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I The norm ‖x‖ of a vector x is a real-valued function s.t.

1. ‖x‖ ≥ 0 ∀x ∈ Rn, ‖x‖ = 0 iff x = 0
2. ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x , y ∈ Rn

3. ‖ax‖ = |a|‖x‖ ∀a ∈ R, ∀x ∈ Rn

I The class p − norm, p ∈ [1,∞) are defined by

‖x‖p = (|x1|p + ...+ |xn|p)1/p

I ‖x‖∞ = max
i
|xi |

I The three most common norms are:
‖x‖1, ‖x‖∞, and the Euclidean norm ‖x‖2 =

(
xT x

)1/2

I All p-norms are equivalent in the sense that ∃c1 & c2 s.t.:
c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α ∀x ∈ Rn

e.g.: ‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞
‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞
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I An m × n matrix A defines a linear mapping y = Ax from Rn into Rm.
The induced p − norm of A is defined by:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

= sup
‖x‖≤1

‖Ax‖p = sup
‖x‖=1

‖Ax‖p

I for p = 1, 2,∞, we have
‖A‖1 = maxj

∑m
i=1 |aij |

‖A‖2 = σmax(A) =
[
λmax(AT A)

]1/2

‖A‖∞ = maxi
∑n

j=1 |aij |
I we have
‖A‖2 ≤

√
‖A‖1‖A‖∞

1
n‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞

1
m‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1

‖AB‖p ≤ ‖A‖p‖B‖p
I Hölder inequality:
|xT y | ≤ ‖x‖p‖y‖q, 1

p + 1
q = 1, x , y ∈ Rn
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Set

I A set S is closed iff every convergent sequence xd with
elements in S converges to a point in S .

I A set S is bounded if there is r > 0 s.t. ‖x‖ ≤ r for all x ∈ S .

I A set S is compact if it is closed and bounded.

I A set S is convex: if for every x , y ∈ S and every real number
θ, 0 < θ < 1, the point θx + (1− θ)y ∈ S .
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Continuous Function

I A function f mapping a set S1 into a set S2 is denoted by f : S1 → S2.

I f is continuous at x if, given ε > 0, there is δ > 0 s.t

‖x − y‖ < δ ⇒ ‖f (x)− f (y)‖ < ε (1)

I A function f is continuous on a set S if it is continuous at every point of
S

I A function f is uniformly continuous on S if given ε > 0 there is δ > 0
(dependent only on ε) s.t. (1) holds for all x , y ∈ S .

I For uniform continuity, the same constant δ works for all points in the set.

I f is uniformly continuous on a set S⇒ it is continuous on S . But the
opposite is not true in general.

I If S is a compact set, then continuity ≡ uniform continuity.
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Continuous Differentiable Function

I A function f : R → R is differentiable at x if

f́ (x) = lim
h→0

f (x + h)− f (x)

h

I A function f : Rn → Rm is continuously differentiable at a point x0

if ∂fi
∂xj

exist and are continuous at x0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

I A function f is continuously differentiable on a set S
if it is continuously differentiable at every point of S .
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Mean Value

I If x and y are two distinct points in Rn, then the line segment L(x , y)
joining x and y is given by:

L(x , y) = {z = θx + (1− θ)y , 0 < θ < 1}

I Mean Value Theorem: Assume f : Rn −→ R is continuously differentiable
at each point x on an open set S ⊂ Rn. Let x and y be two points of S
s.t. the line segment L(x , y) ⊂ S. Then, there exists a point z of L(x , y)
s.t.:

f (y)− f (x) =
∂f

∂x

∣∣∣∣
x=z

(y − x)

I Proof in: T. M. Apostol. Mathematical Analysis. Addison-Wesley, Reading,
MA, 1957.
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Existence

I This section provides sufficient condition for uniqueness and existence
solution of the initial value problem

ẋ = f (t, x), x(t0) = x0 (2)

I Existence of solution is provided by continuity:

I A solution of (2) over an interval [t0, t1]:
x : [t0, t1] −→ Rn s.t. ẋ(t) is defined, ẋ(t) = f (t, x(t)) ∀t ∈ [t0, t1]

I If f is continuous in t and x the solution x(t) is continuously
differentiable.

I Assume f is continuous in x but only piecewise continuous in t x(t) is
only piecewise continuously differentiable.

I This allows time-varying input with step changes in time.
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Existence

I A differential equation might have many solutions, e.g.

ẋ = x1/3, x(0) = 0 (3)

I x(t) = (2t/3)3/2 and x(t) = 0  the solution is not unique.

I However, f is continuous  continuity is not sufficient to ensure
uniqueness.

I Continuity of f guarantees at least one solution.
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Existence and Uniqueness

I Theorem 3.1 (Lipschitz condition: Local Existence and Uniqueness)
Let f (t, x) be piecewise continuous in t and satisfy the Lipschitz
condition:

‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖ ∀x , y ∈ B = {x ∈ Rn|‖x − x0‖ ≤ r},
∀t ∈ [t0, t1]

Then, there exists δ > 0 such that the state equation ẋ = f (t, x) with
x(t0) = x0 has a unique solution over [t0, t0 + δ].

I The function f satisfying Lipschitz condition is called Lipschitz in x
I The constant L is called the Lipschitz constant.
I A function can be locally or globally Lipschitz.
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Existence and Uniqueness

I A function f (x) is said to be locally Lipchitz on a domain D ⊂ Rn

(open and connected set) if each point of D has a neighborhood D0 such
that f (x) satisfies the Lipschitz condition for all points on D0 with some
Lipschitz constant L0.

I A function f (x) is set to be Lipchitz on a set W if it satisfies Lipschitz
condition for all points with the same Lipschitz constant.

I ∴ A locally Lipschitz function on D is not necessarily Lipschitz on D since
the Lipschitz condition may not hold uniformly (with the same Lipschitz
constant) for all points in D.

I A function f (x) is said to be globally Lipchitz if it is Lipschitz on Rn.
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Existence and Uniqueness
I The same terminology holds for f (t, x) if the Lipchitz condition is hold

uniformly in t for all t in a certain interval.

I A function f (t, x) is said to be locally Lipchitz on [a, b]× D ⊂ R × Rn if
each point of x ∈ D has a neighborhood D0 such that f (t, x) satisfies the
Lipschitz condition for same Lipschitz constant L0 on [a, b]× D0.

I If f is scalar, f : R −→ R, the Lipschitz condition can be expressed as:

|f (y)− f (x)|
|y − x |

≤ L

I The line connecting every two points of f , cannot have a slope > L.

I ∴ If a function has infinite slope at some points, the function cannot be
locally Lipschitz at those points.

I Discontinuous functions cannot be locally Lipschitz at the points of
discontinuity.

I For example, f (x) = x1/3 is not locally Lip. at x = 0 since
f ′(x) = (1/3)x−2/3 −→∞ as x −→ 0.
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Existence and Uniqueness

I Example: f (x) = x1/3 is not locally Lip. at x = 0 since
f ′(x) = (1/3)x−2/3 −→∞ as x −→ 0.

I If f ′(x) in some region is bounded by k , then f is lip on that region with
Lip. constant L = k.

I This fact is also true for vector valued functions

I Lemma 3.1: Let f : [a, b]× D −→ Rm be continuous for some domain
D ∈ Rn. If for a convex subset W ⊂ D there is a constant L ≥ 0 s.t.

‖∂f

∂x
(t, x)‖ ≤ L on [a, b]×W ,

then ‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖ for all t ∈ [a, b], x ∈W , and y ∈W .

Farzaneh Abdollahi Nonlinear Control Lecture 3 14/45



Outline Preliminary Definitions Existence and Uniqueness Continuous Dependence Sensitivity Analysis Comparison Principle

Existence and Uniqueness

I Proof:

I Let ‖.‖p be any norm p ∈ [1,∞] and determine q s.t. 1
p + 1

q = 1. Fix t
on [a, b] and assume x ∈W , y ∈W .

I Define γ(s) = (1− s)x + sy , s ∈ R, γ(s) ∈ D,

I W ⊂ D is convex  γ(s) ∈W for 0 ≤ s ≤ 1.

I Take z ∈ Rm s.t.

‖z‖q = 1, zT [f (t, y)− f (t, x)] = ‖f (t, y)− f (t, x)‖p

I set g(s) = zT f (t, γ(s)). Since, g(s) is a continuously differentiable
real-valued function over the open interval which includes [0, 1], from
mean-value theorem , ∃s1 ∈ (0, 1) s.t.

g(1)− g(0) = g ′(s1)
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Existence and Uniqueness

I Evaluating g at s = 0 and s = 1:

zT [f (t, y)− f (t, x)] = zT ∂f

∂x
(t, γ(s1))(y − x)

I and using chain rule in calculating g ′(s) and Hölder inequality,
|zT w | ≤ ‖z‖q‖w‖p:

‖f (t, y)− f (t, x)‖p ≤ ‖z‖q
∥∥∥∥∂f

∂x
(t, γ(s1))

∥∥∥∥
p

‖y − x‖p ≤ L ‖y − x‖p
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Existence and Uniqueness
I If f is Lip. on W , ⇒ it is uniformly continuous on W , (prove it)

but the converse is not true

I The function f (x) = x1/3 is continuous on R, but it’s not locally lip on
x = 0.

I Lip. condition is weaker than continuous differentiability condition :
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Existence and Uniqueness

I Lemma 3.2 If f (t, x) and [∂f
∂x ](t, x) are continuous on [a, b]× D for

some domain D ⊂ Rn, then f is locally Lip. in x on [a, b]× D.
I Proof:

I For x0 ∈ D, let r be so small that the ball D0 = {x ∈ Rn|‖x − x0‖ ≤ r} is
contained in D

I The set D0 is convex and compact
I By continuity, ∂f

∂x is bounded on [a, b]× D0.
I Let L0 is a bound for ∂f

∂x on [a, b]× D0

I By Lemma 3.1, f (t, x) is Lip. on [a, b]× D0 with Lip. constant L0.

I Lemma 3.3: If f (t, x) and [∂f
∂x ](t, x) are continuous on [a, b]× Rn, then

f is globally Lip. in x on [a, b]× Rn iff [∂f
∂x ] is uniformly bounded on

[a, b]× Rn.
I x(t) is uniformly bounded if ∃c > 0, independent of t0 > 0, and for every

a ∈ (0, c), there is β = β(a) > 0, independent of t0, s.t.

‖x(t0)‖ ≤ a⇒‖x(t)‖ ≤ β,∀t ≥ t0
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Example 1

f (x) =

[
−x1 + x1x2

x2 − x1x2

]
I f is continuously differentiable on R2 =⇒ f is locally Lip. on R2.

I f is not globally Lip. since ∂f
∂x is not uniformly bounded on R2.

I However, it is Lip. on any compact set on R2.
I Find the Lip. constant on set W = {x ∈ R2||x1| ≤ a1, |x2| ≤ a2}.

I fist find jacobian matrix ∂f
∂x =

[
−1 + x2 x1

−x2 1− x1

]
I Use ∞ norm for vectors and induced norm for matrices:

‖∂f

∂x
‖∞ = max{| − 1 + x2|+ |x1|, |x2|+ |1− x1|}

| − 1 + x2|+ |x1| ≤ 1 + a2 + a1, |x2|+ |1− x1| ≤ a2 + 1 + a1

‖∂f

∂x
‖∞ ≤ 1 + a1 + a2 L0 = 1 + a1 + a2
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Example 2

f (x) =

[
x2

−sat(x1 + x2)

]
I f is not continuously differentiable on R2.

I Lip. condition is evaluated by definition.

I Use ‖.‖2 and also note that

|sat(η)− sat(ζ)| ≤ |η − ζ|
∴ ‖f (x)− f (y)‖2 ≤ (x2 − y2)2 + (x1 + x2 − y1 − y2)2

= (x1 − y1)2 + 2(x1 − y1)((x2 − y2) + 2(x2 − y2)2

I We have

a2 + 2ab + 2b2 =

[
a
b

]T [
1 1
1 2

] [
a
b

]
≤ λmax

{[
1 1
1 2

]}∥∥∥∥[ a
b

]∥∥∥∥2

2

I ∴‖f (x)− f (y)‖2 ≤
√

2.618‖x − y‖2, ∀x , y ∈ R2
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I If we use the more conservative inequality

a2 + 2ab + 2b2 ≤ 2a2 + 3b2 ≤ 3(a2 + b2)

I The Lip constant
√

3 is obtained.
I Therefore

I Type of norm does not affect the Lip. property, but it does affect the Lip.
constant

I If the Lip. condition is satisfied for some L0, it is also hold for all L > L0.
I Lip. constant is not unique
I Theorem 3.1 is a local theorem
I It guarantees the existence and uniqueness for the interval [t0, t0 + δ].
I Existence and uniqueness for the interval [t0, t1] is not clear.

I One way is to repeatedly apply the local theorem 3.1 and extend the
existence interval

I Start with t0, x0, the existence and uniqueness is guaranteed for [t0, t0 + δ].
I Take new initial condition as t0 + δ and x(t0 + δ) and extend the interval

to [t0 + δ, t0 + δ + δ2].
I Repeat the procedure
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I In general, the procedure cannot go indefinitely
I ∴ there is a maximum interval [t0,T ] that the unique solution that starts

from (t0, x0) exists.
I T might be smaller than t1, in this case when t −→ T , the solution leaves

the set on which f is locally Lip.

I Example 3.3

ẋ = −x2, x(0) = −1 (4)

I f is locally Lip. for all x ∈ R.

I It is locally Lip. on all compact subset of R

x(t) =
1

t − 1
Unique solution on [0, 1]

I As t −→ 1 x(t) leaves the set.

I Finite escape time indicates that the trajectories go to infinity in finite
time.

I ∴ The trajectory has finite escape time at t = 1Farzaneh Abdollahi Nonlinear Control Lecture 3 22/45
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When the solution interval can be extended indefinitely?

I On way is to guarantee that the solution x(t) always remain in the set on
which is uniformly Lip.

I This is achieved if function f is globally Lip.

I Theorem 3.2 (Global Existence and Uniqueness) Suppose that
f (t, x) is piecewise continuous in t and satisfies

‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖ ∀x , y ∈ Rn, ∀t ∈ [t0, t1]

Then, ẋ = f (t, x), x(t0) = x0 has a unique solution on [t0, t1].

I Example 3.4: ẋ = A(t)x + g(t) = f (t, x)

I where A(t) and g(t) are piecewise continuous functions in t.

I Over any finite interval, elements of A(t) and g(t) are bounded

‖A(t)‖ ≤ a using any induced norm
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I Example 3.4. Contd.
I All conditions of Theorem 3.2 is satisfied since ∀x , y ∈ Rn and t ∈ [t0, t1]:

‖f (t, x)− f (t, y)‖ = ‖A(t)(x − y)‖ ≤ ‖A(t)‖‖x − y‖ ≤ a‖x − y‖
I Linear System has a unique solution over [t0, t1].
I t1 can be arbitrarily large  if A(t) and g(t) are piecewise continuous

functions, system has a unique solution for t ≥ t0 and cannot have ”finite
escape time”.

I The global Lip. condition is reasonable for linear systems.

I In general, it is rarely satisfied for nonlinear systems

I Local Lip. condition is essentially related to smoothness of f

I It is automatically satisfied if f it is continuously differentiable

I Except for hard nonlinearities which are idealization of nonlinear
phenomena, physical system models satisfy Lip. condition

I Continuous functions which are not locally Lip. are rare in practice.

I However, the global Lip. condition cannot be satisfied by many physical
systems.Farzaneh Abdollahi Nonlinear Control Lecture 3 24/45
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I Theorem 3.2 provides conservative condition on unique solution of
nonlinear systems

I Example 3.5: ẋ = −x3 = f (x)
I f (x) is not globally Lip. since Jacobian ∂f

∂x is not bounded in R.
I However, for x(t0) = x0, the unique solution is given by

x(t) = sign(x0)

√
x2

0

1 + 2x2
0 (t − t0)

I By having some knowledge about the solution x(t), one can proved less
conservative condition for uniqueness using local Lip. condition on f
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Summery

I Solution exitance for ẋ = f (x , t) is achieved by continuity or at lease
piecewise continuity of function f in t.

I Lipshitz condition can provide sufficient condition for unique solution

I Theorem 3.1: Let f (t, x) be piecewise continuous in t and satisfy the
Lipschitz condition:

‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖ ∀x , y ∈ B = {x ∈ Rn|‖x − x0‖ ≤ r},
∀t ∈ [t0, t1]

Then, there exists δ > 0 such that the state equation ẋ = f (t, x) with
x(t0) = x0 has a unique solution over [t0, t0 + δ].
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Summery

I Locally Lipshitz
I The condition is satisfied on a subset D ⊂ Rn

I It guarantees unique solution over [t0, t0 + δ]
I A function f (x) is set to be Lipchitz on a set W if it satisfies Lipschitz

condition for all points with the same Lipschitz constant.
I To check the Lipshitz conation a convex subset W ⊂ D, it is sufficient to

satisfy: ‖ ∂f
∂x (t, x)‖ ≤ L on [a, b]×W .

I To find Lip. constant, L, type of norm does not affect the Lip. property,
but it does affect the Lip. constant.

I Lip. constant is not unique.
I Continuously differentiability of f (t, x) on [a, b]× D guarantees f to be

locally Lip.
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Summery

I Globally Lipshitz
I The condition is satisfied on Rn

I It guarantees unique solution over [t0, t1], (no matter how large t1 is)
I Continuously differentiability of f (t, x)+ uniformly boundedness of ∂f

∂x on
[a, b]× Rn guarantees f to be globally Lip.

I uniformly boundedness of ∂f
∂x is a killer condition and difficult to be

satisfied for nonlinear systems in practice.
I By having some knowledge about the solution x(t), we are looking for less

conservative condition for uniqueness.

Farzaneh Abdollahi Nonlinear Control Lecture 3 28/45



Outline Preliminary Definitions Existence and Uniqueness Continuous Dependence Sensitivity Analysis Comparison Principle

I Theorem 3.3: Let f (t, x) is piecewise continuous in t and is locally Lip.
in x for all t ≥ t0 and all x ∈ D ⊂ Rn. Let W be a compact subset of D,
x0 ∈W and every solution of ẋ = f (t, x), x(t0) = x0 lies entirely in W .
Then, there is a unique solution that is defined for all t ≥ t0.

I Proof:
I The proof is based on the fact that if the solution remains in the set W , it

cannot have ”finite escape time”.
I By Theorem 3.1, the unique solution exist in the interval [t0, t0 + δ]. From

the previous discussion we know that if T is finite, the solution must leave
D, however, since the solution never leaves W , we conclude that T =∞.

I The problem in applying this theorem is to show that the solution never
leaves the set W .

I We desire to check the assumption that every solution lies in a compact
set without actually solving the differential equation.

I Lyapunov’s stability theorem is an important tool for this purpose.
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Example 3.6:

ẋ = −x3 = f (x)

I f (x) is locally Lip. on R

I

{
x(t) > 0 =⇒ ẋ < 0
x(t) < 0 =⇒ ẋ > 0

I Let x(0) = a, and compact set W = {x ∈ R||x | ≤ a}
I It is clear that the no solution can leave the set W .

I There is a unique solution for t ≥ 0.
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Continuous Dependence on Initial Condition and Parameters

I Consider mathematical model ẋ = f (t, x)

I We always interested to find solutions with continuous dependence on
t0, x0, f

I Continuous dependence on t0 is obvious from

x(t) = x0 +

∫ t

t0

f (s, x(s)) ds.

I Let x(t) be the solution starting at x(t0) = x0 and is defined over [t0, t1].

I The solution depends continuously on x0, if the solution starting nearby is
defined over the same interval and remain nearby.

Given ε > 0 ∃δ > 0 s.t. ∀z0 ∈ S = {x ∈ Rn|‖x − x0‖ < δ}

the equation ẋ = f (t, x) has a unique solution z(t), defined over [t0, t1],
z(t0) = z0, and ‖z(t)− x(t)‖ < ε ∀t ∈ [t0, t1]

Farzaneh Abdollahi Nonlinear Control Lecture 3 31/45



Outline Preliminary Definitions Existence and Uniqueness Continuous Dependence Sensitivity Analysis Comparison Principle

Continuous Dependence on Parameters

I Let us consider changing parameters by perturbation on f

I f is continuously dependent on a set of parameters λ ∈ Rp, i.e.
f = f (t, x , λ).

I These parameters could represent physical parameters of system.

I Perturbation of these parameters accounts for modeling errors or changes
in the parameters.

I Let x(t, λ0) be a solution of ẋ = f (t, x , λ0) defined over [t0, t1] with
x(t0, λ0) = x0.

I Continuous dependence on λ if:

Given ε > 0 ∃δ > 0 s.t. ∀λ ∈ Λ = {λ ∈ Rp|‖λ− λ0‖ < δ}

the equation ẋ = f (t, x , λ) has a unique solution x(t, λ), defined over
[t0, t1], x(t0, λ) = x0, and ‖x(t, λ)− x(t, λ0)‖ < ε ∀t ∈ [t0, t1]

Farzaneh Abdollahi Nonlinear Control Lecture 3 32/45



Outline Preliminary Definitions Existence and Uniqueness Continuous Dependence Sensitivity Analysis Comparison Principle

Continuous Dependence on Initial Conditions and Parameters

I Continuous dependence on initial conditions and parameters can be
studied simultaneously.

I Theorem 3.5: Let f (t, x , λ) be continuous in t, x , λ and locally Lip. in x
(uniformly in t and λ) on [t0, t1]× D × {‖λ− λ0‖ ≤ c}, where D ⊂ Rn.
Let x(t, λ0) be a solution of ẋ = f (t, x), x(t0, λ0) = x0 ∈ D (nominal
solution). Suppose x(t, λ0) is defined and belongs to D ∀t ∈ [t0, t1].
Then,

Given ε > 0 ∃δ > 0 s.t. if‖z0 − x0‖ < δ and ‖λ− λ0‖ < δ

then there is a unique solution z(t, λ) of ẋ = f (t, x , λ) defined on [t0, t1]
(solution for perturbed system), with z(t0, λ) = z0 and z(t, λ) satisfies

‖z(t, λ)− x(t, λ0)‖ < ε, ∀ t ∈ [t0, t1]
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Sensitivity Analysis

I Suppose f (t, x , λ) is continuous in (t, x , λ) and has continuous first
partial derivatives w.r.t. x and λ ∀ (t, x , λ) ∈ [t0, t1]× Rn × Rp. Let λ0

be a nominal value of λ and x(t, λ0) be the unique solution of the
nominal state equation over [t0, t1]:

ẋ = f (t, x , λ0) with x(t0) = x0

I From previous theorem, we see that for λ sufficiently close to λ0, the sate
equation ẋ = f (t, x , λ) with x(t0) = x0

has a unique solution x(t, λ) over [t0, t1] that is close to the nominal
solution x(t, λ0).

I Continuous differentiability of f w.r.t. x and λ implies differentiability of
the solution x(t, λ) w.r.t λ near λ0.

x(t, λ) = x0 +

∫ t

t0

f (s, x(s, λ)) ds
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Sensitivity Analysis

I Taking partial derivative w.r.t. λ:

xλ(t, λ) =

∫ t

t0

[
∂f

∂x
(s, x(s, λ), λ)xλ(s, λ) +

∂f

∂λ
(s, x(s, λ), λ)

]
ds

where xλ(t, λ) = ∂x(t,λ)
∂λ .

I Differentiating w.r.t. t:
∂

∂t
xλ(t, λ) = A(t, λ)xλ(t, λ) + B(t, λ), xλ(t0, λ) = 0

where A(t, λ) = ∂f (t,x ,λ)
∂x

∣∣∣
x=x(t,λ)

, B(t, λ) = ∂f (t,x ,λ)
∂λ

∣∣∣
x=x(t,λ)

I For λ close to λ0, A(t, λ) and B(t, λ) are defined on [t0, t1]. Hence,
xλ(t, λ) is defined on the same interval.

I At λ = λ0, the r.h.s. of the above equation depends only on the nominal
solution x(t, λ0).
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Sensitivity Equation:
I Let S(t) = xλ(t, λ0). Then, S(t) satisfies:

Ṡ(t) = A(t, λ)S(t) + B(t, λ0), S(t0) = 0 (5)

I The function S(t) is called the sensitivity function
I Equ. (5) is called sensitivity equation

I It provides first order estimate of the effect of parameter variations
I It can also be used to approximate the solution when λ is close to λ0.

I For small ‖λ− λ0‖, x(t, λ), is expanded to a Taylor series

x(t, λ) = x(t, λ0) + S(t)(λ− λ0) + high-order terms (6)

I Neglect the higher order terms
I Significance of (6): Knowing nominal solution and sensitivity function

suffices for approximating the solution for all λ in a small ball centered at
λ0.
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Procedure of calculating the sensitivity function S(t)

1. Solve the nominal state equation for the nominal solution x(t, λ)

2. Evaluate the Jacobian matrices

A(t, λ0) =
∂f (t, x , λ)

∂x
|x=x(t,λ0),λ=λ0

B(t, λ0) =
∂f (t, x , λ)

∂λ
|x=x(t,λ0),λ=λ0

(7)

3. Solve the sensitivity equation (5)

I Except for some trivial cases, these equations should be solved numerically
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Alternative approach to calculate S(t)

I Solve the nominal solution and the sensitivity function simultaneously:
I appending the variational equation (5) with original state equation
I set λ = λ0 to obtain (n + np) augmented equation

ẋ = f (t, x , λ0), x(t0) = x0

Ṡ =

[
∂f (t, x , λ)

∂x

]∣∣∣∣
λ=λ0

S +

[
∂f (t, x , λ)

∂λ

]∣∣∣∣
λ=λ0

, S(t0) = 0 (8)

which is solved numerically.

I if f (t, x , λ) = f (x , λ) (8) is autonomous as well
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Example

I Consider ẋ1 = x2 = f1(x1, x2)

ẋ2 = −c sin x1 − (a + b cos x1)x2 = f2(x1, x2)

I nominal values a0 = 1, b0 = 0, c0 = 1.

I nominal system
ẋ1 = x2

ẋ2 = − sin x1 − x2

I Jacobian matrices:

∂f

∂x
=

[
0 1

−c cos x1 + bx2sinx1 −(a + b cos x1)

]
∂f

∂λ
= [

∂f

∂a

∂f

∂b

∂f

∂c
] =

[
0 0 0
−x2 −x2 cos x1 −sinx1

]
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Example

I Substitute the nominal values in Jacobian matrices and let

S =

[
x3 x5 x7

x4 x6 x8

]
=

[
∂x1
∂a

∂x1
∂b

∂x1
∂c

∂x2
∂a

∂x2
∂b

∂x2
∂c

]
|nominal

I Then (8) is given by

ẋ1 = x2, x1(0) = 1
ẋ2 = − sin x1 − x2, x2(0) = 1
ẋ3 = x4, x3(0) = 0
ẋ4 = −x3 cos x1 − x4 − x2, x4(0) = 0
ẋ5 = x6, x5(0) = 0
ẋ6 = −x5 cos x1 − x6 − x2 cos x1, x6(0) = 0
ẋ7 = x8, x7(0) = 0
ẋ8 = −x7 cos x1 − x8 − sin x1, x8(0) = 0
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Example

Sensitivity function

I x3, x5, x7 are sensitivity of x1 with respect to a, b, c.

I x4, x6, x8 are sensitivity of x2 with respect to a, b, c.

I The solution is more sensitive to variations in c than a and b.

I This pattern is consistent for other initial states.
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Comparison Principle

I Most often, it is interested to know the upper bound of x(t) in state
equation ẋ = f (t, x) without computing the solution itself.

I The Gronwall-Bellman inequality can provide an upper bound for x(t):

I Gronwall-Bellman inequality Lemma:Let λ : [a, b]→ R be continuous
and µ : [a, b]→ R be continuous and nonnegative. If a continuous
function y : [a, b]→ R satisfies

y(t) ≤ λ(t) +

∫ t

a
µ(s)y(s)ds for a ≤ t ≤ b

then for t on the same interval

y(t) ≤ λ(t) +

∫ t

a
λ(s)µ(s) exp[

∫ t

a
µ(τ)dτ ]ds

In particular if λ(t) ≡ λ is a constant, then y(t) ≤ λ exp[
∫ t
a µ(τ)dτ ]

If, in addition, µ(t) ≡ µ ≥ 0 is a constant, theny(t) ≤ λ exp[µ(t − a)]
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Comparison Principle

I Comparison lemma is another tool for finding upper bound on solution

I The comparison lemma compares the solution of the
differential inequality v̇(t) ≤ f (t, v(t)) with the solution of the
differential equation u̇ = f (t, u(t)).

I v(t) is a scalar differentiable function named a solution of the differential
inequality.

I This lemma is also applicable when v(t) is not differentiable, but has an

upper right-hand derivative D+v(t) = lim suph→0+
v(h+t)−v(t)

h .
I if v(t) is differentiable at t D+v(t) = v̇(t)
I If 1

h [v(h + t)− v(t)] ≥ g(t, h) ∀h ∈ (0, b] and limh→0+ g(t, h) = g0(t) the
D+v(t) ≥ g0(t)
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Comparison Lemma

I Consider the scalar differential equation

u̇ = f (t, u) u(t0) = u0

where f (t, u) is continuous in t and locally Lipschitz in u, for all t ≥ 0
and all u ∈ J ⊂ R. Let [to,T ) (T could be ∞) be the maximal interval
of existence of the solution u(t). Let v(t) be a continuous function whose
upper right-hand derivative D+v(t) satisfies the differential inequality

D+v(t) ≤ f (t, v) v(t0) ≤ u0

with v(t) ∈ J for all t ∈ [t0,T ). Then, v(t) ≤ u(t) for all t ∈ [t0,T ).

I prove it
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Example

ẋ = f (x) = −(1 + x2)x , x(0) = a

I f (x) is locally Lipshitz  x has unique solution in [0, t1)

I let v(t) = x2 , v(t) is differentiable

v̇(t) = 2x(t)ẋ(t) = −2x2(t)− 2x4(t) ≤ −2x2(t)

∴v̇(t) ≤ −2v(t) v(0) = a2

I Now define u(t) as

u̇(t) = −2u(t) u(0) = a2→u(t) = a2e−2t

I Therefore, using comparison lemma yields

x(t) =
√

(v(t) ≤ e−t |a|
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