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Outline P ary Definitions E nuous Dependen
9000C P

» The norm ||x|| of a vector x is a real-valued function s.t.
1. x| >0V¥VxeR", |x]|=0iffx=0
2 x4yl < lIxl +llyll, ¥x,y € R
3. |lax|| = |al||x]] Va€ R, Vx € R"

» The class p — norm, p € [1,00) are defined by

Ix[lp = (x1]P + oo 4 [xa]P) /P
> [Ixllo = max x|

> The three most common norms are: '
[xll1, [[x/loo, and the Euclidean norm ||x||2 = (x"x) /

> All p-norms are equivalent in the sense that dc; & o s.t.:
allxlla < lxlls < e2llxlla VX € R"

e [Ixlla < [Ixll < V/nlix]l2
[IXlloo < IIxll2 < V/Allx[loo
[IxXlloo < [Ix[[1 < nllx[loo
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Outline P ary Definitions E nuous Dependen

n matrix ne mapping y =
The induced p — norm of A is defined by:

A
1Al = sup 121
20 [IXle xp<t Ix|I=1

» for p=1,2, 00, we have
[AllL = max; 3777 |ay]
1Al = Tmax(A) = Amax(ATA)] /2
[Alloc = max; 3574 [aj
» we have
Il\AHz < VALl Allo
Al < All2 < Vml|Alloo
=A< [|A]l2 < v/nl|Allx
IAB|lp < [|AllplIBllp
» Holder inequality:
Ty < Ixloliylle: 2+1=1, xyeRr
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Outline Definitions nuous Dependenc

Set

v

A set S is closed iff every convergent sequence x4 with
elements in S converges to a point in S.

A set S is bounded if there is r > 0 s.t. ||x|| < r for all x € S.

v

v

A set S is compact if it is closed and bounded.

v

A set S is convex: if for every x,y € S and every real number
0, 0 <0 <1, the point Ox + (1 — )y € S.
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Outline inary Definitions inuous Dependenc

Continuous Function

> A function f mapping a set S; into a set Sy is denoted by f : 51 — S».
» f is continuous at x if, given € > 0, there is § > 0 s.t
[x =yl <& =[If(x) = fly)ll <e (1)
» A function f is continuous on a set S if it is continuous at every point of
S
» A function f is uniformly continuous on S if given € > 0 there is § > 0
(dependent only on ¢€) s.t. (1) holds for all x,y € S.
» For uniform continuity, the same constant § works for all points in the set.
» f is uniformly continuous on a set S=- it is continuous on S. the

opposite is not true in general.

» If S is a compact set, then continuity = uniform continuity.
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Outline inary Definitions ke q tinuous Dependenc

Continuous Differentiable Function

» A function f : R — R is differentiable at x if

f(x) _ ili_rf‘o f(x+ h/)7— f(x)

» A function f : R” — R™ is continuously differentiable at a point xg
if g)f_ exist and are continuous at xp for 1 < i< m, 1 <j < n.
J

> A function f is continuously differentiable on a set S
if it is continuously differentiable at every point of S.
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Mean Value

» If x and y are two distinct points in R", then the line segment L(x, y)
joining x and y is given by:

Lix,y)={z=60x+(1—-0)y, 0<6<1}

» Mean Value Theorem: Assume f : R" — R is continuously differentiable
at each point x on an open set S C R". Let x and y be two points of S
s.t. the line segment L(x,y) C S. Then, there exists a point z of L(x,y)
s.t.:

fly)—f(x)= | (r—x)

X=Z

» Proof in: T. M. Apostol. Mathematical Analysis. Addison-Wesley, Reading,
MA, 1957.
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Outline Definitions i ntinuous Depend

Existence

» This section provides sufficient condition for uniqueness and existence
solution of the initial value problem

x = f(t,x), x(to) =xo (2)

» Existence of solution is provided by continuity:
» A solution of (2) over an interval [tp, t1]:
x: [to, 1] — R" s.t. x(t) is defined, x(t) = f(t,x(t)) Vt € [to, t1]

» If f is continuous in t and x~~ the solution x(t) is continuously

differentiable.
» Assume f is continuous in x but only piecewise continuous in t~x(t) is
only piecewise continuously differentiable.

» This allows time-varying input with step changes in time.
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Outline elimin ) i Existence and Uniqueness Continuous Depend

Existence

» A differential equation might have many solutions, e.g.
x=xY3, x(0)=0 (3)

> x(t) = (2t/3)3/? and x(t) = 0 ~~ the solution is not unique.
» However, f is continuous ~~ continuity is not sufficient to ensure
unigqueness.

» Continuity of f guarantees at least one solution.
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Outline ary Definitions

inuous Dependenc

Existence and Uniqueness

» Theorem 3.1 (Lipschitz condition: Local Existence and Uniqueness)

Let f(t,x) be piecewise continuous in t and satisfy the Lipschitz
condition:

[£(t,x) = f(t. )| < Llx =yl Vx,y € B={x € R"|[|x = x| < r},
vVt € [to,l'l]

Then, there exists 6 > 0 such that the state equation x = f(t,x) with
x(to) = xo has a unique solution over [ty, to + 0].

» The function f satisfying Lipschitz condition is called Lipschitz in x

» The constant L is called the Lipschitz constant.

» A function can be locally or globally Lipschitz.
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Outline Definitio i Continuous Dependenc

Existence and Uniqueness

» A function f(x) is said to be locally Lipchitz on a domain D C R"
(open and connected set) if each point of D has a neighborhood Dy such
that f(x) satisfies the Lipschitz condition for all points on Dy with some
Lipschitz constant Lg.

» A function f(x) is set to be Lipchitz on a set W if it satisfies Lipschitz
condition for all points with the same Lipschitz constant.

> . A locally Lipschitz function on D is not necessarily Lipschitz on D since
the Lipschitz condition may not hold uniformly (with the same Lipschitz
constant) for all points in D.

» A function f(x) is said to be globally Lipchitz if it is Lipschitz on R".
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Outline Definitio i Continuous Dependenc

Existence and Uniqueness

» The same terminology holds for f(t, x) if the Lipchitz condition is hold
uniformly in t for all t in a certain interval.

» A function f(t, x) is said to be locally Lipchitz on [a, b] x D C R x R" if
each point of x € D has a neighborhood Dy such that f(t, x) satisfies the
Lipschitz condition for same Lipschitz constant Ly on [a, b] x Dy.

» If f is scalar, f : R — R, the Lipschitz condition can be expressed as:

f(y) = f(¥)]

<1
ly — x|

» The line connecting every two points of f, cannot have a slope > L.

» . If a function has infinite slope at some points, the function cannot be
locally Lipschitz at those points.

» Discontinuous functions cannot be locally Lipschitz at the points of

discontinuity.
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Definitions Existence and Uniqueness
C000080000000000000000

Existence and Uniqueness

Continuous Dependence

» Example: f(x) = x'/3 is not locally Lip. at x = 0 since
f'(x) = (1/3)x %/3 — o0 as x — 0.

> If f/(x) in some region is bounded by k, then f is lip on that region with
Lip. constant L = k.

» This fact is also true for vector valued functions

» Lemma 3.1: Let f : [a,b] x D — R™ be continuous for some domain
D € R". If for a convex subset W C D there is a constant L > 0 s.t.

Hgi(f;X)H <L on [a, b] x W,

then ||f(t,x) —f(t,y)|| < L||x—yl| forallt €[a,b], xe W, andy € W.
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Outline P Definitions Existence and Uniqueness Continuous Dependenc
o O 0000008000000 000000000

Existence and Uniqueness

» Proof:

> Let ||.||, be any norm p € [1,00] and determine g s.t. %+ % =1. Fixt
on [a, b] and assume x € W, y € W.

» Definey(s)=(1—s)x+sy, se€R, ~(s)eD,

» W C D is convex ~» y(s) € W for 0 <s < 1.

> Take z € R™ s.t.

lzllg =1, 2T[f(t,y) = f(£.3)] = I(t,y) — F(£.x)ll,

> set g(s) = zT f(t,7(s)). Since, g(s) is a continuously differentiable
real-valued function over the open interval which includes [0, 1], from
mean-value theorem , 3s; € (0,1) s.t.

g(1) — g(0) = g'(s1)
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Outline ary Definitio i ontinuous Dependenc

Existence and Uniqueness

» Evaluating g at s=0and s = 1:

I ()~ ()] = 2T o (6 ()~ x)

» and using chain rule in calculating g’(s) and Hdlder inequality,

27 w| < [lz]lqllwll,:

1F(t,y) = (&, < lzlq gi(fﬁ(ﬂ))

ly = xll, < Llly = xIl,
P
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Outline Definitions

Existence and Uniqueness
» If fis Lip. on W, = it is uniformly continuous on W, (prove it)

but the converse is not true
» The function f(x) = x!/3 is continuous on R, but it's not locally lip on

x = 0.
» Lip. condition is weaker than continuous differentiability condition :

17/45
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Outline inary Definitions Existence and Uniqueness Continuous Dependen
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Existence and Uniqueness

» Lemma 3.2 /f f(t,x) and [%](t,x) are continuous on [a, b] x D for
some domain D C R", then f is locally Lip. in x on [a, b] x D.
» Proof:
» For xp € D, let r be so small that the ball Dy = {x € R"|||x — xo|| < r} is
contained in D
The set Dy is convex and compact
By continuity, % is bounded on [a, b] x Dy.
Let Lo is a bound for % on [a, b] x Dy
By Lemma 3.1, f(t,x) is Lip. on [a, b] x Dy with Lip. constant L.

» Lemma 3.3: /f f(t,x) and [% (t,x) are continuous on [a, b] x R", then
f is globally Lip. in x on [a, b] X R" iff[%] is uniformly bounded on
[a, b] x R".
» x(t) is uniformly bounded if 3¢ > 0, independent of t, > 0, and for every
a € (0,c), there is 8 = B(a) > 0, independent of t, s.t.

Ix(0)ll < a=Ix(8)l| < 8.Vt > to
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Example 1

>
>
>
>

f(X) — —X1 + X1X2
X2 — X1 X2

f is continuously differentiable on R?2 = f is locally Lip. on R?.

6f

f is not globally Lip. since 5 is not uniformly bounded on R?.

However, it is Lip. on any compact set on R?.
Find the Lip. constant on set W = {x € R?||x1| < a1, |x| < a2}

» fist find jacobian matrix gi _1—:)(2 1 Xlx }
—Xp — X1

» Use co norm for vectors and induced norm for matrices:

of
”@”‘X’ = max{| =1+ x|+ x| x|+ [1—-x|}
|—1+x|+ x| < l14a+a, x+l-x<at+l+a

12
Ox "™

IN

l4+a1+a~lo=14+a+a
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Example 2

_ X2
f(X) N |: —sat(x1 —|—X2) :|
» f is not continuously differentiable on R?.
» Lip. condition is evaluated by definition.

» Use ||.||2 and also note that
|sat(n) — sat(Q)] < [n—(]
<

) = FW)ll2 (2 —y2)? 4+ (a+x —y1 — y2)?
(x1 = y1)? + 20 — y1)((2 — y2) + 202 — y2)°

» We have

-
5 > | a 11 a 11 a
> (%) = F()ll2 < V2.618][x — yll2, Vx,y € R?
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Outline Definitior i Continuous Dependenc

» If we use the more conservative inequality

a% 4 2ab + 2b* < 2a2% + 3b% < 3(a® + b?)

» The Lip constant v/3 is obtained.
» Therefore

» Type of norm does not affect the Lip. property, but it does affect the Lip.
constant
If the Lip. condition is satisfied for some Ly, it is also hold for all L > Lg.
Lip. constant is not unique
Theorem 3.1 is a local theorem
It guarantees the existence and uniqueness for the interval [to, tg + 0]
Existence and uniqueness for the interval [to, t1] is not clear.

» One way is to repeatedly apply the local theorem 3.1 and extend the
existence interval

vV vy VY VvYy

» Start with ty, xp, the existence and uniqueness is guaranteed for [to, ty + d].
» Take new initial condition as to + d and x(to + ) and extend the interval
to [to + 0, to + d + d2].

> Reieat the irocedure
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Outline P inary Definitions Existence and Uniqueness Continuous Dependence

( OO000000 [ele] Ielelelele) - -
» In general, the procedure cannot go indefinitely

> . there is a maximum interval [tp, T] that the unique solution that starts
from (o, xp) exists.

» T might be smaller than t, in this case when t — T, the solution leaves
the set on which f is locally Lip.

v

Example 3.3

x=-x? x(0)= -1 (4)

v

f is locally Lip. for all x € R.

v

It is locally Lip. on all compact subset of R

1
x(t) = 1 Unique solution on [0, 1]

v

As t — 1 x(t) leaves the set.

v

Finite escape time indicates that the trajectories go to infinity in finite
time.

Farzaneh Abdollahi Nonlinear Control Lecture 3 22/45



Outline ary D itions Existence and Uniqueness Continuous Dependen
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When the solution interval can be extended indefinitely?

» On way is to guarantee that the solution x(t) always remain in the set on
which is uniformly Lip.

» This is achieved if function f is globally Lip.

» Theorem 3.2 (Global Existence and Uniqueness) Suppose that
f(t,x) is piecewise continuous in t and satisfies

1F(t,x) = F(t, V)l < Lix =yl ¥x,y € R, Vt € [to, t1]

Then, x = f(t,x),
Example 3.4: x = A(t)x + g(t) = f(t, x)
» where A(t) and g(t) are piecewise continuous functions in t.

x(tp) = xo has a unique solution on [ty, t1].

» Over any finite interval, elements of A(t) and g(t) are bounded

|A(t)|| < a using any induced norm
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Outline Definitio Continuous Dependenc:

» Example 3.4. Contd.
» All conditions of Theorem 3.2 is satisfied since Vx,y € R" and t € [to, t1]:

1£(t, x) = F(£. y)Il = [[A()(x = y)Il < A llx = yII < allx = vl
» Linear System has a unique solution over [ty, t1].
> t; can be arbitrarily large ~~ if A(t) and g(t) are piecewise continuous
functions, system has a unique solution for t > t; and cannot have "finite
escape time".

The global Lip. condition is reasonable for linear systems.
In general, it is rarely satisfied for nonlinear systems
Local Lip. condition is essentially related to smoothness of f

It is automatically satisfied if f it is continuously differentiable

vV v v v Y

Except for hard nonlinearities which are idealization of nonlinear
phenomena, physical system models satisfy Lip. condition

» Continuous functions which are not locally Lip. are rare in practice.

» However, the global Lip. condition cannot be satisfied by many physical
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» Theorem 3.2 provides conservative condition on unique solution of
nonlinear systems
» Example 3.5: x = —x3 = f(x)
» f(x) is not globally Lip. since Jacobian % is not bounded in R.
» However, for x(ty) = xg, the unique solution is given by

x(t) = sign(xo) T 2¢(t— 1)

» By having some knowledge about the solution x(t), one can proved less
conservative condition for uniqueness using local Lip. condition on f
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Outline ary Definitions i i Continuous Dependenc

Summery

» Solution exitance for x = f(x, t) is achieved by continuity or at lease
piecewise continuity of function f in t.

» Lipshitz condition can provide sufficient condition for unique solution

» Theorem 3.1: Let f(t,x) be piecewise continuous in t and satisfy the
Lipschitz condition:

[£(t,x) = f(t. )| < Llx =yl Vx,y € B={x € R"|[x = x| <r},
Vt € [to,l'l]

Then, there exists 6 > 0 such that the state equation x = f(t,x) with
x(to) = xo has a unique solution over [ty, to + 0].
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Outline Definitio Continuous Dependenc:

Summery

» Locally Lipshitz

» The condition is satisfied on a subset D C R"

> |t guarantees unique solution over [ty, ty + ]

» A function f(x) is set to be Lipchitz on a set W if it satisfies Lipschitz
condition for all points with the same Lipschitz constant.

» To check the Lipshitz conation a convex subset W C D, it is sufficient to
satisfy: ||%(t,x)|| <L on]lab]x W.

» To find Lip. constant, L, type of norm does not affect the Lip. property,
but it does affect the Lip. constant.

» Lip. constant is not unique.

» Continuously differentiability of f(t,x) on [a, b] x D guarantees f to be
locally Lip.
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Summery

» Globally Lipshitz

>

>

>

The condition is satisfied on R"

It guarantees unique solution over [to, t1], (no matter how large t; is)
Continuously differentiability of f(t,x)+ uniformly boundedness of 4% on
[a, b] x R™ guarantees f to be globally Lip.

uniformly boundedness of % is a killer condition and difficult to be
satisfied for nonlinear systems in practice.

By having some knowledge about the solution x(t), we are looking for less
conservative condition for uniqueness.
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» Theorem 3.3: Let f(t,x) is piecewise continuous in t and is locally Lip.
in x forall t > ty and all x € D C R". Let W be a compact subset of D,
xo € W and every solution of x = f(t,x), x(to) = xo lies entirely in W
Then, there is a unique solution that is defined for all t > ty.

» Proof:

» The proof is based on the fact that if the solution remains in the set W, it
cannot have "finite escape time”.

» By Theorem 3.1, the unique solution exist in the interval [to, to + J]. From
the previous discussion we know that if T is finite, the solution must leave
D, however, since the solution never leaves W, we conclude that T = cc.

» The problem in applying this theorem is to show that the solution never
leaves the set W.

» We desire to check the assumption that every solution lies in a compact
set without actually solving the differential equation.

» Lyapunov’s stability theorem is an important tool for this purpose.
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Example 3.6:

» f(x) is locally Lip. on R
{ x(t)>0 = %<0
x(t) <0 = x>0
» Let x(0) = a, and compact set W = {x € R||x| < a}
» It is clear that the no solution can leave the set W.
» There is a unique solution for t > 0.
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Continuous Dependence on Initial Condition and Parameters

» Consider mathematical model x = f(t, x)
» We always interested to find solutions with continuous dependence on
to, xo, f
» Continuous deptendence on ty is obvious from
x(t) = xo +/ f(s,x(s)) ds.
t
> Let x(t) be th; solution starting at x(tp) = xp and is defined over [to, t1].

» The solution depends continuously on X, if the solution starting nearby is
defined over the same interval and remain nearby.

Given € > 030 > 0s.t. Vzp € S = {x € R"[||x — xo]| < 0}

the equation x = f(t, x) has a unique solution z(t), defined over [to, t1],
z(tg) = 20, and ||z(t) — x(t)|| < € Vt € [to, t1]
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Continuous Dependence on Parameters

> Let us consider changing parameters by perturbation on f

» f is continuously dependent on a set of parameters A € RP, i.e.
f=1f(t,x,\).

» These parameters could represent physical parameters of system.

» Perturbation of these parameters accounts for modeling errors or changes
in the parameters.

> Let x(t, A\g) be a solution of X = f(t,x, \g) defined over [ty, t1] with
X(to, )\0) = X0-
» Continuous dependence on A if:

Given € > 030 > 0s.t. YA€ A= {\ € RP|||A — Xo| < 0}

the equation x = f(t,x, \) has a unique solution x(t, \), defined over
[to, t1], x(to, A) = xo, and ||x(t, A) — x(t, No)|| < € Vt € [to, t1]
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Continuous Dependence on Initial Conditions and Parameters

» Continuous dependence on initial conditions and parameters can be
studied simultaneously.

» Theorem 3.5: Let f(t,x, \) be continuous in t,x, A\ and locally Lip. in x
(uniformly in t and \) on [ty, t1] x D x {||A — Xo|| < ¢}, where D C R".
Let x(t, \o) be a solution of x = f(t,x), x(to, o) =x0 € D (nominal
solution). Suppose x(t, \o) is defined and belongs to D V't € [ty, ti].
Then,

Given e >0 36 > 0 s.t. if||zg — xo|| < 0 and ||A — Xol| < O

then there is a unique solution z(t, \) of x = f(t,x, \) defined on [ty, t1]
(solution for perturbed system), with z(ty, \) = zo and z(t, \) satisfies

12(t,A) = x(t, do)ll <&, Vte [to, 1]
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Outline Definitio ce and Uni 3 tinuous Dependenc ivity Analysis

Sensitivity Analysis

» Suppose f(t,x, ) is continuous in (t,x,A) and has continuous first
partial derivatives w.r.t. x and AV (t,x,\) € [to,t1] X R" x RP. Let Ao
be a nominal value of A and x(t, \g) be the unique solution of the
nominal state equation over [t, t1]:

x=f(t,x,\o) with x(t0) = xo

» From previous theorem, we see that for A sufficiently close to Ag, the sate
equation x=f(t,x,\)  with x(t) = xo

has a unique solution x(t, A) over [ty, t1] that is close to the nominal
solution x(t, Ao)-
» Continuous differentiability of f w.r.t. x and A implies differentiability of
the solution x(t, \) w.r.t A near Ao.
t
x(t,A) = xo +/ f(s,x(s,\)) ds

to
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Sensitivity Analysis

» Taking partial derivative w.r.t. A:

of of
(60 = [ Folax(a ) 0m(e )+ Gila (). )]
where x)(t, \) = %.

> Differentéating w.r.t. t:
ax)\(tv )‘) = A(t7 )‘)X)\(tv )‘) + B(ta >‘)7 X)\(tov )‘) =0

where A(t,\) = 2ExA) o’ B(t,\) = 2t o
x=x(t, x=x(t,

» For )\ close to A\g, A(t,\) and B(t, \) are defined on [ty, t1]. Hence,
xx(t, A) is defined on the same interval.

> At A = \g, the r.h.s. of the above equation depends only on the nominal
solution x(t, Ao).
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Outline

Sensitivity Equation:
> Let S(t) = x»(t, No). Then, S(t) satisfies:

S(t) = A(t, \)S(t) + B(t, Xo), S(to) =0 (5)

» The function 5(t) is called the sensitivity function
» Equ. (5) is called sensitivity equation
> |t provides first order estimate of the effect of parameter variations
» |t can also be used to approximate the solution when ) is close to ).

» For small ||A — Xo||, x(t, ), is expanded to a Taylor series
x(t,\) = x(t, o)+ S(t)(A— Xo) + high-order terms (6)

» Neglect the higher order terms

» Significance of (6): Knowing nominal solution and sensitivity function
suffices for approximating the solution for all A in a small ball centered at
Ao-
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Outline

Procedure of calculating the sensitivity function S(t)

1. Solve the nominal state equation for the nominal solution x(t, \)

2. Evaluate the Jacobian matrices

of(t,x, A

A(t,Ao) = (8)()|xx(t,>\0),)\)\o
of (t, x, A

B(t,)\o) = (a)\)|X:x(t,)\0),)\=)\o

(7)

3. Solve the sensitivity equation (5)

» Except for some trivial cases, these equations should be solved numerically
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Alternative approach to calculate S(t)

» Solve the nominal solution and the sensitivity function simultaneously:

> appending the variational equation (5) with original state equation
» set A = \g to obtain (n+ np) augmented equation

x = f(t,X, )\0), X(to) = Xo
- [Of(t,x,A) Of (t,x, A) _
s = M s TR, s @

which is solved numerically.

» if f(t,x,\) = f(x,A)~ (8) is autonomous as well

Farzaneh Abdollahi Nonlinear Control Lecture 3 38/45



Outline Prelin ) iti X d Uniquene: Continuous Depend

Example

» Consider .
x1 = xo=fi(x1,x2)

Xo = —csinxg — (a -+ bCOSXl)X2 = fg(Xl,Xz)

» nominal values ag =1, bg =0, ¢ = 1.

» nominal system

X1 = X2
).(2 = —SinX1—X2
» Jacobian matrices:
ar 0 1
ox —ccosxi + bxpsinxgy —(a+ bcosxy)
oF _ ofoFof [0 0 0
O\ '0a Ob Oc' | —xo —xpcosx; —sinxg
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Example

» Substitute the nominal values in Jacobian matrices and let

R .
X4 Xe Xs 2 2 o nominal

» Then (8) is given by

).(1 = X2, Xl(O) 1
X0 = —sinx; — Xxo, x(0) =1
X3 = X4, x3(0) = 0
X4 = —X3COSX] — X4 — X0, x(0) = 0
X5 = X6, X5(0) = 0
X6 = —X5C0Sx] —Xp —xpcosx1, x6(0) = 0
)'<7 = Xg, X7(0) =0
5(8 = —X7COS X1 — Xg — sin X1, Xg(O) 0
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Example

Sensitivity function

> x3, X5, X7 are sensitivity of x; with respect to a, b, c.
> x4, Xg, Xg are sensitivity of xo with respect to a, b, c.
» The solution is more sensitive to variations in ¢ than a and b.

» This pattern is consistent for other initial states,
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Comparison Principle

» Most often, it is interested to know the upper bound of x(t) in state
equation x = f(t, x) without computing the solution itself.

» The Gronwall-Bellman inequality can provide an upper bound for x(t):

» Gronwall-Bellman inequality Lemma:Let ) : [a, b| — R be continuous
and p : [a, b] — R be continuous and nonnegative. If a continuous
function y : [a, b] — R satisfies

t
A AD+ [ uoy(s)ds fora<t<b

a

then for t on the same interval

y(E) < A(t) + / s) exp] / )d]ds

In particular if A\(t) = X is a constant, then y(t) < )\exp[f; w(T)dT]
If, in addition, (t) = > 0 is a constant, theny(t) < Aexp[u(t — a)]
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Comparison Principle

» Comparison lemma is another tool for finding upper bound on solution

» The comparison lemma compares the solution of the
differential inequality v(t) < f(t, v(t)) with the solution of the

differential equation i = f(t, u(t)).
» v(t) is a scalar differentiable function named a solution of the differential
inequality.
» This lemma is also applicable when v(t) is not differentiable, but has an
upper right-hand derivative DT v(t) = limsupj,_,o+ M
> if \{(t) is differentiable at t~~D7"v(t) = v(t) . , i
> - — > =
Igﬁ‘[/\é?;—;z(t)v(t)] > g(t,h) Yhe (0,b] and limp_o+ g(t, h) = go(t) the

Farzaneh Abdollahi Nonlinear Control Lecture 3 43/45



Comparison Lemma

» Consider the scalar differential equation
u="f(t,u) u(ty) = uy

where f(t, u) is continuous in t and locally Lipschitz in u, for all t > 0
and allu e J CR. Let [to, T) (T could be o) be the maximal interval
of existence of the solution u(t). Let v(t) be a continuous function whose
upper right-hand derivative D" v(t) satisfies the differential inequality

Dtv(t) < f(t,v) v(to) < uo

with v(t) € J for all t € [to, T). Then, v(t) < u(t) for all t € [ty, T).

> prove it
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Example

x=f(x)=—-1+x*)x, x(0)=a
» f(x) is locally Lipshitz ~~ x has unique solution in [0, t;)
> let v(t) = x?, v(t) is differentiable
v(t) = 2x(t)x(t) = —2x3(t) — 2x*(t) < —2x3(t)
y —2v(t) v(0)=a’

<
—~

~
N—r
INA

» Now define u(t) as
i(t) = —2u(t) u(0)=a’—u(t)=a%e2
» Therefore, using comparison lemma vyields

x(t) = V/(v(t) < e 'al
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