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Linearly Nonseparable Pattern Classification

I A single layer network can find a linear discriminant function.

I Nonlinear discriminant functions for linearly nonseparable function can
be considered as piecewise linear function

I The piecewise linear discriminant function can be implemented by a
multilayer network

I The pattern sets †1 and †2 are linearly nonseparable, if no weight
vector w exists s.t

yTw > 0 for eachy ∈ †1
yTw < 0 for eachy ∈ †2
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Example XOR
I XOR is nonseparable

x1 x2 Output

1 1 -1
1 0 1
0 1 1
0 0 -1

I At least two line are required to separate them

I By choosing proper values of weights, the
decision lines are

−2x1 + x2 −
1

2
= 0

x1 − x2 −
1

2
= 0

I output of the first layer network:
o1 = sgn(−2x1 + x2 −

1

2
) o2 = sgn(x1 − x2 −

1

2
)
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I The main idea of solving linearly nonseparable patterns is:
I the set of linearly nonseparable pattern is mapped into the image space

where it becomes linearly separable.
I This can be done by proper selecting weights of the first layer(s)
I Then in the next layer they can be easily classified

I Increasing # of neurons in the middle layer increases # of lines.
I ∴ provides nonlinear and more complicated discriminant functions

I The pattern parameters and center of clusters are not always known a
priori

I ∴ A stepwise supervised learning algorithm is required to calculate the
weights
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Delta Learning Rule for Feedforward Multilayer Perceptron

I The training algorithm is called error back propagation (EBP) training
algorithm

I If a submitted pattern provides an output far from desired value, the
weights and thresholds are adjusted s.t. the current mean square
classification error is reduced.

I The training is continued/repeated for all patterns until the training
set provide an acceptable overall error.

I Usually the mapping error is computed over the full training set.
I EBP alg. is working in two stages:

1. The trained network operates feedforward to obtain output of the
network

2. The weight adjustment propagate backward from output layer through
hidden layer toward input layer.
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Multilayer Perceptron

I input vec. z

I output vec. o

I output of first
layer, input of
hidden layer y

I activation fcn.
Γ(.) =
diag{f (.)}
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Feedforward Recall

I Give training pattern vector z , result of this phase is computing the
output vector o (for two layer network)

I Output of first layer: y = Γ[Vz ] (the internal mapping z → y)
I Output of second layer: o = Γ[Wy ]
I Therefore:

o = Γ[W Γ[Vz ]]

I Since the activation function is assumed to be fixed, weights are the
only parameters should be adjusted by training to map z → o s.t. o
matches d

I The weight matrices W and V should be adjusted s.t. ‖d − o‖2 is
min.

Farzaneh Abdollahi Computational Intelligence Lecture 4 9/45



Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Back-Propagation Training

I Training is started by feedforward recall phase

I The error signal vector is determined in the output layer

I The error is defined for a single perceptron is generalized to include all
squared error at the outputs k = 1, ...,K

Ep =
1

2
ΣK

k=1(dpk − opk)2 =
1

2
‖dp − op‖2

I p: pth pattern
I dp: desired output for pth pattern

I Bias is the jth weight corresponding to jth input yj = −1

I Then it propagates toward input layer

I The weights should be updated from output layer to hidden layer
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Back-Propagation Training

I Recall the learning rule of continuous perceptron (it is so-called delta
learning rule)

∆wkj = −η ∂E

∂wkj

p is skipped for brevity.

I for each neuron in layer k:

netk =
J∑

j=1

wkjyj

ok = f (netk)

I Define the error signal term
δok = − ∂E

∂(netk ) = (dk − ok)f ′(netk), k = 1, ...,K

I ∴∆wkj = −η ∂E
∂(netk )

∂(netk )
∂wkj

= ηδokyj for k = 1, ...,K , j = 1, ..., J
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I The weights of output layer w can be updated based in delta rule,
since desired output is available for them

I For updating the hidden layer weights:

∆vji = −η ∂E

∂vji

∂E

∂vji
=

∂E

∂netj

∂netj
∂vji

, i = 1, ..., n j = 1, ...n

I netj =
∑I

i=1 vjizi 
∂netj
∂vji

= zi which are input of this layer

I where δyj = − ∂E
∂(netj )

for j = 1, ..., J is signal error of hidden layer

I ∴, the hidden layer weights are updated by ∆vji = ηδyjzi
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I Despite of the output layer where netk affected the kth neuron output
only, netj contributes to every K terms of error E = 1

2

∑R
k=1(dk − ok)2

δyj = −∂E

∂yj
.
∂yj

∂netj
∂yj

∂netj
= f ′(netj)

∂E

∂yj
= −

R∑
k=1

(dk − ok)f ′(netk)
∂netk
∂yj

= −
R∑

k=1

δokwkj

I ∴ The updating rule is

∆vji = ηf ′(netj)zi

R∑
k=1

δokwkj (1)
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I So the delta rule for hidden layer is:

∆v = ηδx (2)

where η is learning const., δ is layer error, and x is layer input.

I The weights of jth layer is proportional to the weighted sum of all δ of
next layer.

I Assuming sigmoid activation function, its time derivative is

f ′(net) =

{
o(1− o) unipolar : f (net) = 1

1+exp(−λnet) , λ = 1
1
2(1− o2) bipolar : f (net) = 2

1+exp(−λnet) − 1, λ = 1
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Back-Propagation Training

I Delta training rule of output layer and generalized delta learning rule
for hidden layer have fairly uniform formula.

I But
I δo = (dk − ok)ok(1− ok) contains scalar entries, contains error between

desired and actual output times derivative of activation function
I δy = wjδo f

′y contains the weighted sum of contributing error signal δo
produced by the following layer

I The learning rule propagates the error back by one layer

I After all training patterns are applied, the learning procedure stops
when the final error is below the upper bound Emax

I In fig next page, the shaded path refers to feedforward path and blank
path is Back-Propagation (BP) mode
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Error Back-Propagation Training Algorithm
I Given P training pairs {z1, d1, z2, d2, ..., zp, dp} where zi is

(I × 1), di is (K × 1), i = 1, ...,P
I The I th component of each zi is of value -1 since input vectors are

augmented .

I Size J − 1 of the hidden layer having outputs y is selected.
I Jth component of y is -1, since hidden layer have also been augmented.
I y is (J × 1) and o is (K × 1)

I In the following, q is training step and p is step counter within
training cycle.

1. Choose η > 0, Emax > 0
2. Initialized weights at small random values, W is (K × J), V is (J × I )
3. Initialize counters and error: q ←− 1, p ←− 1,E ←− 0
4. Training cycle begins here. Set z ←− zp, d ←− dp,

yj ← f (v t
j z), j = 1, .., J (vj a column vector, jth row of V )

o ← f (w t
ky), k = 1, ...,K (wk a column vector, kth row of W )(f(net)

is sigmoid function)
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Error Back-Propagation Training Algorithm Cont’d

5. Find error: E ←− 1
2(d − o)2 + E for k = 1, ...,K

6. Error signal vectors of both layers are computed. δo (output layer
error) is K × 1, δy (hidden layer error) is J × 1
δok = 1

2(dk − ok)(1− o2
k ), for k = 1, ...,K

δyj = 1
2(1− y2

j )
∑K

k=1 δokwkj , for j = 1, ..., J

7. Update weights:
I Output wkj ←− wkj + ηδokyj , k = 1, ..,K j = 1, .., J
I Hidden layer vji ←− vji + ηδyjzj , jk = 1, .., J i = 1, .., I

8. If p < P then p ←− p + 1, q ←− q + 1, go to step 4, otherwise, go to
step 9.

9. If E < Emax the training is terminated, otherwise E ←− 0, p ←− 1 go
to step 4 for new training cycle.
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Multilayer NN as Universal Approximator

I Although classification is an important application of NN, considering
the output of NN as binary response limits the NN potentials.

I We are considering the performance of NN as universal approximators

I Finding an approximation of a multivariable function h(x) is achieved
by a supervised training of an input-output mapping from a set of
examples

I Learning proceeds as a sequence of iterative weight adjustment until is
satisfies min distance criterion from the solution weight vectors w∗.

I Several theorem such as Kolmogorov and Hecht-Nielsen Theorems
guarantee existence of an approximating fcn. g .

I No more guideline is provided for finding such functions
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I Some other theorems have been given some hints on choosing
activation functions (Lee & Kil 1991, Chen 1991, Cybenko 1989)

I Cybenko Theorem Let In denote the n-dimensional unit cube, [0, 1]n.
The space of continuous functions on In is denoted by C (In). Let g be
any continuous sigmoidal function of the form

g →
{

1 as t →∞
0 as t → −∞

Then the finite sums of the form

F (x) =
N∑

i=1

vig(
n∑

j=1

wT
ij xj + θ)

are dense in C (In). In other words, given any f ∈ C (In) and ε > 0,
there is a sum F (x) of the above form for which

|F (x)− f (x)| < ε ∀ x ∈ In
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I MLP can provide all the conditions of Cybenko theorem
I θ is bias
I wij is weights of input layer
I vi is output layer weights

I Failures in approximation can be attribute to
I Inadequate learning
I Inadequate # of hidden neurons
I Lack of deterministic relationship between the input and target output

I If the function to be approximated is not bounded, there is no
guarantee for acceptable approximation
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Example
I Consider a three

neuron network

I Bipolar activation
function

I Objective:
Estimating a function
which computes the
length of input vector

d =
√

o2
1 + o2

2

I o5 = Γ[W Γ[Vo]],
o = [−1 o1 o2]

I Inputs o1, o2 are
chosen 0 < oi < 0.7
for i = 1, 2
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Example Cont’d, Experiment 1

I Using 10 training points which are
informally spread in lower half of first
plane

I The training is stopped at error 0.01 after
2080 steps

I η = 0.2

I The weights are W = [0.03 3.66 2.73]T ,

V =

[
−1.29 −3.04 −1.54
0.97 2.61 0.52

]
I Magnitude of error associated with each

training pattern are shown on the surface

I Any generalization provided by trained
network is questionable.
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Example Cont’d, Experiment 2

I Using the same architecture but with 64
training points covering the entire domain

I The training is stopped at error 0.02 after
1200 steps

I η = 0.4

I The weights are
W = [−3.74 − 1.8 2.07]T ,

V =

[
−2.54 −3.64 0.61
2.76 0.07 3.83

]
I The mapping is reasonably accurate

I Response at the boundary gets worse.
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Example Cont’d, Experiment 3

I Using the same set of training points and
a NN with 10 hidden neurons

I The training is stopped at error 0.015
after 1418 steps

I η = 0.4
I The weights are

W = [−2.22 − 0.3 − 0.3 − 0.47 1.49
−0.23 1.85 − 2.07 − 0.24 0.79 − 0.15]T ,
V =[

0.57 0.66 −0.1 −0.53 0.14 1.06 −0.64 −3.51 −0.03 0.01
0.64 −0.57 −1.13 −0.11 −0.12 −0.51 2.94 0.11 −0.58 −0.89

]
I The result is comparable with previous case

I But more CPU time is required!!.
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Initial Weights
I They are usually selected at small random values. (between -1 and 1

or -0.5 and 0.5)

I They affect finding local/global min and speed of convergence

I Choosing them too large saturates network and terminates learning

I Choosing them too small decreases the learning rate.

I They should be chosen s.t do not make the activation function or its
derivative zero

I If all weights start with equal values, the network may not train
properly.

I Some improper inial weights may result in increasing the errors and
decreasing the quality of mapping.

I At these cases the network learning should be restarted with new
random weights.
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Error

I The training is based on min error

I In delta rule algorithm, Cumulative error is calculated
E = 1

2

∑P
p=1

∑R
k=1(dpk − opk)2

I Sometimes it is recommended to use Erms = 1
pk

√
(dpk − opk)2

I If output should be discrete (like classification), activation function of
output layer is chosen TLU, so the error is

Ed =
Nerr

pk

where Nerr : # bit errors, p: # training patterns, and k # outputs.

I Emax for discrete output can be zero, but in continuous output may
not be.
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Training versus Generalization

I If learning takes long, network losses the generalization capability. In
this case it is said, the network memorizes the training patterns

I To ovoid this problem, Hecht-Nielsen (1990) introduces
training-testing pattern (T.T,P)

I Some specific patterns named T.T.P is applied during training period.
I If the error obtained by applying the T.T.P is decreasing, the training

can be continued.
I Otherwise, the training is terminated to avoid memorization.
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Necessary Number of Patterns for Training set
I Roughly, it can be said that there is a relation between number of

patterns, error, and number weights to be trained
I It is reasonable to say number of required pasterns (P) depends

I directly to # of parameters to be adjusted (weights) (W )
I inversely to acceptable error (e)

I Beam and Hausler (1989) proposed the following relation

P >
32W

e
ln

32M

e

where M is # of hidden layers
I Date Representation

I For discrete (I/O) pairs it is recommended to use bipolar data rather
than binary data

I Since zero values of input does not contribute in learning

I For some applications such as identification and control of systems, I/O
patterns should be continuous
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Necessary Number of Hidden Neurons

I There is no clear and exact rule due to complexity of the network
mapping and nondeterministic nature of many successfully completed
training procedure.

I # neurons depends on the function to be approximated.
I Its degree of nonlinearity affects the size of network

I Note that considering large number of neurons and layers may cause
overfitting and decrease the generalization capability

I Number of Hidden Layers
I Based on the universal approximation theorem one hidden layer is

sufficient for a BP to approximate any continuous mapping from the
input patterns to the output patterns to an arbitrary degree of accuracy.

I More hidden layers may make training easier in some situations or too
complicated to converge.
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Necessary Number of Hidden Neurons

An Example of Overfitting (Neural Networks Toolbox in Matlab)
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Learning Constant

I Obviously, convergence of error BP alg. depends on the value of η

I In general, optimum value of η depends o the problem to be solved

I When broad minima yields small gradient values, larger η makes the
convergence more rapid.

I For steep and narrow minima, small value of η avoids overshooting
and oscillation.

I ∴ η should be chosen experimentally for each problem

I Several methods has been introduced to adjust learning const. (η).

I Adaptive Learning Rate in MATLAB adjusts η based on
increasing/decreasing error
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I η can be defined exponentially,
I At first steps it is large
I By increasing number of steps and getting closer to minima it becomes

smaller.

I Momentum method

I This method accelerates the convergence of error BP

I Generally, if the training data are not accurate, the weights oscillate
and cannot converge to their optimum values

I In momentum method, the speed of BP error convergence is increased
without changing η
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I In this method, the current weight adjustment confiders a fraction of
the most recent weight

4w(t) = −η∇E (t) + α4w(t − 1)

where α is pos, const. named momentum const.

I The second term is called momentum term

I If the gradients in two consecutive steps have the same sign, the
momentum term is pos. and the weight is changes more

I Otherwise, the weights are changed less, but in direction of
momentum

I ∴ its direction is corrected
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I Start form A’

I Gradient of A’ and A” have the same
signs

I ∴ the convergence speeds up

I Now start form B’

I Gradient of B’ and B” have the different
signs

I ∂E
∂w2

does not point to min

I adding momentum term corrects the
direction towards min

I ∴ If the gradient in two consecutive step
changes the sign, the learning const.
should decrease in those directions
(Jacobs 1988)
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I Delta-Bar-Delta
I For each weight a different η is specified
I If updating the weight is in the same direction (increasing/decreasing)

in some sequential steps, η is increased
I Otherwise η should decrease

I The updating rule for weight is: wij(n + 1) = wij(n)− ηij(n + 1) ∂E(n)
∂wij (n)

I The learning rate can be updated based on the following rule:

ηij(n + 1) = −γ ∂E (n)

∂ηij(n)

I where ηij is learning rate corresponding to weights of output layer wij .

I It can be shown that learning rate is updated based on wij as follows

(Show it as exercise) ηij(n + 1) = −γ ∂E(n)
∂wij (n) .

∂E(n−1)
∂wij (n−1)
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Steepness of Activation Function

I If we consider λ 6= 1 is activation function

f (net) =
2

1 + exp(−λnet)
− 1

I Its time derivative will be
f ′(net) = 2λexp(−λnet)

[1+exp(−λnet)]2

I max of f (net) when net = 0 is λ/2

I In BP alg: 4wki = −ηδokyj where
δok = ef ′(netk)

I ∴ The weights are adjusted in proportion
to f ′(net)

I slope of f (net) (λ) affects the learning.
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I The weights connected to the units responding in their mid-range are
changed the most

I The units which are saturated change less.

I In some MLP, the learning constant is fixed and by adapting λ
accelerate the error convergence (Rezgui 1991).

I But most commonly, λ = 1 are fixed and the learning speed is
controlled by η
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Batch versus Incremental Updates
I Incremental updating: a small weights adjustment follows after each

presentation of the training pattern.
I disadvantage: The network trained this way, may be skewed toward the

most recent patterns in the cycle.

I Batch updating: accumulate the weight correction terms for several
patterns (or even an entire epoch (presenting all patterns)) and make
a single weight adjustment equal to the average of the weight
correction terms:

4w =
P∑

p=1

4wp

I disadvantages: This procedure has a smoothing effect on the correction
terms which in some cases, it increases the chances of convergence to a
local min.
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Normalization

I IF I/O patterns are distributed in a wide range, it is recommended to
normalize them before use for training.

I Recall time derivative of sigmoid activation fcn:

f ′(net) =

{
o(1− o) unipolar : f (net) = 1

1+exp(−λnet) , λ = 1
1
2(1− o2) bipolar : f (net) = 2

1+exp(−λnet) − 1, λ = 1

I It appears in δ for updating the weights.

I If output of sigmoid fcn gets to the saturation area, (1 or -1) due to
large values of weights or not normalized input data  f ′(net)→ 0
and δ → 0. So the weight updating is stopped.

I I/O normalization will increases the chance of convergence to the
acceptable results.
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Offline versus Online Training
I Offline training :

I After the weights converge to the desired values and learning is
terminated, the trained feed forward network is employed

I When enough data is available for training and no unpredicted behavior
is expected from the system, offline training is recommended.

I Online training:
I Updating the weights and performing the network is simultaneously.
I In online training NN can adapt itself with unpredicted changing

behavior of the system.
I Learning the the weights convergence should be fast to avoid undesired

performance.
I For exp. if NN is employed as a controller and is not trained fast, it

may lead to instability
I If there is enough data it is suggested to train NN offline and use the

trained weight as initial weights in online training to facilitate the
training
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Levenberg-Marquardt Training [1]
I The LevenbergMarquardt algorithm (LMA) provides a numerical

solution to the problem of minimizing a function

I It interpolates between the GaussNewton algorithm (GNA) and
gradient descent method.

I The LMA is more robust than the GNA,
I It will end the solution even if the initial values are very far off the final

minimum.

I In many cases LMA converges faster than gradient decent method.

I LMA is a compromise between the speed of GNA and guaranteed
convergence of gradient alg. decent

I Recall the error is defined as sum of squares function for
E = 1

2ΣK
k=1ΣP

p=1e
2
pk , epk = dpk − opk

I The learning rule based on gradient decent alg is ∆wkj = −η ∂E
∂wkj
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GNA method:

I Define x = [w1
11 w1

12 ...w
1
nmw2

11 ...w
P
nm], e = [e11, . . . , ePK ]

I Let Jacobian matrix J =



∂e11

∂w1
11

∂e11

∂w1
12

. . . ∂e11

∂w1
1m

. . .
∂e21

∂w1
11

∂e21

∂w1
12

. . . ∂e21

∂w1
1m

. . .

...
...

...
...

...
∂eP1

∂w1
11

∂eP1

∂w1
12
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I and Gradient ∇E (x) = JT (x)e(x)
I Hessian Matrix ∇2E (x) ' JT (x)J(x)

I Then GNA updating rule is

∆x = −[∇2E (x)]−1∇E (x) = −[JT (x)J(x)]−1JT (x)e
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Marquardt-Levenberg Alg

∆x = −[JT (x)J(x) + µI ]−1JT (x)e (3)

I µ is a scalar
I If µ is small, LMA is closed to GNA
I If µ is large, LMA is closed to gradient decent

I In NN µ is adjusted properly

I for training with LMA, batch update should be applied
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Marquardt-Levenberg Training Alg

1. Define initial values for µ, β > 1, and Emax

2. Present all inputs to the network and compute the corresponding
network outputs, and errors. Compute the sum of squares of errors
over all inputs E .

3. Compute the Jacobian matrix J

4. Find ∆x using (3)

5. Recompute the sum of squares of errors, E using x + ∆x

6. If this new E is larger than that computed in step 2, then increase
µ = µ× β and go back to step 4.

7. If this new E is smaller than that computed in step 2, then µ = µ/β,
let x = x + ∆x ,

8. If E < Emax stop; otherwise go back to step 2.
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M. T. Hagan and M. B. Menhaj.
Training feedforward networks with the marquardt algorithm.
IEEE Trans. on Neural Networks, vol. 5, no 6 , pages 989–993,
Nov. 1994.
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