
Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Computational Intelligence
Lecture 4: Multi-Layer Perceptron

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

Farzaneh Abdollahi Computational Intelligence Lecture 4 1/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Linearly Nonseparable Pattern Classification

Error Back Propagation Algorithm
Feedforward Recall and Error Back-Propagation

Multilayer Neural Nets as Universal Approximators

Learning Factors
Initial Weights
Error
Training versus Generalization
Necessary Number of Patterns for Training set
Necessary Number of Hidden Neurons
Learning Constant
Steepness of Activation Function
Batch versus Incremental Updates
Normalization
Offline versus Online Training
Levenberg-Marquardt Training

Farzaneh Abdollahi Computational Intelligence Lecture 4 2/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Linearly Nonseparable Pattern Classification

I A single layer network can find a linear discriminant function.

I Nonlinear discriminant functions for linearly nonseparable function can
be considered as piecewise linear function

I The piecewise linear discriminant function can be implemented by a
multilayer network

I The pattern sets †1 and †2 are linearly nonseparable, if no weight
vector w exists s.t

yTw > 0 for eachy ∈ †1
yTw < 0 for eachy ∈ †2

Farzaneh Abdollahi Computational Intelligence Lecture 4 3/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Example XOR
I XOR is nonseparable

x1 x2 Output

1 1 -1
1 0 1
0 1 1
0 0 -1

I At least two line are required to separate them

I By choosing proper values of weights, the
decision lines are

−2x1 + x2 −
1

2
= 0

x1 − x2 −
1

2
= 0

I output of the first layer network:
o1 = sgn(−2x1 + x2 −

1

2
) o2 = sgn(x1 − x2 −

1

2
)

Farzaneh Abdollahi Computational Intelligence Lecture 4 4/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Farzaneh Abdollahi Computational Intelligence Lecture 4 5/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I The main idea of solving linearly nonseparable patterns is:
I the set of linearly nonseparable pattern is mapped into the image space

where it becomes linearly separable.
I This can be done by proper selecting weights of the first layer(s)
I Then in the next layer they can be easily classified

I Increasing # of neurons in the middle layer increases # of lines.
I ∴ provides nonlinear and more complicated discriminant functions

I The pattern parameters and center of clusters are not always known a
priori

I ∴ A stepwise supervised learning algorithm is required to calculate the
weights

Farzaneh Abdollahi Computational Intelligence Lecture 4 6/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Delta Learning Rule for Feedforward Multilayer Perceptron

I The training algorithm is called error back propagation (EBP) training
algorithm

I If a submitted pattern provides an output far from desired value, the
weights and thresholds are adjusted s.t. the current mean square
classification error is reduced.

I The training is continued/repeated for all patterns until the training
set provide an acceptable overall error.

I Usually the mapping error is computed over the full training set.
I EBP alg. is working in two stages:

1. The trained network operates feedforward to obtain output of the
network

2. The weight adjustment propagate backward from output layer through
hidden layer toward input layer.

Farzaneh Abdollahi Computational Intelligence Lecture 4 7/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Multilayer Perceptron

I input vec. z

I output vec. o

I output of first
layer, input of
hidden layer y

I activation fcn.
Γ(.) =
diag{f (.)}

Farzaneh Abdollahi Computational Intelligence Lecture 4 8/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Feedforward Recall

I Give training pattern vector z , result of this phase is computing the
output vector o (for two layer network)

I Output of first layer: y = Γ[Vz] (the internal mapping z → y)
I Output of second layer: o = Γ[Wy]
I Therefore:

o = Γ[W Γ[Vz]]

I Since the activation function is assumed to be fixed, weights are the
only parameters should be adjusted by training to map z → o s.t. o
matches d

I The weight matrices W and V should be adjusted s.t. ‖d − o‖2 is
min.

Farzaneh Abdollahi Computational Intelligence Lecture 4 9/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Back-Propagation Training

I Training is started by feedforward recall phase

I The error signal vector is determined in the output layer

I The error is defined for a single perceptron is generalized to include all
squared error at the outputs k = 1, ...,K

Ep =
1

2
ΣK

k=1(dpk − opk)2 =
1

2
‖dp − op‖2

I p: pth pattern
I dp: desired output for pth pattern

I Bias is the jth weight corresponding to jth input yj = −1

I Then it propagates toward input layer

I The weights should be updated from output layer to hidden layer

Farzaneh Abdollahi Computational Intelligence Lecture 4 10/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Back-Propagation Training

I Recall the learning rule of continuous perceptron (it is so-called delta
learning rule)

∆wkj = −η ∂E

∂wkj

p is skipped for brevity.

I for each neuron in layer k:

netk =
J∑

j=1

wkjyj

ok = f (netk)

I Define the error signal term
δok = − ∂E

∂(netk) = (dk − ok)f ′(netk), k = 1, ...,K

I ∴∆wkj = −η ∂E
∂(netk)

∂(netk)
∂wkj

= ηδokyj for k = 1, ...,K , j = 1, ..., J

Farzaneh Abdollahi Computational Intelligence Lecture 4 11/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I The weights of output layer w can be updated based in delta rule,
since desired output is available for them

I For updating the hidden layer weights:

∆vji = −η ∂E

∂vji

∂E

∂vji
=

∂E

∂netj

∂netj
∂vji

, i = 1, ..., n j = 1, ...n

I netj =
∑I

i=1 vjizi
∂netj
∂vji

= zi which are input of this layer

I where δyj = − ∂E
∂(netj)

for j = 1, ..., J is signal error of hidden layer

I ∴, the hidden layer weights are updated by ∆vji = ηδyjzi

Farzaneh Abdollahi Computational Intelligence Lecture 4 12/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I Despite of the output layer where netk affected the kth neuron output
only, netj contributes to every K terms of error E = 1

2

∑R
k=1(dk − ok)2

δyj = −∂E

∂yj
.
∂yj

∂netj
∂yj

∂netj
= f ′(netj)

∂E

∂yj
= −

R∑
k=1

(dk − ok)f ′(netk)
∂netk
∂yj

= −
R∑

k=1

δokwkj

I ∴ The updating rule is

∆vji = ηf ′(netj)zi

R∑
k=1

δokwkj (1)

Farzaneh Abdollahi Computational Intelligence Lecture 4 13/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I So the delta rule for hidden layer is:

∆v = ηδx (2)

where η is learning const., δ is layer error, and x is layer input.

I The weights of jth layer is proportional to the weighted sum of all δ of
next layer.

I Assuming sigmoid activation function, its time derivative is

f ′(net) =

{
o(1− o) unipolar : f (net) = 1

1+exp(−λnet) , λ = 1
1
2(1− o2) bipolar : f (net) = 2

1+exp(−λnet) − 1, λ = 1

Farzaneh Abdollahi Computational Intelligence Lecture 4 14/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Back-Propagation Training

I Delta training rule of output layer and generalized delta learning rule
for hidden layer have fairly uniform formula.

I But
I δo = (dk − ok)ok(1− ok) contains scalar entries, contains error between

desired and actual output times derivative of activation function
I δy = wjδo f

′y contains the weighted sum of contributing error signal δo
produced by the following layer

I The learning rule propagates the error back by one layer

I After all training patterns are applied, the learning procedure stops
when the final error is below the upper bound Emax

I In fig of the next page, the shaded path refers to feedforward path and
blank path is Back-Propagation (BP) mode

Farzaneh Abdollahi Computational Intelligence Lecture 4 15/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Farzaneh Abdollahi Computational Intelligence Lecture 4 16/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Error Back-Propagation Training Algorithm
I Given P training pairs {z1, d1, z2, d2, ..., zp, dp} where zi is

(I × 1), di is (K × 1), i = 1, ...,P
I The I th component of each zi is of value -1 since input vectors are

augmented .

I Size J − 1 of the hidden layer having outputs y is selected.
I Jth component of y is -1, since hidden layer have also been augmented.
I y is (J × 1) and o is (K × 1)

I In the following, q is training step and p is step counter within
training cycle.

1. Choose η > 0, Emax > 0
2. Initialized weights at small random values, W is (K × J), V is (J × I)
3. Initialize counters and error: q ←− 1, p ←− 1,E ←− 0
4. Training cycle begins here. Set z ←− zp, d ←− dp,

yj ← f (v t
j z), j = 1, .., J (vj a column vector, jth row of V)

o ← f (w t
ky), k = 1, ...,K (wk a column vector, kth row of W)(f(net)

is sigmoid function)

Farzaneh Abdollahi Computational Intelligence Lecture 4 17/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Error Back-Propagation Training Algorithm Cont’d

5. Find error: E ←− 1
2(d − o)2 + E for k = 1, ...,K

6. Error signal vectors of both layers are computed. δo (output layer
error) is K × 1, δy (hidden layer error) is J × 1
δok = 1

2(dk − ok)(1− o2
k), for k = 1, ...,K

δyj = 1
2(1− y2

j)
∑K

k=1 δokwkj , for j = 1, ..., J

7. Update weights:
I Output wkj ←− wkj + ηδokyj , k = 1, ..,K j = 1, .., J
I Hidden layer vji ←− vji + ηδyjzj , jk = 1, .., J i = 1, .., I

8. If p < P then p ←− p + 1, q ←− q + 1, go to step 4, otherwise, go to
step 9.

9. If E < Emax the training is terminated, otherwise E ←− 0, p ←− 1 go
to step 4 for new training cycle.

Farzaneh Abdollahi Computational Intelligence Lecture 4 18/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Multilayer NN as Universal Approximator

I Although classification is an important application of NN, considering
the output of NN as binary response limits the NN potentials.

I We are considering the performance of NN as universal approximators

I Finding an approximation of a multivariable function h(x) is achieved
by a supervised training of an input-output mapping from a set of
examples

I Learning proceeds as a sequence of iterative weight adjustment until is
satisfies min distance criterion from the solution weight vectors w∗.

I Several theorem such as Kolmogorov and Hecht-Nielsen Theorems
guarantee existence of an approximating fcn. g .

I No more guideline is provided for finding such functions

Farzaneh Abdollahi Computational Intelligence Lecture 4 19/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I Some other theorems have been given some hints on choosing
activation functions (Lee & Kil 1991, Chen 1991, Cybenko 1989)

I Cybenko Theorem Let In denote the n-dimensional unit cube, [0, 1]n.
The space of continuous functions on In is denoted by C (In). Let g be
any continuous sigmoidal function of the form

g →
{

1 as t →∞
0 as t → −∞

Then the finite sums of the form

F (x) =
N∑

i=1

vig(
n∑

j=1

wT
ij xj + θ)

are dense in C (In). In other words, given any f ∈ C (In) and ε > 0,
there is a sum F (x) of the above form for which

|F (x)− f (x)| < ε ∀ x ∈ In

Farzaneh Abdollahi Computational Intelligence Lecture 4 20/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I MLP can provide all the conditions of Cybenko theorem
I θ is bias
I wij is weights of input layer
I vi is output layer weights

I Failures in approximation can be attribute to
I Inadequate learning
I Inadequate # of hidden neurons
I Lack of deterministic relationship between the input and target output

I If the function to be approximated is not bounded, there is no
guarantee for acceptable approximation

Farzaneh Abdollahi Computational Intelligence Lecture 4 21/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Example
I Consider a three

neuron network

I Bipolar activation
function

I Objective:
Estimating a function
which computes the
length of input vector

d =
√

o2
1 + o2

2

I o5 = Γ[W Γ[Vo]],
o = [−1 o1 o2]

I Inputs o1, o2 are
chosen 0 < oi < 0.7
for i = 1, 2

Farzaneh Abdollahi Computational Intelligence Lecture 4 22/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Example Cont’d, Experiment 1

I Using 10 training points which are
informally spread in lower half of first
plane

I The training is stopped at error 0.01 after
2080 steps

I η = 0.2

I The weights are W = [0.03 3.66 2.73]T ,

V =

[
−1.29 −3.04 −1.54
0.97 2.61 0.52

]
I Magnitude of error associated with each

training pattern are shown on the surface

I Any generalization provided by trained
network is questionable.

Farzaneh Abdollahi Computational Intelligence Lecture 4 23/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Example Cont’d, Experiment 2

I Using the same architecture but with 64
training points covering the entire domain

I The training is stopped at error 0.02 after
1200 steps

I η = 0.4

I The weights are
W = [−3.74 − 1.8 2.07]T ,

V =

[
−2.54 −3.64 0.61
2.76 0.07 3.83

]
I The mapping is reasonably accurate

I Response at the boundary gets worse.

Farzaneh Abdollahi Computational Intelligence Lecture 4 24/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Example Cont’d, Experiment 3

I Using the same set of training points and
a NN with 10 hidden neurons

I The training is stopped at error 0.015
after 1418 steps

I η = 0.4
I The weights are

W = [−2.22 − 0.3 − 0.3 − 0.47 1.49
−0.23 1.85 − 2.07 − 0.24 0.79 − 0.15]T ,
V =[

0.57 0.66 −0.1 −0.53 0.14 1.06 −0.64 −3.51 −0.03 0.01
0.64 −0.57 −1.13 −0.11 −0.12 −0.51 2.94 0.11 −0.58 −0.89

]
I The result is comparable with previous case

I But more CPU time is required!!.

Farzaneh Abdollahi Computational Intelligence Lecture 4 25/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Initial Weights
I They are usually selected at small random values. (between -1 and 1

or -0.5 and 0.5)

I They affect finding local/global min and speed of convergence

I Choosing them too large saturates network and terminates learning

I Choosing them too small decreases the learning rate.

I They should be chosen s.t do not make the activation function or its
derivative zero

I If all weights start with equal values, the network may not train
properly.

I Some improper inial weights may result in increasing the errors and
decreasing the quality of mapping.

I At these cases the network learning should be restarted with new
random weights.

Farzaneh Abdollahi Computational Intelligence Lecture 4 26/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Error

I The training is based on min error

I In delta rule algorithm, Cumulative error is calculated
E = 1

2

∑P
p=1

∑R
k=1(dpk − opk)2

I Sometimes it is recommended to use Erms = 1
pk

√
(dpk − opk)2

I If output should be discrete (like classification), activation function of
output layer is chosen TLU, so the error is

Ed =
Nerr

pk

where Nerr : # bit errors, p: # training patterns, and k # outputs.

I Emax for discrete output can be zero, but in continuous output may
not be.

Farzaneh Abdollahi Computational Intelligence Lecture 4 27/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Training versus Generalization

I If learning takes long, network losses the generalization capability. In
this case it is said, the network memorizes the training patterns

I To ovoid this problem, Hecht-Nielsen (1990) introduces
training-testing pattern (T.T,P)

I Some specific patterns named T.T.P is applied during training period.
I If the error obtained by applying the T.T.P is decreasing, the training

can be continued.
I Otherwise, the training is terminated to avoid memorization.

Farzaneh Abdollahi Computational Intelligence Lecture 4 28/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Necessary Number of Patterns for Training set
I Roughly, it can be said that there is a relation between number of

patterns, error, and number weights to be trained
I It is reasonable to say number of required pasterns (P) depends

I directly to # of parameters to be adjusted (weights) (W)
I inversely to acceptable error (e)

I Beam and Hausler (1989) proposed the following relation

P >
32W

e
ln

32M

e

where M is # of hidden layers
I Date Representation

I For discrete (I/O) pairs it is recommended to use bipolar data rather
than binary data

I Since zero values of input does not contribute in learning

I For some applications such as identification and control of systems, I/O
patterns should be continuous

Farzaneh Abdollahi Computational Intelligence Lecture 4 29/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Necessary Number of Hidden Neurons

I There is no clear and exact rule due to complexity of the network
mapping and nondeterministic nature of many successfully completed
training procedure.

I # neurons depends on the function to be approximated.
I Its degree of nonlinearity affects the size of network

I Note that considering large number of neurons and layers may cause
overfitting and decrease the generalization capability

I Number of Hidden Layers
I Based on the universal approximation theorem one hidden layer is

sufficient for a BP to approximate any continuous mapping from the
input patterns to the output patterns to an arbitrary degree of accuracy.

I More hidden layers may make training easier in some situations or too
complicated to converge.

Farzaneh Abdollahi Computational Intelligence Lecture 4 30/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Necessary Number of Hidden Neurons

An Example of Overfitting (Neural Networks Toolbox in Matlab)

Farzaneh Abdollahi Computational Intelligence Lecture 4 31/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Learning Constant

I Obviously, convergence of error BP alg. depends on the value of η

I In general, optimum value of η depends o the problem to be solved

I When broad minima yields small gradient values, larger η makes the
convergence more rapid.

I For steep and narrow minima, small value of η avoids overshooting
and oscillation.

I ∴ η should be chosen experimentally for each problem

I Several methods has been introduced to adjust learning const. (η).

I Adaptive Learning Rate in MATLAB adjusts η based on
increasing/decreasing error

Farzaneh Abdollahi Computational Intelligence Lecture 4 32/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I η can be defined exponentially,
I At first steps it is large
I By increasing number of steps and getting closer to minima it becomes

smaller.

I Momentum method

I This method accelerates the convergence of error BP

I Generally, if the training data are not accurate, the weights oscillate
and cannot converge to their optimum values

I In momentum method, the speed of BP error convergence is increased
without changing η

Farzaneh Abdollahi Computational Intelligence Lecture 4 33/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I In this method, the current weight adjustment confiders a fraction of
the most recent weight

4w(t) = −η∇E (t) + α4w(t − 1)

where α is pos, const. named momentum const.

I The second term is called momentum term

I If the gradients in two consecutive steps have the same sign, the
momentum term is pos. and the weight is changes more

I Otherwise, the weights are changed less, but in direction of
momentum

I ∴ its direction is corrected

Farzaneh Abdollahi Computational Intelligence Lecture 4 34/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I Start form A’

I Gradient of A’ and A” have the same
signs

I ∴ the convergence speeds up

I Now start form B’

I Gradient of B’ and B” have the different
signs

I ∂E
∂w2

does not point to min

I adding momentum term corrects the
direction towards min

I ∴ If the gradient in two consecutive step
changes the sign, the learning const.
should decrease in those directions
(Jacobs 1988)

Farzaneh Abdollahi Computational Intelligence Lecture 4 35/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I Delta-Bar-Delta
I For each weight a different η is specified
I If updating the weight is in the same direction (increasing/decreasing)

in some sequential steps, η is increased
I Otherwise η should decrease

I The updating rule for weight is: wij(n + 1) = wij(n)− ηij(n + 1) ∂E(n)
∂wij (n)

I The learning rate can be updated based on the following rule:

ηij(n + 1) = −γ ∂E (n)

∂ηij(n)

I where ηij is learning rate corresponding to weights of output layer wij .

I It can be shown that learning rate is updated based on wij as follows

(Show it as exercise) ηij(n + 1) = −γ ∂E(n)
∂wij (n) .

∂E(n−1)
∂wij (n−1)

Farzaneh Abdollahi Computational Intelligence Lecture 4 36/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Steepness of Activation Function

I If we consider λ 6= 1 is activation function

f (net) =
2

1 + exp(−λnet)
− 1

I Its time derivative will be
f ′(net) = 2λexp(−λnet)

[1+exp(−λnet)]2

I max of f (net) when net = 0 is λ/2

I In BP alg: 4wki = −ηδokyj where
δok = ef ′(netk)

I ∴ The weights are adjusted in proportion
to f ′(net)

I slope of f (net) (λ) affects the learning.

Farzaneh Abdollahi Computational Intelligence Lecture 4 37/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

I The weights connected to the units responding in their mid-range are
changed the most

I The units which are saturated change less.

I In some MLP, the learning constant is fixed and by adapting λ
accelerate the error convergence (Rezgui 1991).

I But most commonly, λ = 1 are fixed and the learning speed is
controlled by η

Farzaneh Abdollahi Computational Intelligence Lecture 4 38/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Batch versus Incremental Updates
I Incremental updating: a small weights adjustment follows after each

presentation of the training pattern.
I disadvantage: The network trained this way, may be skewed toward the

most recent patterns in the cycle.

I Batch updating: accumulate the weight correction terms for several
patterns (or even an entire epoch (presenting all patterns)) and make
a single weight adjustment equal to the average of the weight
correction terms:

4w =
P∑

p=1

4wp

I disadvantages: This procedure has a smoothing effect on the correction
terms which in some cases, it increases the chances of convergence to a
local min.

Farzaneh Abdollahi Computational Intelligence Lecture 4 39/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Normalization

I IF I/O patterns are distributed in a wide range, it is recommended to
normalize them before use for training.

I Recall time derivative of sigmoid activation fcn:

f ′(net) =

{
o(1− o) unipolar : f (net) = 1

1+exp(−λnet) , λ = 1
1
2(1− o2) bipolar : f (net) = 2

1+exp(−λnet) − 1, λ = 1

I It appears in δ for updating the weights.

I If output of sigmoid fcn gets to the saturation area, (1 or -1) due to
large values of weights or not normalized input data f ′(net)→ 0
and δ → 0. So the weight updating is stopped.

I I/O normalization will increases the chance of convergence to the
acceptable results.

Farzaneh Abdollahi Computational Intelligence Lecture 4 40/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Offline versus Online Training
I Offline training :

I After the weights converge to the desired values and learning is
terminated, the trained feed forward network is employed

I When enough data is available for training and no unpredicted behavior
is expected from the system, offline training is recommended.

I Online training:
I Updating the weights and performing the network is simultaneously.
I In online training NN can adapt itself with unpredicted changing

behavior of the system.
I Learning the the weights convergence should be fast to avoid undesired

performance.
I For exp. if NN is employed as a controller and is not trained fast, it

may lead to instability
I If there is enough data it is suggested to train NN offline and use the

trained weight as initial weights in online training to facilitate the
training

Farzaneh Abdollahi Computational Intelligence Lecture 4 41/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Levenberg-Marquardt Training [1]
I The LevenbergMarquardt algorithm (LMA) provides a numerical

solution to the problem of minimizing a function

I It interpolates between the GaussNewton algorithm (GNA) and
gradient descent method.

I The LMA is more robust than the GNA,
I It will end the solution even if the initial values are very far off the final

minimum.

I In many cases LMA converges faster than gradient decent method.

I LMA is a compromise between the speed of GNA and guaranteed
convergence of gradient alg. decent

I Recall the error is defined as sum of squares function for
E = 1

2ΣK
k=1ΣP

p=1e
2
pk , epk = dpk − opk

I The learning rule based on gradient decent alg is ∆wkj = −η ∂E
∂wkj

Farzaneh Abdollahi Computational Intelligence Lecture 4 42/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

GNA method:

I Define x = [w1
11 w1

12 ...w
1
nmw2

11 ...w
P
nm], e = [e11, . . . , ePK]

I Let Jacobian matrix J =



∂e11

∂w1
11

∂e11

∂w1
12

. . . ∂e11

∂w1
1m

. . .
∂e21

∂w1
11

∂e21

∂w1
12

. . . ∂e21

∂w1
1m

. . .

...
...

...
...

...
∂eP1

∂w1
11

∂eP1

∂w1
12

. . . ∂eP1

∂w1
1m

. . .
∂e12

∂w1
11

∂e12

∂w1
12

. . . ∂e12

∂w1
1m

...
...

...


I and Gradient ∇E (x) = JT (x)e(x)
I Hessian Matrix ∇2E (x) ' JT (x)J(x)

I Then GNA updating rule is

∆x = −[∇2E (x)]−1∇E (x) = −[JT (x)J(x)]−1JT (x)e

Farzaneh Abdollahi Computational Intelligence Lecture 4 43/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Marquardt-Levenberg Alg

∆x = −[JT (x)J(x) + µI]−1JT (x)e (3)

I µ is a scalar
I If µ is small, LMA is closed to GNA
I If µ is large, LMA is closed to gradient decent

I In NN µ is adjusted properly

I for training with LMA, batch update should be applied

Farzaneh Abdollahi Computational Intelligence Lecture 4 44/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

Marquardt-Levenberg Training Alg

1. Define initial values for µ, β > 1, and Emax

2. Present all inputs to the network and compute the corresponding
network outputs, and errors. Compute the sum of squares of errors
over all inputs E .

3. Compute the Jacobian matrix J

4. Find ∆x using (3)

5. Recompute the sum of squares of errors, E using x + ∆x

6. If this new E is larger than that computed in step 2, then increase
µ = µ× β and go back to step 4.

7. If this new E is smaller than that computed in step 2, then µ = µ/β,
let x = x + ∆x ,

8. If E < Emax stop; otherwise go back to step 2.

Farzaneh Abdollahi Computational Intelligence Lecture 4 45/45

Outline Linearly Nonseparable Pattern Error Back Propagation Algorithm Universal Approximator Learning Factors

M. T. Hagan and M. B. Menhaj.
Training feedforward networks with the marquardt algorithm.
IEEE Trans. on Neural Networks, vol. 5, no 6 , pages 989–993,
Nov. 1994.

Farzaneh Abdollahi Computational Intelligence Lecture 4 45/45

	Outline
	Linearly Nonseparable Pattern Classification
	Error Back Propagation Algorithm
	Feedforward Recall and Error Back-Propagation

	Multilayer Neural Nets as Universal Approximators
	Learning Factors
	Initial Weights
	Error
	Training versus Generalization
	Necessary Number of Patterns for Training set
	Necessary Number of Hidden Neurons
	Learning Constant
	Steepness of Activation Function
	Batch versus Incremental Updates
	Normalization
	Offline versus Online Training
	Levenberg-Marquardt Training

