frac{k}{m})x_2^2$$

Select P s.t. V is n.d. (cancel sign indefinite factors: $x_2 sinx_1$ and x_1x_2)

- ► $P_{22} = 1$, $P_{11} = \frac{k}{m}P_{12}$, $0 < P_{12} < \frac{k}{m}$ (for V(x) to be p.d., take $P_{12} = \frac{1}{2}\frac{k}{m}$) $\therefore \dot{V} = -\frac{1}{2}\frac{g}{l}\frac{k}{m}x_1sinx_1 - \frac{1}{2}\frac{k}{m}x_2^2$
- ► $x_1 sinx_1 > 0 \quad \forall \ 0 < |x_1| < \pi$, defining a domain *D* by $D = \{x \in R^2 | \quad |x_1| < \pi\}$
- ► ... V(x) is p.d. and V is n.d. over D. Thus, origin is asymptotically stable (a.s.) by the theorem.

Amirkabi

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

How Search for A Lyapunov Function?

- Lyapunov theorem is only sufficient.
- ► Failure of a Lyap. fcn candidate to satisfy the theorem **does not** mean the Eq. pt. is unstable.

► Variable Gradient Method

- Idea is working backward:
 - ► Investigated an expression for V(x) and go back to choose the parameters of V(x) so as to make V(x) n.d.
- Let V = V(x) and $g(x) = \nabla_x V = \left(\frac{\partial V}{\partial x}\right)^T$
- Then $\dot{V} = \frac{\partial V}{\partial x}f = g^T f$
- Choose g(x) s.t. it would be the gradient of a p.d. fcn V and make \dot{V} n.d.
- g(x) is the gradient of a scalar fcn iff the Jacobian matrix $\frac{\partial g}{\partial x}$ is symmetric:

$$\frac{\partial \mathbf{g}_{i}}{\partial x_{i}} = \frac{\partial \mathbf{g}_{j}}{\partial x_{i}}, \quad \forall i, j = 1, ..., n$$

▲□ → ▲ 三 → ▲ 三 → ……

Variable Gradient Method

- Select g(x) s.t. $g^{T}(x)f(x)$ is n.d.
- Then, V(x) is computed from the integral:

$$V(x) = \int_0^x g(y) dy = \int_0^x \sum_{i=1}^n g_i(y) dy_i$$

The integration is taken over any path joining the origin to x. This can be done along the axes:

$$V(x) = \int_0^{x_1} g_1(y_1, 0, ..., 0) dy_1 + \int_0^{x_2} g_2(x_1, y_2, 0, ..., 0) dy_2 + ... + \int_0^{x_n} g_n(x_1, x_2, ..., y_n) dy_n$$

► By leaving some parameters of g undetermined, one would try to choose them so that V is p.d.

Example 5:

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& -h(x_1) - ax_2 \end{array}$$

where a > 0, h(.) is locally Lip., h(0) = 0, yh(y) > 0, $\forall y \neq 0$, $y \in (-b, c)$, b, c > 0.

- The pendulum is a special case of this system.
- Find proper Lypunov function?
- Applying variable gradient method, we must find g(x) s.t. $\frac{\partial g_1}{\partial x_2} = \frac{\partial g_2}{\partial x_1}$

•
$$\dot{V}(x) = g_1(x)x_2 - g_2(x)(h(x_1) + ax_2) < 0, \ \forall x \neq 0 \text{ and}$$

 $V(x) = \int_0^x g^T(y) dy > 0 \text{ for } x \neq 0$

• Choose
$$g(x) = \begin{bmatrix} \alpha(x)x_1 + \beta(x)x_2 \\ \gamma(x)x_1 + \delta(x)x_2 \end{bmatrix}$$
 where $\alpha, \beta, \gamma, \delta$ to be determined

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

To satisfy the symmetry req., we need

$$\beta(x) + \frac{\partial \alpha}{\partial x_2} x_1 + \frac{\partial \beta}{\partial x_2} x_2 = \gamma(x) + \frac{\partial \gamma}{\partial x_1} x_1 + \frac{\partial \delta}{\partial x_1} x_2$$

- $\dot{V}(x) =$ $\alpha(x)x_1x_2 + \beta(x)x_2^2 - a\gamma(x)x_1x_2 - a\delta(x)x_2^2 - \delta(x)x_2h(x_1) - \gamma(x)x_1h(x_1)$
- To cancel the cross terms, let $\alpha(x)x_1 a\gamma(x)x_1 \delta(x)h(x_1) = 0$
- $\blacktriangleright :: \dot{V}(x) = -(a\delta(x) \beta(x))x_2^2 \gamma(x)x_1h(x_1)$
- ▶ For simplification, let $\delta(x) = \delta = cte$, $\gamma(x) = \gamma = cte$, $\beta(x) = \beta = cte$
- $\therefore \alpha(x)$ only depends on x_1
- symmetry is satisfied if $\beta = \gamma$.

$$g(x) = \begin{bmatrix} a\gamma x_1 + \delta h(x_1) + \gamma x_2 \\ \gamma x_1 + \delta x_2 \end{bmatrix}$$

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

By integration, we get

$$V(x) = \int_{0}^{x_{1}} (a\gamma y_{1} + \delta h(y_{1})) dy_{1} + \int_{0}^{x_{2}} (\gamma x_{1} + \delta y_{2}) dy_{2}$$

$$= \frac{1}{2} a\gamma x_{1}^{2} + \delta \int_{0}^{x_{1}} h(y) dy + \gamma x_{1} x_{2} + \frac{1}{2} \delta x_{2}^{2}$$

$$= \frac{1}{2} x^{T} P x + \delta \int_{0}^{x_{1}} h(y) dy$$

э

Region of Attraction

- For asymptotically stable Equ. pt.: How far from the origin can the trajectory be and still converges to the origin as $t \longrightarrow \infty$?
- ▶ Let $\phi(t, x)$ be the sol. of $\dot{x} = f(x)$ starting at x_0 . Then, the Region of Attraction (RoA) is defined as the set of all pts. x s.t. $\lim_{t \to \infty} \phi(t, x) = 0$
- Lyap. fcn can be used to estimate the RoA:
 - If there is a Lyap. fcn. satisfying asymptotic stability over domain D,
 - and set $\Omega_c = \{x \in R^n | V(x) \le c\}$ is bounded and contained in D
 - \therefore all trajectories starting in Ω_c remains there and converges to 0 at $t \to \infty$.
- ► Under what condition the RoA be R^n (i.e., the Equ. pt. is globally asymptotically stable (g.a.s))?
 - the conditions of stability theory must hold globally, i.e. $D = R^n$.
 - This not enough!
 - for large c, the set Ω_c should be kept bounded.
 - i.e., reduction of V(x) should also result in reduction of ||x||.

Region of Attraction Example: $V(x) = \frac{x_1^2}{1+x_1^2} + x_2^2$

- It's clear that V(x) can get smaller, but x grows unboundedly
- ▶ Babashin-Krasovskii Theorem: Let x = 0 be an Eq. pt. of $\dot{x} = f(x)$. Let $V : R^n \longrightarrow R$ be a continuously differentiable fcn. s.t.:
 - ► V(0) = 0
 - $V(x) > 0, \forall x \neq 0$
 - $||x|| \longrightarrow \infty \implies V(x) \longrightarrow \infty$ (i.e. it is radially unbounded)
 - $V < 0, \quad \forall x \neq 0$

then x = 0 is globally asymptotically stable

◆ 臣 ▶ → 臣 ▶

Example 6 : Globally Asymptotically Stable

- ▶ Reconsider Example 5 ($\dot{x} = -g(x)$ where g(x) is locally Lip. on (-a, a) & g(0) = 0, xg(x) > 0, $\forall x \neq 0$, $x \in (-a, a)$)
- but assume that xg(x) > 0 hold for **all** $x \neq 0$.
 - ► The Lyap. fcn:

$$V(x) = \frac{\delta}{2} x^{T} \begin{bmatrix} ka^{2} & ka \\ ka & 1 \end{bmatrix} x + \delta \int_{0}^{x_{1}} h(y) dy$$

is p.d. $\forall x \in R^2$

- V(x) is radially unbounded.
- $\dot{V} = -a\delta(1-k)x_2^2 ak\delta x_1h(x_1) < 0, \quad \forall x \in \mathbb{R}^2$
- ► ∴ origin is g.a.s.
- Important: Since the origin is g.a.s., then it must be the unique Eq. pt. of the system
- **g.a.s.** is not satisfied for multiple Equ. pt. problem such as pendulum.

・ロン ・四 と ・ヨ と ・ ヨ と …

Instability Theorem

Farz

▶ Chetaev's Theorem Let x = 0 be an Equ. pt. of x = f(x). Let $V : D \longrightarrow R$ be a continuously differentiable fcn such that V(0) = 0 and $V(x_0) > 0$ for some x_0 with arbitrary small $||x_0||$. Define a set $\nu = \{x \in B_r | V(x) > 0\}$ where $B_r = \{x \in R^n | ||x|| < r\}$ and suppose that V(x) is p.d. in ν . Then, x = 0 is unstable.

► Example: $\dot{x}_1 = x_1 + g_1(x)$ $\dot{x}_2 = -x_2 + g_2(x)$

where $|g_i(x)| \le k ||x||_2^2$ in a neighborhood *D* of origin The inequality implies, $g_i(0) = 0 \implies$ origin is an Equ. pt.

Consider:
$$V(x) = \frac{1}{2}(x_1^2 - x_2^2)$$

• On the line $x_2 = 0$, $V(x) > 0$.
• $\dot{V}(x) = x_1^2 + x_2^2 + x_1g_1(x) - x_2g_2(x)$
• Since $|x_1g_1(x) - x_2g_2(x)| \le \sum_{i=1}^2 |x_i| |g_i(x)| \le 2k ||x||_2^2$
• $\therefore \dot{V}(x) \ge ||x||_2^2 - 2k ||x||_2^2 = ||x||_2^2 (1 - 2k ||x||_2)$
• Choosing *r* s.t. $B_r \subset D$ and $r < \frac{1}{2}k \Longrightarrow$ origination is unstable.

Invariance Principle

Recall the pendulum example:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\frac{g}{l}sinx_1 - \frac{k}{m}x_2$$

 $\dot{V}(x) = \frac{-k}{m}x_2^2$ which is n.s.d.

- ▶ ∴ Lyap. theorem shows only stability. However,
 - \dot{V} is negative everywhere except at $x_2 = 0$ where $\dot{V} = 0$.
 - To get V = 0, the trajectory must be confined to $x_2 = 0$
 - ▶ Now, from the model $x_2(t) \equiv 0 \implies \dot{x}_1 \equiv 0 \implies x_1(t) = cte$ and $x_2(t) \equiv 0 \implies \dot{x}_2 \equiv 0 \implies sinx_1 \equiv 0$
 - Hence, on the segment $-\pi < x_1 < \pi$ of $x_2 = 0$ line, the system can maintain $\dot{V} = 0$ only at x = 0.
- Therefore, V(x) decrease to zero and $x(t) \longrightarrow 0$ as $t \longrightarrow \infty$.
- The idea follows from LaSalle's Invariance Principle

Invariance Principle

- ▶ Recall that: A point \overline{z} is called a positive limit point of a sol. x if ∃ a sequence t_n , s.t. $\lim_{n \to \infty} t_n \to \infty$ and $\lim_{n \to \infty} x(t_n) = \overline{z}$
- Set of all positive limit points of x(t) is called the positive limit set of x(t)
- - ► If a solution belongs to *M* at some time instant, then it belongs to *M* for all future time.
- An a.s. Equ. pt is the positive limit set of every solution starting sufficiently close to the Equ. pt.
- Also a stable limit cycle is the positive limit set of every solution starting sufficiently close to the limit cycle. (in which case it is not converging to any specific point).
 - ► ∴ Equ. points and limit cycle are invariant sets
- ► Also the set $\Omega = \{x \in R^n | V(x) \le c\}$ with $\dot{V} \le 0$ $\forall x \in \Omega$ is a positively invariant set.

Lasalle's Theorem:

- Let Ω be a compact set with property that every solution of $\dot{x} = f(x)$ starting in Ω remains in Ω for all future time.
 - Let $V : \Omega \longrightarrow R$ be a continuously differentiable fcn s.t. $\dot{V}(x) \leq 0$ in Ω .
 - Let E be the set of all pts in Ω where V(x) = 0
 - Let M be the largest invariant in E.

Then, every sol. starting in Ω approaches M as $t\longrightarrow\infty$

- Unlike Lyap. theorem, Lasalle's theorem **does not** require V(x) to be **p.d**
- ► To show a.s. of the origin → show largest invariant set in E is the origin.
- Show that no solution can stay forever in E other than x = 0.

(本間)と 本語(と) 本語(と

Barbashin and Krasovskii Corollaries

- ▶ Corollary 1: Let x = 0 be an Equ. pt of $\dot{x} = f(x)$. Let $V : D \to R$ be a continuously differentiable p.d. fcn on a domain D containing the origin x = 0, s.t. $\dot{V}(x) \le 0$ in D. Let $S = \{x \in D | \dot{V} = 0\}$ and suppose that no solution can stay identically in S, other than the trivial solution x(t) = 0. Then, the origin is **a.s.**
- ▶ Corollary 2: Let x = 0 be an Equ. pt. of $\dot{x} = f(x)$. Let $V : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a continuously differentiable, radially unbounded, p.d. fcn s.t. $\dot{V}(x) \le 0 \quad \forall x \in \mathbb{R}^n$. Let $S = \{x \in \mathbb{R}^n | \dot{V} = 0\}$ and suppose that no solution can stay in S forever except x = 0. Then, the origin is g.a.s.

Example 6:

► Consider $\dot{x}_1 = x_2$ $\dot{x}_2 = -g(x_1) - h(x_2)$

where
$$g(.)$$
 & $h(.)$ are locally Lip. and satisfy
 $g(0) = 0, yg(y) > 0 \quad \forall y \neq 0, y \in (-a, a)$
 $h(0) = 0, yh(y) > 0 \quad \forall y \neq 0, y \in (-a, a)$

▶ The system has an isolated Equ. pt. at origin. Let

$$V(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} g(y)dy$$

•
$$\dot{D} = \{x \in R^2 | -a < x_i < a\} \Longrightarrow V(x) > 0 \text{ in } D$$

- $V = g(x_1)x_2 + x_2(-g(x_1) h(x_2)) = -x_2h(x_2) \le 0$
- ► Thus, V is n.s.d. and the origin is stable by Lyap. theorem

Э

Example 6:

- Using Lasalle's theorem, define $S = \{x \in D | \dot{V} = 0\}$
 - $\dot{V} = 0 \implies x_2 h(x_2) = 0 \implies x_2 = 0$, since $-a < x_2 < a$
 - Hence $S = \{x \in D | x_2 = 0\}$. Suppose x(t) is a traj. $\in S \forall t$
 - $\therefore x_2(t) \equiv 0 \implies \dot{x}_1 \equiv 0 \implies x_1(t) = c$, where $c \in (-a, a)$. Also $x_2(t) \equiv 0 \implies \dot{x}_2 \equiv 0 \implies g(c) = 0 \implies c = 0$
- \therefore Only solution that can stay in $S \forall t \ge 0$ is the origin $\implies x = 0$ is **a.s.**
- ▶ Now, Let $a = \infty$ and assume g satisfy: $\int_{0}^{y} g(z) dz \longrightarrow \infty \text{ as } |y| \longrightarrow \infty.$
- ► The Lyap. for $V(x) = \frac{1}{2}x_2^2 + \int_0^{x_1} g(y)dy$ is radially unbounded.
- ▶ $\dot{V} \leq 0$ in R^2 and note that $S = \{x \in R^2 | \dot{V} = 0\} = \{x \in R^2 | x_2 = 0\}$ contains no solution other than origin $\implies x = 0$ is **g.a.s.**

Invariance Principle

- Lasalle's theorem can also extend the Lyap. theorem in three different directions
 - 1. It gives an estimate f the **RoA** not necessarily in the form of $\Omega_c = \{x \in \mathbb{R}^n | V(x) \leq c\}$. The set can be any **positively invariant set** which leads to less conservative estimate.
 - 2. Can determine stability of Equ. set, rather than isolated Equ. pts.
 - 3. The function V(x) does not have to be positive definite.
- Example 7: shows how to use Lasalle's theorem for system with Equ. sets rather than isolated Equ. pts
 - A simple adaptive control problem:

$$\dot{x} = ax + u$$
 a unknown

with the adaptive control law

$$u = -kx; \quad \dot{k} = \gamma x^2, \quad \gamma > 0$$

Example 7:

• Let
$$x_1 = x$$
, $x_2 = k$, we get:

$$\begin{aligned} \dot{x}_1 &= -(x_2 - a)x_1 \\ \dot{x}_2 &= \gamma x_1^2 \end{aligned}$$

• The line $x_1 = 0$ is an Equ. set

- \blacktriangleright Show that the traj. of closed-loop system approaches this set as $t \longrightarrow \infty$
 - i.e. the adaptive system regulates y to zero $(x_1 \longrightarrow 0 \text{ as } t \longrightarrow \infty)$.
- Consider the Lyap. fcn candidate:

$$V(x) = \frac{1}{2}x_1^2 + \frac{1}{2\gamma}(x_2 - b)^2$$

where b > a.

- $\dot{V} = -x_1^2(b-a) \leq 0$
- The set $\Omega = \{x \in R^n | V(x) \le c\}$ is a compact **positively invariant set**

Example 7:

- V(x) is radially unbounded ⇒ Lasalle's theorem conditions are satisfied with the set E as E = {x ∈ Ω|x₁ = 0}
- Since any pt on $x_1 = 0$ line is an Equ. pt, E is an invariant set: M = E.
- ► Hence, every trajectory starting in Ω approaches E as $t \longrightarrow \infty$, i.e. $x_1(t) \longrightarrow 0$ as $t \longrightarrow \infty$.
- V is radially unbounded \implies the result is global
- Note that in the above example the Lyapunov function depends on a constant b which is required to satisfy b > a
- ► But it is not known ~ we may not know the constant b explicitly, but we know that it always exists.
- ► This highlights another feature of Lyapunov's method:
 - In some situations, we may be able to assert the existence of a Lyapunov function that satisfies the conditions, even though we may not explicitly know that function.
- Given $\dot{x} = Ax$, the Equ. pt. is at origin
- It is isolated **iff** det $A \neq 0$,
- System has an Equ. subspace if det A = 0, the subspace is the null space of A.
- ► The system cannot have multiple isolated Equ. pt. since
- ► Linearity requires that if x₁ and x₂ are Equ. pts., then all pts. on the line connecting them should also be Equ. pts.
- ▶ **Theorem:** The Equ. pt. x = 0 of $\dot{x} = Ax$ is table **iff** all eigenvalues of A satisfy $Re{\lambda_i} \le 0$ and every eigenvalue with $Re{\lambda_i} = 0$ and algebric multiplicity $q_i \ge 2$, $rank(A \lambda_i I) = n q_i$, where n is dimension of x. The Equ. pt. x = 0 is globally asymptotically stable **iff** $Re\lambda_i < 0$.

・ロト ・四ト ・ヨト ・ ヨト

- When all eigenvalues of A satisfy $Re\lambda_i < 0$, A is called a Hurwitz matrix.
- ► Asymptotic stability can be verified by using Lyapunov's method :
 - Consider a quadratic Lyap. fcn candidate:

$$V(x) = x^T P x, P = P^T > 0$$

$$\dot{V} = \dot{x}^T P x + x^T P \dot{x}, x^T (A^T P + PA) x \triangleq -x^T Q x$$

where

$$A^T P + P A = -Q, \quad Q = Q^T$$
 Lyapunov Equation

- If Q is p.d., then we conclude that x = 0 is **g.a.s.**
- We can proceed alternatively as follows:
- Start by choosing $Q = Q^T$, Q > 0, then solve the Lyap. eqn. for P.
- ► If P > 0, then x = 0 is g.a.s.

- Theorem: A matrix A is a stable matrix, i.e. Re λ_i < 0 iff for every given Q = Q^T > 0, ∃ P = P^T > 0 that satisfies the Lyap. eq. Moreover, if A is a stable matrix, then P is unique.
- Example 8: $A = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$
 - Let $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = Q^T > 0$ • denote $P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix} = P^T > 0$
 - The Lyap. eq. $A^T P + P A = -Q$ becomes

$$2 P_{12} = -1$$

-P_{11} - P_{12} + P_{22} = 0
-2 P_{12} - 2P_{22} = -1

$$\begin{bmatrix} 0 & 2 & 0 \\ -1 & -1 & 1 \\ 0 & -2 & -2 \end{bmatrix} \begin{bmatrix} P_{11} \\ P_{12} \\ P_{22} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} \implies \begin{bmatrix} P_{11} \\ P_{12} \\ P_{22} \end{bmatrix} = \begin{bmatrix} 1.5 \\ -.5 \\ 1 \end{bmatrix}$$
(1)

- Let $P = P^T = \begin{bmatrix} 1.5 & -.5 \\ -.5 & 1 \end{bmatrix} > 0 \implies x = 0$ is **g.a.s**
- Remark: Computationally, there is no advantages in computing the eigenvalues of A over solving Lyap. eq.

- 本語 医 本語 医 二語

- Consider x = f(x) where f : D → Rⁿ, D ⊂ Rⁿ, is continuously diff. Let x = 0 is in the interior of D and f(0) = 0.
- ► Recall the Mean Value Theorem: If $f : R^n \longrightarrow R^n$ is diff at each x of $S \subset R^n$, let x & y be two pts. in S s.t. the line segment $\subset S$. Then, $\exists_{\partial F}$ pt. z of the line segment s.t. $f(y) - f(x) = \frac{\partial f}{\partial x}\Big|_{x=z} (y-x)$

From M.V.T. we have, $f(x) = f(0) + \frac{\partial f}{\partial x}\Big|_{x=z} x$, where z is a pt. on the line connecting x to 0.

► Since
$$f(0) = 0$$

 $f(x) = \frac{\partial f}{\partial x}\Big|_{x=z} x = \frac{\partial f}{\partial x}\Big|_{x=0} x + \left[\frac{\partial f}{\partial x}\Big|_{x=z} - \frac{\partial f}{\partial x}\Big|_{x=0}\right] x$
 $\triangleq A x + g(x)$

where $A = \frac{\partial f}{\partial x}\Big|_{x=0}$, $g(x) = \left[\frac{\partial f}{\partial x}\Big|_{x=z} - \frac{\partial f}{\partial x}\Big|_{x=0}\right] x$

- ► We have $||g(x)|| \le ||\frac{\partial f}{\partial x}|_{x=z} \frac{\partial f}{\partial x}|_{x=0} |||x||$
- Since f is continuous $\implies \frac{\|g(x)\|}{\|x\|} \longrightarrow 0$ as $\|x\| \longrightarrow 0$
- ▶ ∴ In a small neighborhood of x = 0, the nonlinear system $\dot{x} = f(x)$ can be linearized by $\dot{x} = Ax$.
- Theorem (Lyapunov's First Method):
- ► Let x = 0 be an Equ. pt. for $\dot{x} = f(x)$ where $f : D \longrightarrow R^n$ is continuously differentiable and D is a nghd of origin. Let $A = \frac{\partial f}{\partial x}\Big|_{x=0}$, then

1.
$$x = 0$$
 is **a.s.** if $Re\lambda_i < 0$, $i = 1, ..., n$

2. x = 0 is unstable if $Re\lambda_i > 0$, for one or more eigenvalues

- **Example 9:** $\dot{x} = ax^3$
 - Linearization about x = 0 yields:

$$A = \left. \frac{\partial f}{\partial x} \right|_{x=0} = \left. 3ax^2 \right|_{x=0} = 0$$

- Linearization fails to determine stability
- ► If a < 0, x = 0 is a.s.</p>
- ▶ To see this, let $V(x) = x^4 \Longrightarrow \dot{V} = 4x^3 \dot{x} = 4ax^6 < 0$
- If a > 0, x = 0 is **unstable** using the above Lyap. fcn
- If $a \le 0$, x = 0 is **stable**, starting at any x, remains in x
- Example 10:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\left(\frac{g}{l}\right)\sin x_1 - \left(\frac{k}{m}x_2\right)$$

• Linearization about 2 Equ. pts. (0,0) & $(\pi,0)$:

$$A = \frac{\partial f}{\partial x} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{l}\cos x_1 & -\frac{k}{m} \end{bmatrix}$$

Summary

- ► Lyapunov Direct Method: The origin of an autonomous system x = f(x) is stable if there is a continuously differentiable, p.d. function V(x) s.t. V(x) is n.s.d., and] is asymptotically if V(x) is n.d.
 - V(x) is p.d./p.s.d. iff λ_i{P} > 0/λ_i{P} ≥ 0 iff all leading principle minors of P are positive / non-negative.
 - Variable Gradient Method: To find a Lyap fcn: Choose g(x) s.t.

1.
$$\frac{\partial g_{i}}{\partial x_{j}} = \frac{\partial g_{j}}{\partial x_{i}}$$

2. $g^{T}(x)f(x)$ is n.d.
3. $V(x) = \int_{0}^{x_{1}} g_{1}(y_{1}, 0, ..., 0)dy_{1} + \int_{0}^{x_{2}} g_{2}(x_{1}, y_{2}, 0, ..., 0)dy_{2} + ... + \int_{0}^{x_{n}} g_{n}(x_{1}, x_{2}, ..., y_{n})dy_{n}$
is P.d.

▶ Babashin-Krasovskii Theorem: Let x = 0 be an Eq. pt. of $\dot{x} = f(x)$. Let $V : R^n \longrightarrow R$ be a continuously differentiable fcn. s.t.: V(0) = 0, V(x) > 0, $\forall x \neq 0$, $||x|| \longrightarrow \infty \implies V(x) \longrightarrow \infty$ (i.e. it is radially unbounded), $\dot{V} < 0$, $\forall x \neq 0$ then x = 0 is globally asymptotically stable

イロト イポト イヨト イヨト

Summery

- Another method for study a.s is defined based on Lasalle Theorem:
- ▶ Corollary 1: Let x = 0 be an Equ. pt of $\dot{x} = f(x)$. Let $V : D \to R$ be a continuously differentiable p.d. fcn on a domain D containing the origin x = 0, s.t. $\dot{V}(x) \le 0$ in D.Let $S = \{x \in D | \dot{V} = 0\}$ and suppose that no solution can stay identically in S, other than the trivial solution x(t) = 0. Then, the origin is **a.s.**
 - The origin is **g.a.s.** if $D = R^n$, and V(x) is radially unbounded.
- ▶ Theorem: A matrix A is a stable matrix, i.e. Re $\lambda_i < 0$ iff for every given $Q = Q^T > 0$, $\exists P = P^T > 0$ that satisfies the Lyap. eq. $(A^T P + P A = -Q, Q = Q^T)$. Moreover, if A is a stable matrix, then P is unique.
- Theorem (Lyapunov's First Method): Let x = 0 be an Equ. pt. for ẋ = f(x) where f : D → Rⁿ is continuously differentiable and D is a nghd of origin. Let A = ∂f/∂x|_{x=0}, then
 1.) x = 0 is a.s. if Reλ_i < 0, i = 1,...,n
 2.) x = 0 is unstable if Reλ_i > 0, for one or more eigenvalues

(2)

Example: Robot Manipulator

Dynamics:

$$M(q)\ddot{\mathbf{q}}+C(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}}+B\dot{\mathbf{q}}+g(\mathbf{q})=u$$

where M(q) is the $n \times n$ inertia matrix of the manipulator

- $C(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}}$ is the vector of Coriolis and centrifugal forces
- $g(\mathbf{q})$ is the term due to the Gravity
- ► *B***q** is the viscous damping term
- u is the input torque, usually provided by a DC motor
- **Objective**: To regulate the joint position q around desired position q_d .
- A common control strategy PD+Gravity:

$$u = K_P \tilde{\mathbf{q}} - K_D \dot{\mathbf{q}} + g(\mathbf{q})$$

where $\tilde{\mathbf{q}}=\mathbf{q}_d-\mathbf{q}$ is the error between the desired and actual position

► K_P and K_D are diagonal positive proportional and derivative gains Farzaneh Abdollahi Nonlinear Control Lecture 4 47/7

Example: Robot Manipulator

Consider the following Lyap. fcn candidate:

$$V = \frac{1}{2} \dot{\mathbf{q}}^{T} M(\mathbf{q}) \dot{\mathbf{q}} + \frac{1}{2} \tilde{\mathbf{q}}^{T} K_{P} \tilde{\mathbf{q}}$$

- The first term is the kinetic energy of the robot and the second term accounts for "artificial potential energy" associated with virtual spring in PD control law (proportional feedback K_pq̃)
- Physical properties of a robot manipulator:
 - 1. The inertia matrix M(q) is positive definite
 - 2. The matrix $\dot{M}(q) 2C(\mathbf{q}, \dot{\mathbf{q}})$ is skew symmetric
- ► V is positive in R^n except at the goal position $\mathbf{q} = \mathbf{q}^d$, $\dot{\mathbf{q}} = 0$ $\dot{V} = \dot{\mathbf{q}}^T M(q) \ddot{\mathbf{q}} + \frac{1}{2} \dot{\mathbf{q}}^T \dot{M}(q) \dot{\mathbf{q}} - \dot{\mathbf{q}}^T K_P \tilde{\mathbf{q}}$
- Substituting $M(q)\ddot{\mathbf{q}}$ from (2) into the above equation yields

$$\dot{V} = \dot{\mathbf{q}}^{T}(u - C(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} - B\dot{\mathbf{q}} - g(\mathbf{q})) + \frac{1}{2}\dot{\mathbf{q}}^{T}\dot{M}(q)\dot{\mathbf{q}} - \dot{\mathbf{q}}^{T}K_{P}\tilde{\mathbf{q}}$$
$$= \dot{\mathbf{q}}^{T}(u - B\dot{\mathbf{q}} - K_{P}\tilde{\mathbf{q}} - g(\mathbf{q})) + \frac{1}{2}\dot{\mathbf{q}}^{T}(\dot{M}(q) - 2C(\mathbf{q}, \dot{\mathbf{q}}))\dot{\mathbf{q}}$$

Example: Robot Manipulator

$$\dot{V} = \dot{\mathbf{q}}^T (u - B\dot{\mathbf{q}} - K_P \tilde{\mathbf{q}} - g(\mathbf{q}))\dot{\mathbf{q}}$$

• where $\dot{M} - 2C$ is skew symmetric $\rightsquigarrow \dot{\mathbf{q}}^T (\dot{M}(q)\dot{\mathbf{q}} - C(\mathbf{q}, \dot{\mathbf{q}}))\dot{\mathbf{q}} = 0$

► Substitute PD control law for *u*, we get:

$$\dot{V} = -\dot{\mathbf{q}}^T (K_D + B)\dot{\mathbf{q}} \le 0$$
 (3)

- The goal position is stable since V is non-increasing
- Use the invariant set theorem:
 - Suppose $V \equiv 0$, then (3) implies that $\dot{\mathbf{q}} \equiv 0$ and hence $\ddot{\mathbf{q}} \equiv 0$
 - ▶ From Equ. of motion (2) with PD control, we have

$$M(q)\ddot{\mathbf{q}} + C(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + B\dot{\mathbf{q}} = K_P\tilde{\mathbf{q}} - K_D\dot{\mathbf{q}}$$

we must then have $0 = K_P \tilde{\mathbf{q}}$ which implies that $\tilde{\mathbf{q}} = 0$, $\dot{\mathbf{q}} = 0$.

- V is radially unbounded.
- ► ∴ Global asymptotic stability is ensured.

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Example: Robot Manipulator

▶ In case, the gravitational terms is not canceled, V is modified to:

$$\dot{V} = -\dot{\mathbf{q}}^{\mathcal{T}}(K_D + B + g(q))\dot{\mathbf{q}} \leq 0$$

- The presence of gravitational term means PD control alone cannot guarantee asymptotic tracking.
- ▶ In practice, there would be a steady state error.
- Assuming that the closed loop system is stable, the robot configuration q will satisfy

$$K_P(\mathbf{q}_d - \mathbf{q}) = g(\mathbf{q})$$

- ► The physical interpretation of the above equation is that:
 - The configuration q must be such that the motor generates a steady state "holding torque" $K_P(\mathbf{q}_d \mathbf{q})$ sufficient to balance the gravitational torque $g(\mathbf{q})$.
- : the steady state error can be reduced by increasing K_{Pe} , ...,

Control Design Based on Lyapunov's Direct Method

- Basically there are two approaches to design control using Lyapunov's direct method
 - Choose a control law, then find a Lyap. fcn to justify the choice
 - Candidate a Lyap. fcn, then find a control law to satisfy the Lyap. stability conditions.
- Both methods have a trial and error flavor
- ► In robot manipulator example the first approach was applied:
 - ► First a PD controller was chosen based on physical intuition
 - Then a Lyap. fcn. is found to show g.a.s.

伺い イヨト イヨト

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Control Design Based on Lyapunov's Direct Method

- ► Example: Regulator Design
- Consider the problem of stabilizing the system: $\ddot{x} - \dot{x}^3 + x^2 = u$
- ▶ In other word, make the origin an asymptotically stable Equ. pt.
- Recall the example:

$$x_1 = x_2$$

 $\dot{x}_2 = -g(x_1) - h(x_2)$

where
$$g(.)$$
 & $h(.)$ are locally Lip. and satisfy
 $g(0) = 0$, $yg(y) > 0$ $\forall y \neq 0$, $y \in (-a, a)$
 $h(0) = 0$, $yh(y) > 0$ $\forall y \neq 0$, $y \in (-a, a)$

Asymptotic stability of such system could be shown by selecting the following Lyap. fcn:

Amirkabi

Example: Regulator Design

► Let x₁ = x, x₂ = x. The above example motivates us to select the control law u as

$$u=u_1(\dot{x})+u_2(x)$$

where

$$\dot{x}(\dot{x}^3 + u_1(\dot{x})) < 0$$
 for $\dot{x} \neq 0$
 $x(u_2(x) - x^2) < 0$ for $x \neq 0$

where α_1 and α_2 are unknown, but s.t. $\alpha_1 > -2$ and $|\alpha_2| < 5$

► This system can be globally stabilized using the control law: $u = -2\dot{x}^3 - 5(x + x^3)$

Estimating Region of Attraction

- Sometimes just knowing a system is a.s. is not enough. At least an estimation of RoA is required.
 - Example: Occurring fault and finding "critical clearance time"
- Let x = 0 be an Equ. pt. of ẋ = f(x). Let φ(t, x) be the sol starting at x at time t=0. The Region Of Attraction (RoA) of the origin denoted by R_A is defined by:

$${\it R}_{\it A}=\{x\in {\it R}^n|\phi(t,x) \longrightarrow 0 ext{ as } t \longrightarrow \infty\}$$

- ▶ Lemma: If x = 0 is an a.s. Eq. pt. of $\dot{x} = f(x)$, then its RoA R_A is an open, connected, invariant set. Moreover, the boundary of RoA, ∂R_A , is formed by trajectories of $\dot{x} = f(x)$.
- ► ... one way to determine RoA is to characterize those trajectories that lie on ∂R_A.

Amirkabir University of Technology

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Example: Van-der-Pol

Dynamics of oscillator in reverse time

$$\dot{x}_1 = -x_2$$

 $\dot{x}_2 = x_1 + (x_1^2 - 1)x_2$

▶ The system has an Equ. pt at origin and an unstable limit cycle.

► The origin is a stable focus → it is **a.s.** < □ > < □ > < ≥ > < ∶ Farzaneh Abdollahi Nonlinear Control Lecture 4

55/71

Example: Van-der-Pol

Checking by linearizaton method

$$A = \left. \frac{\partial f}{\partial x} \right|_{x=0} \left[\begin{array}{cc} 0 & -1 \\ 1 & -1 \end{array} \right]$$

•
$$\lambda = -1/2 \pm j\sqrt{3}/2 \rightsquigarrow \text{Re } \lambda_i < 0$$

- Clearly, RoA is bounded since trajectories outside the limit cycle drift away from it
- ▶ $\therefore \partial R_A$ is the limit cycle

イヨトイヨト

$$\dot{x}_1 = -x_1(1-x_1^2-x_2^2)$$

 $\dot{x}_2 = -x_2(1-x_1^2-x_2^2)$

There is one Equ. pt. at the origin and a continuum of Equ. pts on unit circle. Using

$$x_1 = r \, \cos \theta$$
 , $x_2 = r \, \sin \theta \implies \dot{r} = -r(1-r^2), \ \dot{ heta} = 0$

- ▶ All traj. starting with r < 1 approach the origin as $t \longrightarrow \infty$.
- ▶ All traj. starting with r > 1 approach ∞ as $t \longrightarrow \infty$.
- All traj. starting with r = 1 remain at $r = 1 \forall t$
- $\therefore R_A$ is the interior of the unit circle
- ► Using Lyap. methods, one can find an estimate of RoA

$$\begin{array}{rcl} x_1 &=& x_2 \\ \dot{x}_2 &=& -x_1 + \frac{1}{3}x_1^3 - x_2 \end{array}$$

• There are 3 isolated Equ. pts. $(0,0), (\sqrt{3},0), (-\sqrt{3},0).$

- (0,0) is a stable focus, the other two are saddle pts.
- ► ∴ Origin is **a.s.** and other two are unstable (follows from linearization).
- stable trajectories of the saddle points form two separatrices that are ∂R_A
- ► RoA is unbounded

Outline Autonomous Systems Invariance Principle Linear System and Linearization Lyapunov and Lasalle Appl.

Example 12:

Recall the example:

$$\dot{x}_{1} = x_{2}$$

$$\dot{x}_{2} = -h(x_{1}) - ax_{2}$$

$$V = \frac{\delta}{2}x^{T} \begin{bmatrix} ka^{2} & ka \\ ka & 1 \end{bmatrix} x + \delta \int_{0}^{x_{1}} h dy$$
4.11

• Let

$$V = \frac{1}{2}x^{T} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} x + \int_{0}^{x_{1}} \left(y - \frac{1}{3}y^{3}\right) dy = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{2}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} x + \frac{1}{2}x_{1}^{2} + \frac{1}{2}x_{2}^{2} + \frac{1}{2}x_{2}$$

• We get:
$$\dot{V} = -\frac{1}{2}x_1^2\left(1 - \frac{1}{3}x_1^2\right) - \frac{1}{2}x_2^2$$

• Define $D = \{x \in R^2 | -\sqrt{3} < x_1 < \sqrt{3}\}$

イヨトイヨト

- : V(x) > 0 and $\dot{V}(x) < 0$ in $D \{0\}$,
- ► From the phase portrait ⇒ D is not a subset of R_A. Tell me why?!!

Farzaneh Abd<u>ollah</u>i

Estimating RoA

- ► Traj starting in D move from one Lyap. surface to V(x) = c₁ to an inner surface V(x) = c₂ with c₂ < c₁.
- ► However, there is no guarantee that the traj. will remain in *D* forever.
- ▶ Once, the traj leaves D, no guarantee that \dot{V} remains negative.
- This problem does not occur in R_A since R_A is an invariant set.
- The simplest estimate is given by the set

$$\Omega_c = \{x \in R^n | V(x) \le c\}$$

where Ω_c isbounded and connected and $\Omega_c \in D$

- Note that {V(c) ≤ c} may have more than one component, only the bounded component which belong to in D is acceptable.
 - Example: If $V(x) = x^2/(1 + x^4)$.and $D = \{|x| < 1\}$
 - ► The set $\{V(x) \le 1/4\}$ has two components $\{|x| \le \sqrt{2-\sqrt{3}}\}$ and $\{|x| \le \sqrt{2+\sqrt{3}}\}$ only $\{|x| \le \sqrt{2-\sqrt{3}}\}$ is acceptable.

Estimating RoA

- To find RoA, first we need to find a domain D in which V is n.d.
- Then, a bounded set $\Omega_c \subset D$ shall be sought
- We are interested in largest set Ω_c, i.e. the largest value of c since Ω_c is an estimate of R_A.
- V is p.d. everywhere in R^2 .
- ► If $V(x) = x^T P x$, let $D = \{x \in R^2 | ||x|| \le r\}$. Once, D is obtained, then select $\Omega_c \subset D$ by $c < \min_{\|x\|=r} V(x)$
- In words, the smallest V(x) = c which fits into D.
- Since

 $x^T P x \ge \lambda_{min}(P) \|x\|^2$

► We can choose

$$c < \lambda_{min}(P)r^2$$

▶ To enlarge the estimate of $R_A \implies$ find largest ball on which \dot{V} is n.d.

$$\dot{x}_1 = -x_2$$

 $\dot{x}_2 = x_1 + (x_1^2 - 1)x_2$

- ► From the linearization $\frac{\partial f}{\partial x}\Big|_{x=0} = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$ is stable
- ► Taking Q = I and solve the Lyap. equation: $PA + A^T P = -I \implies P = \begin{bmatrix} 1.5 & -.5 \\ -.5 & 1 \end{bmatrix}$
- λ_{min}(P) = 0.69
 V = -(x₁² + x₂²) (x₁³x₂ 2x₁²x₂²) ≤ -||x||₂² + |x₁||x₁x₂||x₁ 2x₂| ≤ -||x||₂² + √5/2 ||x||₂⁴
 where |x₁| ≤ ||x||₂, |x₁x₂| ≤ ||x||₂²/2, |x₁ 2x₂| ≤ √5 ||x||₂
 V is n.d. on a ball D of radius r² = 2/√5 = 0.894 ↔ c < 0.894 × 0.69 = 0.617 → C =

- To find less conservative estimate of Ω_c :
- Let $x_1 = \rho \cos\theta$, $x_2 = \rho \sin\theta$

$$egin{aligned} &\ell &= -
ho^2 +
ho^4 \cos^2 heta \sin heta \, (\sin heta - \cos heta) \ &\leq -
ho^2 +
ho^4 \, |\cos^2 heta \sin heta \, | \sin heta - \cos heta | \ &\leq -
ho^2 +
ho^4 (.3849) (2.2361) \ &\leq -
ho^2 + .861
ho^4 < 0 \ \ ext{for} \
ho^2 < rac{1}{.861} \end{aligned}$$

- ► $c = .8 < \frac{.69}{.861} = .801$
- ► Thus the set:

 $\Omega_c = \{x \in R^2 | V(x) \le .8\}$ is an estimate of R_A .

A lesser conservative estimation of RoA:

- plot the contour of $\dot{V} = 0$
- plot V(x) = c for increasing c to find largest c where $\dot{V} < 0$

• The *c* obtained by this method is c = 2.25.

(a) Contours of $\dot{V}(x) = 0$ (dashed), V(x) = 0.8 (dash-dot), and V(x) = 2.25 (solid) (b) comparison of the region of attraction with its estimate.

$$\dot{x}_1 = -2x_1 + x_1x_2$$

 $\dot{x}_2 = x_2 + x_1x_2$

- There are two Equ. pts., (0,0), (1,2).
- ► Taking Q = I and solving Lyap Eq. $A^T P + PA = -I \Rightarrow P = \begin{bmatrix} \frac{1}{4} & 0\\ 0 & \frac{1}{4} \end{bmatrix}$

ntro

- \therefore The Lyap. fcn is $V(x) = x^T P x$
- We have $\dot{V} = -(x_1^2 + x_2^2) + \frac{1}{2}(x_1^2x_2 + 2x_1x_2^2)$
- Find largest D s.t. \dot{V} is n.d. in D.

► Let
$$x_1 = \rho \cos\theta$$
, $x_2 = \rho \sin\theta$

イロト 不得下 イヨト イヨト 二日

► Since
$$\lambda_{min}(P) = \frac{1}{4} \implies$$
, we choose
 $c = .79 < \frac{1}{4} \times \left(\frac{4}{\sqrt{5}}\right)^2 = .8$

Thus the set:

$$\Omega_c = \{x \in R^2 | V(x) \leq .79\} \subset R_A$$

- Estimating RoA by the set Ω_c is simple but conservative
- ► Alternatively Lasalle's theorem can be used. It provides an estimate of R_A

Farzaneh Abd<u>ollahi</u>

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -4(x_1 + x_2) - h(x_1 + x_2)$

where $h: R \longrightarrow R$ s.t. h(0) = 0, $\&xh(x) \ge 0 \quad \forall |x| \le 1$

Consider the Lyap fcn candidate:

$$V(x) = x^{T} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} x = 2x_{1}^{2} + 2x_{1}x_{2} + x_{2}^{2}$$

► Then
$$\dot{V} = -2x_1^2 - 6(x_1 + x_2)^2 - 2(x_1 + x_2)h(x_1 + x_2)$$

 $-2x_1^2 - 6(x_1 + x_2)^2, \quad \forall |x_1 + x_2| \leq 1 \qquad = -x^T \begin{bmatrix} 8 & 6 \\ 6 & 6 \end{bmatrix} x$

• $\therefore \dot{V}$ is n.d. in the set $G = \{x \in R^2 | |x_1 + x_2| \le 1\}$. • (0,0) is **a.s.**, to estimate R_A , first do it from Ω_c .

► Find the largest *c* s.t. $\Omega_c \subset G$. Now, *c* is given by

$$c = \min_{|x_1+x_2|=1} V(x)$$
 or
 $c = \min \left\{ \min_{x_1+x_2=1} V(x), \quad \min_{x_1+x_2=-1} V(x) \right\}$

▶ The first minimization yields

$$\min_{\substack{x_1+x_2=1\\x_1+x_2=-1}} V(x) = \min_{\substack{x_1\\x_1}} \left\{ 2x_1^2 + 2x_1(1-x_1) + (1-x_1)^2 \right\} = 1 \text{ and}$$

$$\min_{\substack{x_1+x_2=-1\\x_1+x_2=-1}} V(x) = 1$$

• Hence, Ω_c with c = 1 is an estimate of R_A .

• A better (less conservative) estimate of R_A is possible.

► The key point is to observe that traj inside G cannot leave it through certain segment of the boundary |x₁ + x₂| = 1.

• Let
$$\sigma = x_1 + x_2 \implies \partial G$$
 is given by $\sigma = 1$ and $\sigma = -1$

► We have

$$\frac{d}{dt}\sigma^2 = 2\sigma(\dot{x_1} + \dot{x_2}) = 2\sigma x_2 - 8\sigma^2 - 2\sigma h(\sigma)$$

$$\leq 2\sigma x_2 - 8\sigma^2, \quad \forall |\sigma| \leq 1$$

- ▶ On the boundary $\sigma = 1 \implies \frac{d\sigma^2}{dt} \le 2x_2 8 \le 0 \quad \forall x_2 \le 4$
- ► Hence, the traj on σ = 1 for which x₂ ≤ 4 cannot move outside the set G since σ² is non-increasing
- ► Similarly, on the boundary $\sigma = -1$ we have $\frac{d\sigma^2}{dt} \leq -2x_2 - 8 \leq 0 \quad \forall x_2 \geq -4$
- Hence, the traj on σ = −1 for which x₂ ≥ −4 cannot move outside the set G.

- ► To define the boundary of *G*, we need to find two other segments to close the set.
- ▶ We can take them as the segments of Lyap. fcn surface
- ► Let c₁ be s.t. V(x) = c₁ intersects the boundary of x₁ + x₂ = 1 at x₂ = 4 and let c₂ be s.t. V(x) = c₂ intersects the boundary of x₁ + x₂ = -1 at x₂ = -4
- Then, we define $V(x) = \min c_1, c_2$, we have

$$c_1 = V(x)|_{x_1 = -3} = 10 \quad \& c_2 = V(x)|_{x_1 = 3} = 10$$

 $x_2 = 4 \qquad \qquad x_2 = -4$

・ 同 ト ・ ヨ ト ・ ヨ ト

• The set Ω is defined by

$$\Omega = \{ x \in R^2 | V(x) \le 10 \quad \& |x_1 + x_2| \le 1 \}$$

This set is closed and bounded and positively invariant. Also, V is n.d. in Ω since Ω ⊂ G ⇒ Ω ⊂ R_A.

Estimates of the region of attraction