

Computational Intelligence Part II Lecture 3: Identification and Control Design Using Fuzzy Systems

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

▲□ → ▲ 三 → ▲ 三 →

Identification

Fuzzy systems using Gradient Descent Method Example

Control

Indirect Adaptive Fuzzy Control Direct Adaptive Fuzzy Control

- (∃) -

- F

э

Identification

Consider the system dynamics:

y(k+1) = f(y(k), ..., y(k-n+1), u(k), ..., u(k-m+1))

- u: input; y:output; f(.): an unknown function.
- Open loop system is stable.

• Identification model

$$\hat{y}(k+1) = f(y(k), ..., y(k-n+1), u(k), ..., u(k-m+1))$$

• \hat{f} : estimated f; \hat{y} : identifier output

► Objective: By using desired pairs of I/O (x^{k+1}, y^{k+1}), identifying f s.t. e = y - ŷ is arbitrarily small.

伺下 イヨト イヨト

Fuzzy systems using Gradient Descent Method

- f is designed based on a fuzzy system
- Its parameters are adjusted by gradient descent method.
- ► The structure of the identifier can be either parallel or series parallel.
- ► For example: a fuzzy system including:
 - Inference engine: production
 - Fuzzifier: singleton
 - Difuzzifier: center average
 - Membership function: Gaussian

$$f(x) = \frac{\sum_{l=1}^{M} \bar{y}^{l} [\prod_{i=1}^{n} \exp(-(\frac{x_{i} - \bar{x}_{i}^{l}}{\sigma_{i}^{t}})^{2})}{\sum_{l=1}^{M} [\prod_{i=1}^{n} \exp(-(\frac{x_{i} - \bar{x}_{i}^{l}}{\sigma_{i}^{t}})^{2})]}$$

• Unknown parameters: $\bar{x}_i^I, \bar{y}_i^I, \sigma_i^I$

(1)

Training

1. Choosing a fuzzy system and initial values:

- Assume the system fuzzy (1)
- Choose a proper value for M
 - ▶ The greater $M \rightsquigarrow$ More accuracy with complicated structure
- ► Choose initial values x
 ⁱ_i(0), y
 ⁱ_i(0), σ
 ⁱ_i(0) randomly, based on linguistic rules or a priori knowledge of the system
- 2. Apply input and calculate output of The fuzzy system
 - Apply the desired I/O pair (x(k), y(k)), k = 1, 2, ...
 - Calculate f in (1) in following three steps (layers)

2.1
$$z' = \prod_{i=1}^{n} \exp(-(\frac{x_i(k) - \bar{x}_i^{\ell}(k)}{\sigma_i^{\ell}(k)})^2)$$

2.2 $b = \sum_{l=1}^{M} z^l$
2.3 $a = \sum_{l=1}^{M} \bar{y}^{l}(k) z^l$
2.4 $\hat{y}(k) = \hat{f} = \frac{a}{b}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

3. Updating Paraments

• Using Gradient decent method find $\sigma'_i(k+1)$, $\bar{x}'_i(k+1)$, $\bar{y}'_i(k+1)$

$$\begin{split} \bar{y}^{l}(k+1) &= \bar{y}^{l}(k) - \eta \frac{\hat{f} - y}{b} z^{l}, l = 1, ..., M \\ \bar{x}^{l}_{i}(k+1) &= \bar{x}^{l}_{i}(k) - \eta (\hat{f} - y) \frac{\bar{y}^{l} - \hat{f}}{b} z^{l} \frac{2(x_{i}(k) - \bar{x}^{l}_{i}(k))}{\sigma_{i}^{l^{2}}}, i = 1, ..., n \\ \sigma^{l}_{i}(k+1) &= \sigma^{l}_{i}(k) - \eta \frac{\hat{f} - y}{b} z^{l} (\bar{y}^{l}(k) - \hat{f}) \frac{2(x_{i}(k) - \bar{x}^{l}_{i}(k))^{2}}{\sigma_{i}^{l^{3}}(k)} \end{split}$$

- ▶ a, b, z_l are found in the second step, $\eta > 0$ is learning rate
- 4. k = k + 1, go back to step 2, and repeat this loop until $|y(k) \hat{y}(k)|$ is arbitrarily small.

(4回) (4回) (4回)

Control

Example

- Identify y(k+1) = 0.3y(k) + 0.6y(k-1) + g[u(k)]
- $g(u) = 0.6 \sin(\pi u) + 0.4 \sin(3\pi u) + 0.1 \sin(5\pi u)$ is unknown
- ▶ Identification model $\hat{y}(k+1) = 0.3y(k) + 0.6y(k-1) + \hat{g}[u(k)]$
- Choose M = 10, $\eta = 0.5$
- $u(k) = \sin(2\pi k/200)$

► The outputs of the plant and the model after the identification procedure

э

∃ ► < ∃ ►</p>

Adaptive Fuzzy Control

- The objective of adaptive control: Providing desired performance in presence of uncertainties.
- The main advantage of adaptive fuzzy control comparing to classical adaptive control:
 - ► To obtain control adaptive law, the knowledge of experts on system dynamics and/or control strategies can be considered.
- Expert knowledge can be categorized to
 - System knowledge: The If-then rules which describe the unknown system behavior.
 - For example: For a car:"IF you push the gas pedal more, Then the car speed is increased.
 - Control knowledge: the rule of fuzzy control which indicates at each situation, which control action is required.
 - ► For example: For a car:" IF the speed is low, Then push the gas pedal more.

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Indirect adaptive fuzzy control: The fuzzy control includes some fuzzy systems made based on system knowledge

Control

- Direct adaptive fuzzy control: The control fuzzy includes a fuzzy system which is made based on control knowledge
- Combination of indirect/direct adaptive fuzzy control: A weighted combination of direct and indirect adaptive control

Indirect Adaptive Fuzzy Control

Consider *n*th order nonlinear system

$$\begin{aligned} x^{(n)} &= f(x, \dot{x}, \dots, x^{(n-1)}) + g(x, \dot{x}, \dots, x^{(n-1)}) u \\ y &= x \end{aligned}$$

where $X = (x, \dot{x}, \dots, x^{(n-1)})$: state vector; $u \in R$: input; $y \in R$: Output; f, g: unknown functions

- Assume the system is controllable
- ► Objective: find u = u(X|θ) based on fuzzy rules and an adaptation law for adjusting θ s.t. y tracks y_m

The Fuzzy Control Design for Indirect Adaptive Control

Assume a set of IF-then laws based on system knowledge is available to describe the I/O behavior of g and f

Control

If
$$x_1$$
 is F_1^r, \ldots, x_n is F_n^r , then $f(x)$ is C^r (2)
If x_1 is G_1^s, \ldots, x_n is G_n^s , then $g(x)$ is D^r

$$r = 1, 2, \dots, L_f \ s = 1, 2, \dots, L_g$$

If the f and g functions are known, u is selected s.t. cancel the nonlinearities and control based on linear control techniques such as pole-placement:

$$u^* = \frac{1}{g(x)} [-f(x) + y_m^{(n)} + K^T e]$$
(3)

where $e = y_m - y$ is dynamics error, $K = (k_1, \ldots, k_n)^T$, s.t. the roots of $s^n + k_1 s^{n-1} + \ldots + k_n$ are LHP

Since f and g are unknown, the estimation of them are considered in (4):

$$u^{*} = \frac{1}{\hat{g}(X|\theta_{g})} \left[-\hat{f}(X|\theta_{f}) + y_{m}^{(n)} + K^{T} e \right] \tag{4}$$

12/23

• $\hat{g}(X|\theta_g)$ and $\hat{f}(X|\theta_f)$ are obtained in the following two steps

- 1. for x_i , i = 1, ..., n, define p_i fuzzy set of $A_i^{l_i}, l_i = 1, ..., p_i$, s.t. they include F_i^r , $r = 1, ..., L_f$ in(2); also define q_i fuzzy set of $B_i^{l_i}, l_i = 1, ..., q_i$, s.t. they include G_i^s , $s = 1, ..., L_g$ in(2)
- 2. Using the fuzzy rule $\prod_{i=1}^{n} p_i$ provide a fuzzy system for $\hat{f}(X|\theta_f)$:

If
$$x_1$$
 is $B_1^{l_1}, \ldots, x_n$ is $A_n^{l_n}$, then $\hat{f}(x)$ is E^{l_1, \ldots, l_n} , (5)

for
$$I_i = 1, ..., p_i, i = 1, ..., n$$

- If the If part of (2) is the same as If part of (5), then $E^{l_1,...,l_n}$ is C^r .
- Otherwise, it is considered ad a new fuzzy set
- Using the fuzzy rule $\prod_{i=1}^{n} q_i$ provide fuzzy system for $\hat{g}(X|\theta_g)$:

If
$$x_1$$
 is $A_1^{l_1}, \ldots, x_n$ is $B_n^{l_n}$, then $\hat{g}(x)$ is H^{l_1, \ldots, l_n} (6)

for $l_i = 1, ..., q_i, i = 1, ..., n$

- If the If part of (2) is the same as If part of (6), then $H^{l_1,...,l_n}$ is D^r .
- Otherwise, it is considered ad a new fuzzy set

・ 同 ト ・ ヨ ト ・ ヨ ト …

13/23

Identification

Consider:

Inference engine: production; Fuzzifier: singleton; Difizzifier: center average

$$f(X|\theta_{f}) = \frac{\sum_{l_{1}=1}^{p_{1}} \cdots \sum_{l_{n}=1}^{p_{n}} \bar{y}_{l}^{l_{1}\dots l_{n}} [\prod_{i=1}^{n} \mu_{A_{i}}^{l_{i}}(x_{i})]}{\sum_{l_{1}=1}^{p_{1}} \cdots \sum_{l_{n}=1}^{p_{n}} [\prod_{i=1}^{n} \mu_{A_{i}}^{l_{i}}(x_{i})]}$$

$$g(X|\theta_{g}) = \frac{\sum_{l_{1}=1}^{q_{1}} \cdots \sum_{l_{n}=1}^{q_{n}} \bar{y}_{l}^{l_{1}\dots l_{n}} [\prod_{i=1}^{n} \mu_{B_{i}}^{l_{i}}(x_{i})]}{\sum_{l_{1}=1}^{q_{1}} \cdots \sum_{l_{n}=1}^{q_{n}} [\prod_{i=1}^{n} \mu_{B_{i}}^{l_{i}}(x_{i})]}$$

$$(8)$$

Consider y
_f^{h...ln} and y
_g^{h...ln} are free parameters which are summed in θ_f ∈ R^{Π_{i=1}ⁿ p_i} and θ_g ∈ R^{Π_{i=1}ⁿ q_i}, respectively:

$$f(X|\theta_{f}) = \theta_{f}^{T} \varepsilon(X)$$

$$g(X|\theta_{g}) = \theta_{g}^{T} \eta(X)$$

$$\varepsilon(X) = \frac{\prod_{i=1}^{n} \mu_{A_{i}}{}^{l_{i}}(x_{i})}{\sum_{l_{1}=1}^{p_{1}} \cdots \sum_{l_{n}=1}^{p_{n}} [\prod_{i=1}^{n} \mu_{A_{i}}{}^{l_{i}}(x_{i})]}$$

$$\eta(X) = \frac{\prod_{i=1}^{n} \mu_{B_{i}}{}^{l_{i}}(x_{i})}{\sum_{l_{1}=1}^{q_{1}} \cdots \sum_{l_{n}=1}^{q_{n}} [\prod_{i=1}^{n} \mu_{B_{i}}{}^{l_{i}}(x_{i})]}$$
(10)

Adapting Rule:

$$\dot{\theta}_{f} = -\gamma_{1} e^{T} P b \varepsilon(X) \dot{\theta}_{g} = -\gamma_{2} e^{T} P b \eta(X)$$
(11)

► where - \(\gamma_1\), -\(\gamma_2\) are pos. numbers and P is Pos. def. matrix obtained from Lyapunov equation

$$\Lambda^{T}P + P\Lambda = -Q, Q > 0, \quad \Lambda = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & . \\ . & . & . & \dots & . \\ 0 & 0 & 0 & \dots & 1 \\ -k_{n} & -k_{n-1} & \dots & \dots & -k_{1} \end{pmatrix}$$

► It should be mentioned that the system knowledge (2) is considered on selecting θ_f(0), θ_g(0)

・ 同 ト ・ ヨ ト ・ ヨ ト

3

14/23

Control

Indirect Adaptive Fuzzy Control

Indirect Adaptive Fuzzy Control

・ 同 ト ・ ヨ ト ・ ヨ ト

э

16/23

Consider *n*th order nonlinear system

$$x^{(n)} = f(x, \dot{x}, \dots, x^{(n-1)}) + bu$$

$$y = x$$

Control

where $X = (x, \dot{x}, ..., x^{(n-1)})$: state vector; $u \in R$: input; $y \in R$: Output; f: unknown functions, b > 0 is cons. and unknown

- Assume the system is controllable
- Objective: find $u = u(X|\theta)$ based on fuzzy rules and an adaptation law for adjusting θ s.t. y tracks y_m
- Main difference of direct and indirect adaptive fuzzy control is type of available expert knowledge
- In direct adaptive fuzzy control, assume a set of IF-then laws based on control knowledge

f
$$x_1$$
 is $P_1^r, ..., x_n$ is P_n^r , then *u* is Q^r , $r = 1, 2, ..., L_u$ (12)

17/23

• $u_D(X|\theta_f)$ is obtained in the following two steps

1. for x_i , i = 1, ..., n, define m_i fuzzy set of $A_i^{l_i}$, $l_i = 1, ..., m_i$, s.t. they include p_i^r , $r = 1, ..., L_u$ in(12)

Control

2. Using the fuzzy rule $\prod_{i=1}^{n} m_i$ provide fuzzy system for $u(X|\theta_u)$:

If
$$x_1$$
 is $A_1^{l_1}, \dots, x_n$ is $A_n^{l_n}$, then u is S^{l_1, \dots, l_n} , (13)

for $l_i = 1, ..., m_i, i = 1, ..., n$

- If the If part of (13) is the same as If part of (5), then $E^{l_1,...,l_n}$ is C^r .
- Otherwise, it is considered ad a new fuzzy set
- Consider: Inference engine: Production; Fuzzifier: singleton; Difizzifier: center mean

$$u(X|\theta_f) = \frac{\sum_{l_1=1}^{m_1} \cdots \sum_{l_n=1}^{m_n} \bar{y}_u^{l_1 \dots l_n} [\prod_{i=1}^n \mu_{A_i}^{l_i}(x_i)]}{\sum_{l_1=1}^{m_1} \cdots \sum_{l_n=1}^{m_n} [\prod_{i=1}^n \mu_{A_i}^{l_i}(x_i)]}$$
(14)

Control • Consider $\bar{y}_{\mu}^{l_1...l_n}$ are adjustable parameters, summed in $\theta_{\mu} \in R^{\prod_{i=1}^n p_i}$:

$$u(X|\theta_u) = \theta_u^T \varepsilon(X)$$

$$\varepsilon(X) = \frac{\prod_{i=1}^n \mu_{A_i}^{l_i}(x_i)}{\sum_{l_1=1}^{m_1} \cdots \sum_{l_n=1}^{m_n} [\prod_{i=1}^n \mu_{A_i}^{l_i}(x_i)]}$$
(15)

Adapting Rule:

$$\dot{\theta}_u = \gamma_3 e^T P_n \varepsilon(X)$$

• where $-\gamma_3$, is pos. numbers and p_n is the last column of P is Pos. def. matrix obtained from Lyapunov equation

$$\Lambda^{T}P + P\Lambda = -Q, Q > 0, \quad \Lambda = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & . \\ . & . & . & \dots & . \\ . & . & . & \dots & . \\ 0 & 0 & 0 & \dots & 1 \\ -k_{n} & -k_{n-1} & \dots & . & . \\ -k_{n-1} & \dots & . & . & . \\ \end{pmatrix}_{\Xi} \xrightarrow{\sim} \infty$$

Direct Adaptive Fuzzy Control

Direct Adaptive Fuzzy Control

э

< ∃> < ∃>

Example

- Consider a system dynamics: $\dot{x} = \frac{1 e^{-x(t)}}{1 + e^{-x(t)}} + u(t)$
- Objective is finding a controller s.t. $x \rightarrow 0$.
- choose $\gamma_3 = 1$, and six fuzzy sets $N_1, N_2, N_3, p_1, p_2, p_3$ in [-3, 3]
- Membership fucns

$$\begin{split} \mu_{N_1}(x) &= \exp(-(x+0.5)^2), \\ \mu_{N_2}(x) &= \exp(-(x+1.5)^2), \\ \mu_{\rho_1}(x) &= \exp(-(x-2)^2), \\ \mu_{\rho_2}(x) &= \exp(-(x+1.5)^2), \\ \mu_{N_3}(x) &= \exp(-(x+2)^2), \\ \mu_{\rho_3}(x) &= \exp(-(x-0.5)^2) \end{split}$$

Control

00000000

- To cases are considered
 - There is no control fuzzy rule, $\theta_i(0)$ is obtained randomly in [-2, 2]
 - If x is N_2 , then u(x) is PB (if x < 0, choose u >> 0 to make $\dot{x} > 0$)
 - If x is P_2 , then u(x) is NB (if x > 0, choose $u \ll 0$ to make $\dot{x} \ll 0$)
 - where $\mu_{NB}(u) = \exp(-(u+2)^2), \mu_{PB}(u) = \exp(-(u-2)^2)$

ロト 不得下 不良下 不良下

Membership Function

<ロ> <同> <同> < 同> < 同>

- x in closed-loop system using direct control fuzzy with a) unknown fuzzy control rules; b) known fuzzy control rules
- ▶ in (b) the state converges faster

L. X. Wang, A Course In Fuzzy Systems and Control. Prentice Hall, 1996.

イロト イポト イヨト イヨト