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Linguistic Variables

I Linguistic Variable: when a variable can
take words in natural languages as its
values.

I the words are characterized by fuzzy sets
defined in the universe of discourse

I Example: The weather temperature: a
variable x ∈ [−20 40]

I Let’s define three fuzzy sets ”Cold”
”Pleasant,” and ”Hot”

I x : a linguistic variable,  ”x is cold,”
I x also can take numbers in

[−20 40] , x = 10oC

1

-20 40

Cold Pleasant Hot

1210 2826
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I Linguistic Variable: is characterized by (X ,T ,U,M)
I X : the name of the linguistic variable (the weather temperature)
I T : the set of linguistic values that X can take

(T = {cold , pleasant, hot})
I U: the actual physical domain in which the linguistic variable X takes

its quantitative (crisp) values (U = [−20, 40]).
I M: a semantic rule that relates each linguistic value in T with a fuzzy

set in U; (M relates ”cold,” ”pleasant,” and ”hot” with the
membership functions shown in Fig)

I Linguistic Hedge:
I One may use more than one word to describe the ling. var. (”very

cold”, ”not pleasant”, ”more or less hot”)
I The value of a ling. var. is a composite of atomic term x = x1x2 . . . xn
I The atomic terms can be classified into:

I Primary terms: labels of fuzzy sets; ”cold,” ”pleasant,” and ”hot.”
I Complement: ”not”, ”and” and ”or.”
I Hedges: ”very,” ”slightly,” ”more or less,”
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Some Examples of Linguistic Hedge

I Let A be a fuzzy set in U
I very A : a fuzzy set in U µverry A(x) = [µA(x)]2

I more or less A: a fuzzy set in U µmore or less A(x) = [µA(x)]1/2

I Example: U = {10, . . . , 130}
I fuzzy set ”fast”= 1/130 + 1/120 + 0.8/100 + 0.6/80 + 0.1/40
I ”very very

fast”= 1/130 + 1/120 + 0.4096/100 + 0.1296/80 + 0.0001/40
I ”more or less

fast”= 1/130 + 1/120 + 0.8944/100 + 0.7746/80 + 0.3162/40
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Fuzzy IF-Then Rules

I IF <fuzzy proposition>, THEN < fuzzy proposition>
I There are two types of fuzzy proposition

I Atomic fuzzy proposition: a single statement
x is A

I Compound fuzzy proposition: a composition of atomic fuzzy
propositions using the connectives ”and,” ”or,” and ”not”
x is not S and x is not F

I S ,F ,A are fuzzy sets

I Compound fuzzy propositions should be considered as fuzzy relations.
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I Let x , y : linguistic variables in the physical domains U,V , and A,B:
fuzzy sets in U,V

I Connective ”and” x is A and y is B use fuzzy intersection:
I A

⋂
B ∈ U × V : µA

⋂
B(x , y) = t[µA(x), µB(y)]

I t : [0, 1]× [0, 1]→ [0, 1] is any t-norm.

I Connective ”or” x is A or y is B use fuzzy union:
I A

⋃
B ∈ U × V : µA

⋃
B(x , y) = s[µA(x), µB(y)]

I s : [0, 1]× [0, 1]→ [0, 1] is any s-norm.

I Connective ”not” x is not A use fuzzy complements.
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I Let x , y : linguistic variables in the physical domains U,V , and A,B:
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I Connective ”or” x is A or y is B use fuzzy union:
I A

⋃
B ∈ U × V : µA

⋃
B(x , y) = s[µA(x), µB(y)]

I s : [0, 1]× [0, 1]→ [0, 1] is any s-norm.

I Connective ”not” x is not A use fuzzy complements.

I Example: Recall the weather example:
I HO = (x is C and x is not H) or x is P: a fuzzy relation in the

product space [−20, 40]:
I C = cold ,H = hot,P = pleasant, x1 = x2 = x3 = x
I µHO(x1, x2, x3) = s{t[µc(x1), c(µH(x2))], µM(x3)}
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Interpretation of Fuzzy Rules

I For classical rules:
I IF p THEN q  p → q
I p → q≡p̄

∨
q≡p̄

∨
(p
∧

q)

I For fuzzy rules
I p and q are fuzzy propositions
I .̄≡ complement;

∨
≡ s-norm;

∧
≡ t-norm

I Different c-norm, s-norm, t-norm yields verity of interpretations

I IF < FP1 > THEN < FP2 >
I FP1,FP2: fuzzy relations in U = U1 × ...× Un,V = V1 × . . .Vm,
I x and y are linguistic variables (vectors) in U and V

I Some popular Fuzzy interpretation:
I Dienes-Rescher Implication: Using basic fuzzy c-norm and s-norm,

QD ∈ U × V
µQd

(x , y) = max[1− µFP1(x), µFP2(y)]
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Interpretation of Fuzzy Rules

I Lukasiewicz Implication: Using basic fuzzy c-norm and Yager
s-norm with w = 1, QL ∈ U × V
µQL

(x , y) = min[1, 1− µFP1(x) + µFP2(y)]

I Zadeh Implication: Using basic fuzzy c-norm, s-norm, and t-norm,
QZ ∈ U × V
µQZ

(x , y) = max{min[µFP1(x), µFP2(y)], 1− µFP1(x)}
I Gödel Implication: a well-known implication in classical logic,

QG ∈ U × V

µQG
(x , y) =

{
1 if µFP1(x) ≤ µFP2(y)

µFP2(y) otherwise
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I Lemma: For all (x , y) ∈ U × V
µQz (x , y) ≤ µQD

(x , y) ≤ µQL
(x , y)

I Proof:
I 0 ≤ 1− µFP1(x) ≤ 1 and

0 ≤ µFP2(y) ≤ 1 max{1−µFP1(x), µFP2(y)} ≤ 1−µFP1(x) +µFP2(x)
I max{1− µFP1(x), µFP2(y)} ≤ 1 µQD

≤ µQL

I min[µFP1(x), µFP2(y)] ≤ µFP2(y) µQz (x , y) ≤ µQD
(x , y)

I We will learn later, the criteria to choose the combination of c-norms,
t-norms, and s-norms for interpretation

I In crisp logic p → q is global implication,
I It covers all possible choices

I In fuzzy logic p → q is local implication
I Example: IF temperature is high THEN turn on the air condition
I no guideline when ”temperature is medium” , or ”temperature is low”

I ∴ the fuzzy rule should be mentioned as:
IF < FP1 > THEN < FP2 > ELSE < NOTHING >  p → q = p

∧
q
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I using min or algebraic product leads to Mamdani implications (the
most popular implication)
µQMM

(x , y) = min[µFP1(x), µFP2(y)]
µQMP

(x , y) = µFP1(x)µFP2(y)
I BUT some rule may implicitly clarify the else part

I Example: IF temperature is high THEN turn on the air condition
I It implicitly mentions that IF temperature is low THEN turn off the air

condition

I diff. people have diff. interpretations.

I ∴ diff. implications are required

I If the human experts think that their rules are local, then use the
Mamdani implications; otherwise, use the global implications
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Example
I Let U = {−10, 5, 15, 25},V = {1, 2, 3}
I x ∈ U: temperature, y ∈ V : air condition mode

I IF-THEN rule: IF x is low THEN y is small

I fuzzy set ”high”= 1/− 10 + .7/5 + .1/15 + 0/25

I fuzzy set ”small”= 1/1 + 0.5/2 + 0.1/3

I QD = 1/(−10, 1) + 0.5/(−10, 2) + 0.1/(−10, 3) + 1/(5, 1) +
0.5/(5, 2) + 0.3/(5, 3) + 1/(15, 1) + 0.9/(15, 2) + 0.9/(15, 3) +
1/(25, 1) + 1/(25, 2) + 1/(25, 3)

I QL = 1/(−10, 1) + 0.5/(−10, 2) + 0.1/(−10, 3) + 1/(5, 1) +
0.8/(5, 2) + 0.4/(5, 3) + 1/(15, 1) + 1/(15, 2) + 1/(15, 3) +
1/(25, 1) + 1/(25, 2) + 1/(25, 3)

I QZ = 1/(−10, 1) + 0.5/(−10, 2) + 0.1/(−10, 3) + 0.7/(5, 1) +
0.5/(5, 2) + 0.3/(5, 3) + 0.9/(15, 1) + 0.9/(15, 2) + 0.9/(15, 3) +
1/(25, 1) + 1/(25, 2) + 1/(25, 3)
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Example: Cont’d

I QG = 1/(−10, 1) + 0.5/(−10, 2) + 0.1/(−10, 3) + 1/(5, 1) +
0.5/(5, 2) + 0.1/(5, 3) + 1/(15, 1) + 1/(15, 2) + 1/(15, 3) +
1/(25, 1) + 1/(25, 2) + 1/(25, 3)

I QMM = 1/(−10, 1) + 0.5/(−10, 2) + 0.1/(−10, 3) + 0.7/(5, 1) +
0.5/(5, 2) + 0.1/(5, 3) + 0.1/(15, 1) + 0.1/(15, 2) + 0.1/(15, 3) +
0/(25, 1) + 0/(25, 2) + 0/(25, 3)

I QMM = 1/(−10, 1) + 0.5/(−10, 2) + 0.1/(−10, 3) + 0.7/(5, 1) +
0.35/(5, 2) + 0.07/(5, 3) + 0.1/(15, 1) + 0.05/(15, 2) + 0.01/(15, 3) +
0/(25, 1) + 0/(25, 2) + 0/(25, 3)

I membership of (25, 1), (25, 2), (25, 3) is full for Qz ,QD ,QL,QG ,

I It is zero for QMM and QMP since µhigh(25) = 0
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I ∴ Dienes-Rescher, Lukasiewicz, Zadeh and Godel implications are
global,

I Mamdani implications are local.

I BUT Manipulations are easier with Mamdani implications rather than
others
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