

# Nonlinear Control Lecture 3: Fundamental Properties

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2009

#### **Preliminary Definitions**

Norm Set Continuous Function Mean Value

#### Existence and Uniqueness

Existence

Existence and Uniqueness

Continuous Dependence on Initial Condition and Parameters

Differentiability of Solutions and Sensitivity Equations Sensitivity Analysis

#### Comparison Principle

Gronwall-Bellman Inequality Comparison Lemma Outline Preliminary Definitions Existence and Uniqueness Continuous Dependence Sensitivity Analysis Comparison

• The norm ||x|| of a vector x is a real-valued function s.t.

1. 
$$||x|| \ge 0 \ \forall x \in R^n$$
,  $||x|| = 0 \text{ iff } x = 0$   
2.  $||x+y|| \le ||x|| + ||y||$ ,  $\forall x, y \in R^n$   
3.  $||ax|| = |a|||x|| \ \forall a \in R, \ \forall x \in R^n$ 

• The class p - norm,  $p \in [1, \infty)$  are defined by

$$||x||_p = (|x_1|^p + ... + |x_n|^p)^{1/p}$$

 $||x||_{\infty} = \max_{i} |x_{i}|$ 

- ► The three most common norms are:  $\|x\|_1$ ,  $\|x\|_{\infty}$ , and the Euclidean norm  $\|x\|_2 = (x^T x)^{1/2}$
- ► All *p*-norms are equivalent in the sense that  $\exists c_1 \& c_2$  s.t.:  $c_1 \|x\|_{\alpha} \le \|x\|_{\beta} \le c_2 \|x\|_{\alpha} \quad \forall x \in \mathbb{R}^n$

e.g.: 
$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2$$
  
 $||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$   
 $||x||_{\infty} \le ||x||_1 \le n ||x||_{\infty}$ 



• An  $m \times n$  matrix A defines a linear mapping y = Ax from  $R^n$  into  $R^m$ . The induced p - norm of A is defined by:

Outline Preliminary Definitions Existence and Uniqueness Continuous Dependence Sensitivity Analysis Comparison

$$||A||_{p} = \sup_{x \neq 0} \frac{||Ax||_{p}}{||x||_{p}} = \sup_{||x|| \le 1} ||Ax||_{p} = \sup_{||x|| = 1} ||Ax||_{p}$$

► for 
$$p = 1, 2, \infty$$
, we have  
 $||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$   
 $||A||_2 = \sigma_{max}(A) = [\lambda_{max}(A^T A)]^{1/2}$   
 $||A||_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|$ 

$$\begin{aligned} \|A\|_{2} &\leq \sqrt{\|A\|_{1}\|A\|_{\infty}} \\ \frac{1}{\eta} \|A\|_{\infty} &\leq \|A\|_{2} \leq \sqrt{m} \|A\|_{\infty} \\ \frac{1}{m} \|A\|_{1} &\leq \|A\|_{2} \leq \sqrt{n} \|A\|_{1} \\ \|AB\|_{p} &\leq \|A\|_{p} \|B\|_{p} \end{aligned}$$

► Hölder inequality:  $|x^T y| \le ||x||_p ||y||_q, \quad \frac{1}{p} + \frac{1}{q} = 1, \quad x, y \in \mathbb{R}^n$ 



Amirkab

- ► A set *S* is closed iff every convergent sequence *x*<sub>d</sub> with elements in *S* converges to a point in *S*.
- A set S is bounded if there is r > 0 s.t.  $||x|| \le r$  for all  $x \in S$ .
- A set S is compact if it is closed and bounded.
- ▶ A set *S* is convex: if for every  $x, y \in S$  and every real number  $\theta$ ,  $0 < \theta < 1$ , the point  $\theta x + (1 \theta)y \in S$ .

# Outline Preliminary Definitions Existence and Uniqueness Continuous Dependence Sensitivity Analysis Comparison (Amirkat

# **Continuous Function**

- A function f mapping a set  $S_1$  into a set  $S_2$  is denoted by  $f: S_1 \to S_2$ .
- f is continuous at x if, given  $\epsilon > 0$ , there is  $\delta > 0$  s.t

$$\|x - y\| < \delta \Rightarrow \|f(x) - f(y)\| < \epsilon \tag{1}$$

- A function f is continuous on a set S if it is continuous at every point of S
- A function f is uniformly continuous on S if given ε > 0 there is δ > 0 (dependent only on ε) s.t. (1) holds for all x, y ∈ S.
- $\blacktriangleright$  For uniform continuity, the same constant  $\delta$  works for all points in the set.
- ► f is uniformly continuous on a set S⇒ it is continuous on S. But the opposite is not true in general.
- If S is a compact set, then continuity  $\equiv$  uniform continuity.

イロト イポト イヨト イヨト

### **Continuous Differentiable Function**

• A function  $f : R \rightarrow R$  is differentiable at x if

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- ▶ A function  $f : \mathbb{R}^n \to \mathbb{R}^m$  is continuously differentiable at a point  $x_0$  if  $\frac{\partial f_i}{\partial x_j}$  exist and are continuous at  $x_0$  for  $1 \le i \le m$ ,  $1 \le j \le n$ .
- A function f is continuously differentiable on a set S if it is continuously differentiable at every point of S.

### Mean Value

If x and y are two distinct points in R<sup>n</sup>, then the line segment L(x, y) joining x and y is given by:

$$L(x,y) = \{z = \theta x + (1-\theta)y, \quad 0 < \theta < 1\}$$

▶ Mean Value Theorem: Assume  $f : \mathbb{R}^n \longrightarrow \mathbb{R}$  is continuously differentiable at each point x on an open set  $S \subset \mathbb{R}^n$ . Let x and y be two points of S s.t. the line segment  $L(x, y) \subset S$ . Then, there exists a point z of L(x, y) s.t.:

$$f(y) - f(x) = \frac{\partial f}{\partial x}\Big|_{x=z} (y-x)$$

 Proof in: T. M. Apostol. Mathematical Analysis. Addison-Wesley, Reading, MA, 1957.

## Existence

This section provides sufficient condition for uniqueness and existence solution of the initial value problem

$$\dot{x} = f(t, x), \quad x(t_0) = x_0$$
 (2)

ヘロン 人間 とくほと くほとう

- Existence of solution is provided by continuity:
- ► A solution of (2) over an interval  $[t_0, t_1]$ :  $x : [t_0, t_1] \longrightarrow R^n$  s.t.  $\dot{x}(t)$  is defined,  $\dot{x}(t) = f(t, x(t)) \forall t \in [t_0, t_1]$ 
  - If f is continuous in t and x→ the solution x(t) is continuously differentiable.
  - Assume f is continuous in x but only piecewise continuous in t→x(t) is only piecewise continuously differentiable.
- ► This allows time-varying input with step changes in time.

#### Existence

► A differential equation might have many solutions, e.g.

$$\dot{x} = x^{1/3}, \quad x(0) = 0$$
 (3)

•  $x(t) = (2t/3)^{3/2}$  and  $x(t) = 0 \rightarrow$  the solution is not unique.

- ► However, f is continuous → continuity is not sufficient to ensure uniqueness.
- Continuity of f guarantees at least one solution.



► Theorem 3.1 (Lipschitz condition: Local Existence and Uniqueness) Let f(t,x) be piecewise continuous in t and satisfy the Lipschitz condition:

$$\|f(t,x) - f(t,y)\| \le L \|x - y\| \quad \forall x, y \in B = \{x \in R^n | \|x - x_0\| \le r\}, \ \forall t \in [t_0, t_1]$$

Then, there exists  $\delta > 0$  such that the state equation  $\dot{x} = f(t, x)$  with  $x(t_0) = x_0$  has a unique solution over  $[t_0, t_0 + \delta]$ .

- ► The function *f* satisfying Lipschitz condition is called Lipschitz in *x*
- The constant *L* is called the Lipschitz constant.
- A function can be locally or globally Lipschitz.



- A function f(x) is said to be locally Lipchitz on a domain D ⊂ R<sup>n</sup> (open and connected set) if each point of D has a neighborhood D<sub>0</sub> such that f(x) satisfies the Lipschitz condition for all points on D<sub>0</sub> with some Lipschitz constant L<sub>0</sub>.
- ► A function f(x) is set to be Lipchitz on a set W if it satisfies Lipschitz condition for all points with the same Lipschitz constant.
- ► ... A locally Lipschitz function on D is not necessarily Lipschitz on D since the Lipschitz condition may not hold uniformly (with the same Lipschitz constant) for all points in D.
- A function f(x) is said to be **globally Lipchitz** if it is Lipschitz on  $\mathbb{R}^n$ .

・ロト ・四ト ・ヨト ・ヨト

- ► The same terminology holds for f(t, x) if the Lipchitz condition is hold uniformly in t for all t in a certain interval.
- A function f(t,x) is said to be locally Lipchitz on [a, b] × D ⊂ R × R<sup>n</sup> if each point of x ∈ D has a neighborhood D<sub>0</sub> such that f(t,x) satisfies the Lipschitz condition for same Lipschitz constant L<sub>0</sub> on [a, b] × D<sub>0</sub>.
- If f is scalar,  $f : R \longrightarrow R$ , the Lipschitz condition can be expressed as:

$$\frac{|f(y) - f(x)|}{|y - x|} \le L$$

- The line connecting every two points of f, cannot have a slope > L.
- ... If a function has infinite slope at some points, the function cannot be locally Lipschitz at those points.
- Discontinuous functions cannot be locally Lipschitz at the points of discontinuity.

- ► **Example:**  $f(x) = x^{1/3}$  is not locally Lip. at x = 0 since  $f'(x) = (1/3)x^{-2/3} \longrightarrow \infty$  as  $x \longrightarrow 0$ .
  - If f'(x) in some region is bounded by k, then f is lip on that region with Lip. constant L = k.
- This fact is also true for vector valued functions
- Lemma 3.1: Let f : [a, b] × D → R<sup>m</sup> be continuous for some domain D ∈ R<sup>n</sup>. If for a convex subset W ⊂ D there is a constant L ≥ 0 s.t.

$$\|\frac{\partial f}{\partial x}(t,x)\| \leq L$$
 on  $[a,b] \times W$ ,

then  $\|f(t,x) - f(t,y)\| \le L \|x - y\|$  for all  $t \in [a,b]$ ,  $x \in W$ , and  $y \in W$ .

・ロト ・回ト ・ヨト ・

#### Proof:

- ▶ Let  $||.||_p$  be any norm  $p \in [1, \infty]$  and determine q s.t.  $\frac{1}{p} + \frac{1}{q} = 1$ . Fix t on [a, b] and assume  $x \in W$ ,  $y \in W$ .
- ▶ Define  $\gamma(s) = (1 s)x + sy$ ,  $s \in R$ ,  $\gamma(s) \in D$ ,
- $W \subset D$  is convex  $\rightsquigarrow \gamma(s) \in W$  for  $0 \le s \le 1$ .
- Take  $z \in R^m$  s.t.

$$||z||_q = 1, \quad z^T [f(t, y) - f(t, x)] = ||f(t, y) - f(t, x)||_p$$

set g(s) = z<sup>T</sup> f(t, γ(s)). Since, g(s) is a continuously differentiable real-valued function over the open interval which includes [0, 1], from mean-value theorem, ∃s<sub>1</sub> ∈ (0, 1) s.t.

$$g(1)-g(0)=g'(s_1)$$

・ロト ・回ト ・ヨト ・ヨト

• Evaluating g at s = 0 and s = 1:

$$z^{T}[f(t,y)-f(t,x)] = z^{T}\frac{\partial f}{\partial x}(t,\gamma(s_{1}))(y-x)$$

▶ and using chain rule in calculating g'(s) and Hölder inequality,  $|z^Tw| \le ||z||_q ||w||_p$ :

$$\|f(t,y)-f(t,x)\|_{p} \leq \|z\|_{q} \left\|\frac{\partial f}{\partial x}(t,\gamma(s_{1}))\right\|_{p} \|y-x\|_{p} \leq L \|y-x\|_{p}$$

- If f is Lip. on W, ⇒ it is uniformly continuous on W, (prove it) but the converse is not true
- ► The function f(x) = x<sup>1/3</sup> is continuous on R, but it's not locally lip on x = 0.
- ► Lip. condition is weaker than continuous differentiability condition :



< ∃⇒

▶ Lemma 3.2 If f(t, x) and  $\left[\frac{\partial f}{\partial x}\right](t, x)$  are continuous on  $[a, b] \times D$  for some domain  $D \subset \mathbb{R}^n$ , then f is locally Lip. in x on  $[a, b] \times D$ .

#### Proof:

- ▶ For  $x_0 \in D$ , let *r* be so small that the ball  $D_0 = \{x \in R^n | ||x x_0|| \le r\}$  is contained in *D*
- ▶ The set *D*<sub>0</sub> is convex and compact
- By continuity,  $\frac{\partial f}{\partial x}$  is bounded on  $[a, b] \times D_0$ .
- Let  $L_0$  is a bound for  $\frac{\partial f}{\partial x}$  on  $[a, b] \times D_0$
- ▶ By Lemma 3.1, f(t,x) is Lip. on  $[a,b] \times D_0$  with Lip. constant  $L_0$ .
- ▶ Lemma 3.3: If f(t, x) and  $\left[\frac{\partial f}{\partial x}\right](t, x)$  are continuous on  $[a, b] \times R^n$ , then f is globally Lip. in x on  $[a, b] \times R^n$  iff  $\left[\frac{\partial f}{\partial x}\right]$  is uniformly bounded on  $[a, b] \times R^n$ .
  - ▶ x(t) is uniformly bounded if  $\exists c > 0$ , independent of  $t_0 > 0$ , and for every  $a \in (0, c)$ , there is  $\beta = \beta(a) > 0$ , independent of  $t_0$ , s.t.  $\|x(t_0)\| \le a \Rightarrow \|x(t)\| \le \beta, \forall t \ge t_0$

$$f(x) = \begin{bmatrix} -x_1 + x_1 x_2 \\ x_2 - x_1 x_2 \end{bmatrix}$$

- f is continuously differentiable on  $R^2 \Longrightarrow \overline{f}$  is locally Lip. on  $R^2$ .
- *f* is not globally Lip. since  $\frac{\partial f}{\partial x}$  is not uniformly bounded on  $R^2$ .
- However, it is Lip. on any compact set on  $R^2$ .
- Find the Lip. constant on set  $W = \{x \in \mathbb{R}^2 | |x_1| \le a_1, |x_2| \le a_2\}.$ 
  - ▶ fist find jacobian matrix  $\frac{\partial f}{\partial x} = \begin{bmatrix} -1 + x_2 & x_1 \\ -x_2 & 1 x_1 \end{bmatrix}$
  - Use  $\infty$  norm for vectors and induced norm for matrices:

$$\begin{split} \|\frac{\partial f}{\partial x}\|_{\infty} &= \max\{|-1+x_2|+|x_1|, |x_2|+|1-x_1|\}\\ |-1+x_2|+|x_1| &\leq 1+a_2+a_1, \ |x_2|+|1-x_1| \leq a_2+1+a_1\\ \|\frac{\partial f}{\partial x}\|_{\infty} &\leq 1+a_1+a_2 &\stackrel{\text{def}}{\longrightarrow} L_0 = 1+a_1+a_2 \end{split}$$

$$f(x) = \begin{bmatrix} x_2 \\ -sat(x_1 + x_2) \end{bmatrix}$$

• f is **not** continuously differentiable on  $R^2$ .

f

- ► Lip. condition is evaluated by definition.
- Use  $\|.\|_2$  and also note that

$$\begin{aligned} |sat(\eta) - sat(\zeta)| &\leq |\eta - \zeta| \\ \therefore \|f(x) - f(y)\|_2 &\leq (x_2 - y_2)^2 + (x_1 + x_2 - y_1 - y_2)^2 \\ &= (x_1 - y_1)^2 + 2(x_1 - y_1)((x_2 - y_2) + 2(x_2 - y_2)^2) \end{aligned}$$

► We have  $a^{2} + 2ab + 2b^{2} = \begin{bmatrix} a \\ b \end{bmatrix}^{T} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \leq \lambda_{max} \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \right\} \left\| \begin{bmatrix} a \\ b \end{bmatrix} \right\|_{2}^{2}$ ►  $\therefore \|f(x) - f(y)\|_{2} \leq \sqrt{2.618} \|x - y\|_{2}, \quad \forall x, y \in \mathbb{R}^{2}$  ► If we use the more conservative inequality

$$a^2 + 2ab + 2b^2 \le 2a^2 + 3b^2 \le 3(a^2 + b^2)$$

• The Lip constant  $\sqrt{3}$  is obtained.

Outline Preliminary Definitions Existence and Uniqueness

- ► Therefore
  - Type of norm does not affect the Lip. property, but it does affect the Lip. constant
  - If the Lip. condition is satisfied for some  $L_0$ , it is also hold for all  $L > L_0$ .
  - Lip. constant is not unique
  - Theorem 3.1 is a local theorem
  - It guarantees the existence and uniqueness for the interval  $[t_0, t_0 + \delta]$ .
  - ▶ Existence and uniqueness for the interval [t<sub>0</sub>, t<sub>1</sub>] is not clear.
- One way is to repeatedly apply the local theorem 3.1 and extend the existence interval
  - Start with  $t_0, x_0$ , the existence and uniqueness is guaranteed for  $[t_0, t_0 + \delta]$ .
  - Take new initial condition as t<sub>0</sub> + δ and x(t<sub>0</sub> + δ) and extend the interval to [t<sub>0</sub> + δ, t<sub>0</sub> + δ + δ<sub>2</sub>].
- ► Repeat the procedure

・ 「 ト ・ ヨ ト ・ ヨ ト

Amirkah

nuous Dependence Sensitivity Analysis Con

- In general, the procedure cannot go indefinitely
  - : there is a maximum interval  $[t_0, T]$  that the unique solution that starts from  $(t_0, x_0)$  exists.
  - ▶ T might be smaller than  $t_1$ , in this case when  $t \longrightarrow T$ , the solution leaves the set on which f is locally Lip.

#### • Example 3.3

$$\dot{x} = -x^2, \quad x(0) = -1$$
 (4)

• f is locally Lip. for all  $x \in R$ .

Outline Preliminary Definitions Existence and Uniqueness

▶ It is locally Lip. on all compact subset of R

$$x(t) = rac{1}{t-1}$$
 Unique solution on [0, 1]

- As  $t \longrightarrow 1 x(t)$  leaves the set.
- Finite escape time indicates that the trajectories go to infinity in finite time.

Amirka

## When the solution interval can be extended indefinitely?

- On way is to guarantee that the solution x(t) always remain in the set on which is uniformly Lip.
- ► This is achieved if function *f* is globally Lip.

Outline Preliminary Definitions Existence and Uniqueness

► **Theorem 3.2 (Global Existence and Uniqueness)** Suppose that f(t, x) is piecewise continuous in t and satisfies

$$\|f(t,x) - f(t,y)\| \le L \|x - y\| \quad \forall x, y \in \mathbb{R}^n, \ \forall t \in [t_0, t_1]$$

Then,  $\dot{x} = f(t, x)$ ,  $x(t_0) = x_0$  has a unique solution on  $[t_0, t_1]$ .

- **Example 3.4:**  $\dot{x} = A(t)x + g(t) = f(t, x)$
- where A(t) and g(t) are piecewise continuous functions in t.
- Over any finite interval, elements of A(t) and g(t) are bounded

 $\|A(t)\| \le a$  using any induced norm

#### Example 3.4. Contd.

• All conditions of Theorem 3.2 is satisfied since  $\forall x, y \in \mathbb{R}^n$  and  $t \in [t_0, t_1]$ :

 $||f(t,x) - f(t,y)|| = ||A(t)(x-y)|| \le ||A(t)|| ||x-y|| \le a||x-y||$ • Linear System has a unique solution over  $[t_0, t_1]$ .

- ▶  $t_1$  can be arbitrarily large  $\rightsquigarrow$  if A(t) and g(t) are piecewise continuous functions, system has a unique solution for  $t \ge t_0$  and cannot have "finite escape time".
- ► The global Lip. condition is reasonable for linear systems.
- ► In general, it is rarely satisfied for nonlinear systems
- Local Lip. condition is essentially related to smoothness of f
- ► It is automatically satisfied if *f* it is continuously differentiable
- Except for hard nonlinearities which are idealization of nonlinear phenomena, physical system models satisfy Lip. condition
- ► Continuous functions which are not locally Lip. are rare in practice.
- ► However, the global Lip. condition cannot be satisfied by many physical

- Theorem 3.2 provides conservative condition on unique solution of nonlinear systems
- Example 3.5:  $\dot{x} = -x^3 = f(x)$ 
  - f(x) is not globally Lip. since Jacobian  $\frac{\partial f}{\partial x}$  is not bounded in *R*.
  - However, for  $x(t_0) = x_0$ , the unique solution is given by

$$x(t) = sign(x_0) \sqrt{\frac{x_0^2}{1 + 2x_0^2(t - t_0)}}$$

▶ By having some knowledge about the solution x(t), one can proved less conservative condition for uniqueness using local Lip. condition on f

▲ 同 ▶ | ▲ 国 ▶ | ▲ 国 ▶ | |

## Summery

- ► Solution exitance for x = f(x, t) is achieved by continuity or at lease piecewise continuity of function f in t.
- ► Lipshitz condition can provide sufficient condition for unique solution
- ► Theorem 3.1: Let f(t, x) be piecewise continuous in t and satisfy the Lipschitz condition:

$$egin{aligned} \|f(t,x)-f(t,y)\| &\leq L\|x-y\| \quad \forall x,y\in B=\{x\in R^n|\|x-x_0\|\leq r\},\ &orall t\in [t_0,t_1] \end{aligned}$$

Then, there exists  $\delta > 0$  such that the state equation  $\dot{x} = f(t, x)$  with  $x(t_0) = x_0$  has a unique solution over  $[t_0, t_0 + \delta]$ .

(4 回 ) (4 回 ) (4 回 )

## Summery

#### Locally Lipshitz

- The condition is satisfied on a subset  $D \subset R^n$
- It guarantees unique solution over  $[t_0, t_0 + \delta]$
- ► A function f(x) is set to be Lipchitz on a set W if it satisfies Lipschitz condition for all points with the same Lipschitz constant.
- ► To check the Lipshitz conation a convex subset W ⊂ D, it is sufficient to satisfy: || ∂f/∂x(t,x)|| ≤ L on [a, b] × W.
- ► To find Lip. constant, *L*, type of norm does not affect the Lip. property, but it does affect the Lip. constant.
- Lip. constant is not unique.
- ► Continuously differentiability of f(t, x) on [a, b] × D guarantees f to be locally Lip.

伺下 イヨト イヨト

# Summery

#### Globally Lipshitz

- The condition is satisfied on R<sup>n</sup>
- It guarantees unique solution over  $[t_0, t_1]$ , (no matter how large  $t_1$  is)
- Continuously differentiability of f(t, x)+ uniformly boundedness of  $\frac{\partial f}{\partial x}$  on  $[a, b] \times R^n$  guarantees f to be globally Lip.
- uniformly boundedness of  $\frac{\partial f}{\partial x}$  is a killer condition and difficult to be satisfied for nonlinear systems in practice.
- By having some knowledge about the solution x(t), we are looking for less conservative condition for uniqueness.



- ► Theorem 3.3: Let f(t,x) is piecewise continuous in t and is locally Lip. in x for all t ≥ t<sub>0</sub> and all x ∈ D ⊂ R<sup>n</sup>. Let W be a compact subset of D, x<sub>0</sub> ∈ W and every solution of x = f(t,x), x(t<sub>0</sub>) = x<sub>0</sub> lies entirely in W. Then, there is a unique solution that is defined for all t ≥ t<sub>0</sub>.
- ► **Proof**:
  - ► The proof is based on the fact that if the solution remains in the set *W*, it cannot have "finite escape time".
  - ▶ By Theorem 3.1, the unique solution exist in the interval  $[t_0, t_0 + \delta]$ . From the previous discussion we know that if T is finite, the solution must leave D, however, since the solution never leaves W, we conclude that  $T = \infty$ .
- The problem in applying this theorem is to show that the solution never leaves the set W.
- We desire to check the assumption that every solution lies in a compact set without actually solving the differential equation.
- ► Lyapunov's stability theorem is an important tool for this purpose.

イロト イポト イヨト イヨト

## Example 3.6:

$$\dot{x} = -x^3 = f(x)$$

- f(x) is locally Lip. on R
- Let x(0) = a, and compact set  $W = \{x \in R | |x| \le a\}$
- It is clear that the no solution can leave the set W.
- There is a unique solution for  $t \ge 0$ .

伺い イヨト イヨト

#### Continuous Dependence on Initial Condition and Parameters

- Consider mathematical model  $\dot{x} = f(t, x)$
- We always interested to find solutions with continuous dependence on  $t_0, x_0, f$
- Continuous dependence on  $t_0$  is obvious from  $x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds.$
- Let x(t) be the solution starting at  $x(t_0) = x_0$  and is defined over  $[t_0, t_1]$ .
- ► The solution depends continuously on x<sub>0</sub>, if the solution starting nearby is defined over the same interval and remain nearby.

Given 
$$\epsilon > 0 \ \exists \delta > 0 \ \text{s.t.} \ \forall z_0 \in S = \{x \in R^n | \|x - x_0\| < \delta\}$$

the equation  $\dot{x} = f(t, x)$  has a unique solution z(t), defined over  $[t_0, t_1]$ ,  $z(t_0) = z_0$ , and  $||z(t) - x(t)|| < \epsilon \quad \forall t \in [t_0, t_1]$ 

#### Continuous Dependence on Parameters

- $\blacktriangleright$  Let us consider changing parameters by perturbation on f
- ► f is continuously dependent on a set of parameters  $\lambda \in R^p$ , i.e.  $f = f(t, x, \lambda)$ .
- ► These parameters could represent physical parameters of system.
- Perturbation of these parameters accounts for modeling errors or changes in the parameters.
- Let  $x(t, \lambda_0)$  be a solution of  $\dot{x} = f(t, x, \lambda_0)$  defined over  $[t_0, t_1]$  with  $x(t_0, \lambda_0) = x_0$ .
- Continuous dependence on  $\lambda$  if:

Given 
$$\epsilon > 0 \ \exists \delta > 0 \ s.t. \ \forall \lambda \in \Lambda = \{\lambda \in R^p | \|\lambda - \lambda_0\| < \delta\}$$

the equation  $\dot{x} = f(t, x, \lambda)$  has a unique solution  $x(t, \lambda)$ , defined over  $[t_0, t_1], x(t_0, \lambda) = x_0$ , and  $||x(t, \lambda) - x(t, \lambda_0)|| \le \epsilon \quad \forall t \in [t_0, t_1]$ 

#### Continuous Dependence on Initial Conditions and Parameters

- Continuous dependence on initial conditions and parameters can be studied simultaneously.
- ▶ **Theorem 3.5:** Let  $f(t, x, \lambda)$  be continuous in  $t, x, \lambda$  and locally Lip. in x (uniformly in t and  $\lambda$ ) on  $[t_0, t_1] \times D \times \{ \|\lambda \lambda_0\| \le c \}$ , where  $D \subset \mathbb{R}^n$ . Let  $x(t, \lambda_0)$  be a solution of  $\dot{x} = f(t, x)$ ,  $x(t_0, \lambda_0) = x_0 \in D$  (nominal solution). Suppose  $x(t, \lambda_0)$  is defined and belongs to  $D \ \forall t \in [t_0, t_1]$ . Then,

Given 
$$\epsilon > 0 \ \exists \delta > 0$$
 s.t. if  $\|z_0 - x_0\| < \delta$  and  $\|\lambda - \lambda_0\| < \delta$ 

then there is a unique solution  $z(t, \lambda)$  of  $\dot{x} = f(t, x, \lambda)$  defined on  $[t_0, t_1]$  (solution for perturbed system), with  $z(t_0, \lambda) = z_0$  and  $z(t, \lambda)$  satisfies

$$\|z(t,\lambda)-x(t,\lambda_0)\|<\epsilon, \quad \forall \ t\in \ [t_0,t_1]$$

- 4 同 ト 4 ヨ ト - 4 ヨ ト -



## Sensitivity Analysis

Suppose f(t, x, λ) is continuous in (t, x, λ) and has continuous first partial derivatives w.r.t. x and λ ∀ (t, x, λ) ∈ [t<sub>0</sub>, t<sub>1</sub>] × R<sup>n</sup> × R<sup>p</sup>. Let λ<sub>0</sub> be a nominal value of λ and x(t, λ<sub>0</sub>) be the unique solution of the nominal state equation over [t<sub>0</sub>, t<sub>1</sub>]:

$$\dot{x} = f(t, x, \lambda_0)$$
 with  $x(t_0) = x_0$ 

has a unique solution  $x(t, \lambda)$  over  $[t_0, t_1]$  that is close to the nominal solution  $x(t, \lambda_0)$ .

Continuous differentiability of f w.r.t. x and λ implies differentiability of the solution x(t, λ) w.r.t λ near λ<sub>0</sub>.

$$x(t,\lambda) = x_0 + \int_{t_0}^t f(s,x(s,\lambda)) ds$$

# Sensitivity Analysis

• Taking partial derivative w.r.t.  $\lambda$ :

$$x_{\lambda}(t,\lambda) = \int_{t_0}^t \left[ \frac{\partial f}{\partial x}(s,x(s,\lambda),\lambda) x_{\lambda}(s,\lambda) + \frac{\partial f}{\partial \lambda}(s,x(s,\lambda),\lambda) \right] ds$$

where  $x_{\lambda}(t,\lambda) = \frac{\partial x(t,\lambda)}{\partial \lambda}$ .

► Differentiating w.r.t. *t*:  $\frac{\partial}{\partial t} x_{\lambda}(t,\lambda) = A(t,\lambda) x_{\lambda}(t,\lambda) + B(t,\lambda), \quad x_{\lambda}(t0,\lambda) = 0$ 

where 
$$A(t,\lambda) = \frac{\partial f(t,x,\lambda)}{\partial x}\Big|_{x=x(t,\lambda)}, \quad B(t,\lambda) = \frac{\partial f(t,x,\lambda)}{\partial \lambda}\Big|_{x=x(t,\lambda)}$$

- For  $\lambda$  close to  $\lambda_0$ ,  $A(t, \lambda)$  and  $B(t, \lambda)$  are defined on  $[t_0, t_1]$ . Hence,  $x_{\lambda}(t, \lambda)$  is defined on the same interval.
- At λ = λ<sub>0</sub>, the r.h.s. of the above equation depends only on the nominal solution x(t, λ<sub>0</sub>).

# Sensitivity Equation:

• Let  $S(t) = x_{\lambda}(t, \lambda_0)$ . Then, S(t) satisfies:

 $\dot{S}(t) = A(t,\lambda)S(t) + B(t,\lambda_0), \quad S(t_0) = 0$ (5)

- The function S(t) is called the *sensitivity function*
- ▶ Equ. (5) is called *sensitivity equation* 
  - It provides first order estimate of the effect of parameter variations
  - It can also be used to approximate the solution when  $\lambda$  is close to  $\lambda_0$ .

• For small  $\|\lambda - \lambda_0\|$ ,  $x(t, \lambda)$ , is expanded to a Taylor series

$$x(t,\lambda) = x(t,\lambda_0) + S(t)(\lambda - \lambda_0) + high-order terms$$
 (6)

- Neglect the higher order terms
- Significance of (6): Knowing nominal solution and sensitivity function suffices for approximating the solution for all λ in a small ball centered at λ<sub>0</sub>.

# Procedure of calculating the sensitivity function S(t)

- 1. Solve the nominal state equation for the nominal solution  $x(t,\lambda)$
- 2. Evaluate the Jacobian matrices

$$\begin{array}{lll} A(t,\lambda_0) & = & \displaystyle \frac{\partial f(t,x,\lambda)}{\partial x}|_{x=x(t,\lambda_0),\lambda=\lambda_0} \\ B(t,\lambda_0) & = & \displaystyle \frac{\partial f(t,x,\lambda)}{\partial \lambda}|_{x=x(t,\lambda_0),\lambda=\lambda_0} \end{array}$$

3. Solve the sensitivity equation (5)

► Except for some trivial cases, these equations should be solved numerically

(7)

## Alternative approach to calculate S(t)

- ► Solve the nominal solution and the sensitivity function simultaneously:
  - ▶ appending the variational equation (5) with original state equation
  - set  $\lambda = \lambda_0$  to obtain (n + np) augmented equation

$$\dot{x} = f(t, x, \lambda_0), \quad x(t_0) = x_0$$
  
$$\dot{S} = \left[ \frac{\partial f(t, x, \lambda)}{\partial x} \right] \Big|_{\lambda = \lambda_0} S + \left[ \frac{\partial f(t, x, \lambda)}{\partial \lambda} \right] \Big|_{\lambda = \lambda_0}, \quad S(t_0) = 0 \quad (8)$$

which is solved numerically.

• if  $f(t, x, \lambda) = f(x, \lambda) \rightsquigarrow (8)$  is autonomous as well

Consider

$$\dot{x}_1 = x_2 = f_1(x_1, x_2) \dot{x}_2 = -c \sin x_1 - (a + b \cos x_1) x_2 = f_2(x_1, x_2)$$

• nominal values 
$$a_0 = 1, \ b_0 = 0, \ c_0 = 1.$$

nominal system

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -\sin x_1 - x_2 \end{aligned}$$

Jacobian matrices:

$$\frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1 \\ -c\cos x_1 + bx_2\sin x_1 & -(a+b\cos x_1) \end{bmatrix}$$
$$\frac{\partial f}{\partial \lambda} = \begin{bmatrix} \frac{\partial f}{\partial a} \frac{\partial f}{\partial b} \frac{\partial f}{\partial c} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -x_2 & -x_2\cos x_1 & -\sin x_1 \end{bmatrix}$$

Substitute the nominal values in Jacobian matrices and let

$$S = \begin{bmatrix} x_3 & x_5 & x_7 \\ x_4 & x_6 & x_8 \end{bmatrix} = \begin{bmatrix} \frac{\partial x_1}{\partial a} & \frac{\partial x_1}{\partial b} & \frac{\partial x_1}{\partial c} \\ \frac{\partial x_2}{\partial a} & \frac{\partial x_2}{\partial b} & \frac{\partial x_2}{\partial c} \end{bmatrix} |_{\text{nominal}}$$

► Then (8) is given by

$$\dot{x}_1 = x_2, \qquad x_1(0) = 1 \\ \dot{x}_2 = -\sin x_1 - x_2, \qquad x_2(0) = 1 \\ \dot{x}_3 = x_4, \qquad x_3(0) = 0 \\ \dot{x}_4 = -x_3 \cos x_1 - x_4 - x_2, \qquad x_4(0) = 0 \\ \dot{x}_5 = x_6, \qquad x_5(0) = 0 \\ \dot{x}_6 = -x_5 \cos x_1 - x_6 - x_2 \cos x_1, \qquad x_6(0) = 0 \\ \dot{x}_7 = x_8, \qquad x_7(0) = 0 \\ \dot{x}_8 = -x_7 \cos x_1 - x_8 - \sin x_1, \qquad x_8(0) = 0$$



#### Sensitivity function

- ▶  $x_3$ ,  $x_5$ ,  $x_7$  are sensitivity of  $x_1$  with respect to a, b, c.
- $x_4$ ,  $x_6$ ,  $x_8$  are sensitivity of  $x_2$  with respect to a, b, c.
- The solution is more sensitive to variations in *c* than *a* and *b*.
- This pattern is consistent for other initial states.

Farzaneh Abdollahi

## **Comparison Principle**

- The Gronwall-Bellman inequality can provide an upper bound for x(t):
- ► Gronwall-Bellman inequality Lemma: Let  $\lambda : [a, b] \to \mathcal{R}$  be continuous and  $\mu : [a, b] \to \mathcal{R}$  be continuous and nonnegative. If a continuous function  $y : [a, b] \to \mathcal{R}$  satisfies  $y(t) \le \lambda(t) + \int_{a}^{t} \mu(s)y(s)ds$  for  $a \le t \le b$

then for t on the same interval  $\int_{-\infty}^{t} f(x) dx$ 

$$y(t) \leq \lambda(t) + \int_{a}^{t} \lambda(s)\mu(s) \exp[\int_{a}^{t} \mu(\tau)d\tau] ds$$

In particular if  $\lambda(t) \equiv \lambda$  is a constant, then  $y(t) \leq \lambda \exp[\int_a^t \mu(\tau) d\tau]$ If, in addition,  $\mu(t) \equiv \mu \geq 0$  is a constant, then  $y(t) \leq \lambda \exp[\mu(t - a)]_{\alpha \in \Omega}$ 

rt.

## **Comparison Principle**

- ► Comparison lemma is another tool for finding upper bound on solution
- ► The comparison lemma compares the solution of the differential inequality  $\dot{v}(t) \leq f(t, v(t))$  with the solution of the differential equation  $\dot{u} = f(t, u(t))$ .
- ► v(t) is a scalar differentiable function named a solution of the differential inequality.
- ► This lemma is also applicable when v(t) is not differentiable, but has an upper right-hand derivative  $D^+v(t) = \limsup_{h\to 0^+} \frac{v(h+t)-v(t)}{h}$ .
  - if v(t) is differentiable at  $t \rightsquigarrow D^+ v(t) = \dot{v}(t)$
  - ▶ If  $\frac{1}{h}[v(h+t) v(t)] \ge g(t,h) \quad \forall h \in (0,b] \text{ and } \lim_{h \to 0^+} g(t,h) = g_0(t) \text{ the } D^+v(t) \ge g_0(t)$

・ロト ・回ト ・ヨト ・ヨト

#### **Comparison Lemma**

• Consider the scalar differential equation

$$\dot{u} = f(t, u) \quad u(t_0) = u_0$$

where f(t, u) is continuous in t and locally Lipschitz in u, for all  $t \ge 0$ and all  $u \in J \subset \mathcal{R}$ . Let [to, T) (T could be  $\infty$ ) be the maximal interval of existence of the solution u(t). Let v(t) be a continuous function whose upper right-hand derivative  $D^+v(t)$  satisfies the differential inequality

$$D^+v(t) \leq f(t,v) \quad v(t_0) \leq u_0$$

with  $v(t) \in J$  for all  $t \in [t_0, T)$ . Then,  $v(t) \leq u(t)$  for all  $t \in [t_0, T)$ .  $\blacktriangleright$  prove it

$$\dot{x} = f(x) = -(1 + x^2)x, \ x(0) = a$$

- f(x) is locally Lipshitz  $\rightarrow x$  has unique solution in  $[0, t_1)$
- let  $v(t) = x^2$ , v(t) is differentiable

$$\dot{v}(t) = 2x(t)\dot{x}(t) = -2x^2(t) - 2x^4(t) \le -2x^2(t)$$
  
 $\dot{v}(t) \le -2v(t) v(0) = a^2$ 

▶ Now define *u*(*t*) as

$$\dot{u}(t) = -2u(t) \quad u(0) = a^2 \rightarrow u(t) = a^2 e^{-2t}$$

► Therefore, using comparison lemma yields

$$\mathsf{x}(t) = \sqrt{(\mathsf{v}(t))} \leq e^{-t} |\mathsf{a}|_{\mathsf{c}}$$

