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I The norm ‖x‖ of a vector x is a real-valued function s.t.

1. ‖x‖ ≥ 0 ∀x ∈ Rn, ‖x‖ = 0 iff x = 0
2. ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x , y ∈ Rn

3. ‖ax‖ = |a|‖x‖ ∀a ∈ R, ∀x ∈ Rn

I The class p − norm, p ∈ [1,∞) are defined by

‖x‖p = (|x1|p + ...+ |xn|p)1/p

I ‖x‖∞ = max
i
|xi |

I The three most common norms are:
‖x‖1, ‖x‖∞, and the Euclidean norm ‖x‖2 =

(
xT x

)1/2

I All p-norms are equivalent in the sense that ∃c1 & c2 s.t.:
c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α ∀x ∈ Rn

e.g.: ‖x‖2 ≤ ‖x‖1 ≤
√

n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞
‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞
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I An m × n matrix A defines a linear mapping y = Ax from Rn into Rm.
The induced p − norm of A is defined by:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

= sup
‖x‖≤1

‖Ax‖p = sup
‖x‖=1

‖Ax‖p

I for p = 1, 2,∞, we have
‖A‖1 = maxj

∑m
i=1 |aij |

‖A‖2 = σmax(A) =
[
λmax(AT A)

]1/2

‖A‖∞ = maxi
∑n

j=1 |aij |
I we have
‖A‖2 ≤

√
‖A‖1‖A‖∞

1
n‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞

1
m‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1

‖AB‖p ≤ ‖A‖p‖B‖p
I Hölder inequality:
|xT y | ≤ ‖x‖p‖y‖q, 1

p + 1
q = 1, x , y ∈ Rn
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Set

I A set S is closed iff every convergent sequence {xd} with
elements in S converges to a point in S .

I A set S is bounded if there is r > 0 s.t. ‖x‖ ≤ r for all x ∈ S .

I A set S is compact if it is closed and bounded.
I A set S is convex: if for every x , y ∈ S and every real number
θ, 0 < θ < 1, the point θx + (1− θ)y ∈ S .

I In Euclidean space, an object is convex if for every pair of
points within the object, every point on the straight line
segment that joins them is also within the object.
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Set

I A set S is closed iff every convergent sequence {xd} with
elements in S converges to a point in S .

I Convergence: A sequence {xd} ∈ S , a normed linear space,
converges to x , if ‖xd − x‖ → 0 as d →∞

I A set S is bounded if there is r > 0 s.t. ‖x‖ ≤ r for all x ∈ S .

I A set S is compact if it is closed and bounded.
I A set S is convex: if for every x , y ∈ S and every real number
θ, 0 < θ < 1, the point θx + (1− θ)y ∈ S .

I In Euclidean space, an object is convex if for every pair of
points within the object, every point on the straight line
segment that joins them is also within the object.
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Continuous Function

I A function f mapping a set S1 into a set S2 is denoted by f : S1 → S2.

I f is continuous at x if, given ε > 0, there is δ > 0 s.t

‖x − y‖ < δ ⇒ ‖f (x)− f (y)‖ < ε (1)

I A function f is continuous on set S if it is continuous at every point of S

I A function f is uniformly continuous on S if given ε > 0 there is δ > 0
(dependent only on ε,not the point in the domain) s.t. (1) holds for all
x , y ∈ S .

I For uniform continuity, the same constant δ works for all points in the set.

I f is uniformly continuous on a set S⇒ it is continuous on S . But the
opposite is not true in general.

I If S is a compact set, then continuity ≡ uniform continuity.
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Continuous Differentiable Function

I A function f : R → R is differentiable at x if

f́ (x) = lim
h→0

f (x + h)− f (x)

h

I A function f : Rn → Rm is continuously differentiable at a point x0

if ∂fi
∂xj

exist and are continuous at x0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

I A function f is continuously differentiable on a set S
if it is continuously differentiable at every point of S .
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Existence

I This section provides sufficient condition for uniqueness and existence
solution of the initial value problem

ẋ = f (t, x), x(t0) = x0 (2)

I Existence of solution is provided by continuity

I A solution of (2) over an interval [t0, t1]:
x : [t0, t1] −→ Rn s.t. ẋ(t) is defined, ẋ(t) = f (t, x(t)) ∀t ∈ [t0, t1]

I If f is continuous in t and x the solution x(t) is continuously
differentiable.

I Assume f is continuous in x but only piecewise continuous in t x(t) is
only piecewise continuously differentiable.

I This allows time-varying input with step changes in time.
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Existence

I A differential equation might have many solutions, e.g.

ẋ = x1/3, x(0) = 0 (3)

I x(t) = (2t/3)3/2 and x(t) = 0  the solution is not unique.

I ∴f is continuous  continuity is not sufficient to ensure uniqueness.

I Continuity of f guarantees at least one solution.
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Existence and Uniqueness

I Theorem 3.1 (Lipschitz condition: Local Existence and Uniqueness)
Let f (t, x) be piecewise continuous in t and satisfy the Lipschitz
condition:

‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖ ∀x , y ∈ B = {x ∈ Rn|‖x − x0‖ ≤ r},
∀t ∈ [t0, t1]

Then, there exists δ > 0 such that the state equation ẋ = f (t, x) with
x(t0) = x0 has a unique solution over [t0, t0 + δ].

I The function f satisfying Lipschitz condition is called Lipschitz in x
I The constant L is called the Lipschitz constant.
I A function can be locally or globally Lipschitz.
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Existence and Uniqueness

I A function f (x) is said to be locally Lipschitz on a domain D ⊂ Rn

(open and connected set) if each point of D has a neighborhood D0 such
that f (x) satisfies the Lipschitz condition for all points on D0 with some
Lipschitz constant L0.

I A function f (x) is Lipschitz on a set W if it satisfies Lipschitz condition
for all points with the same Lipschitz constant.

I ∴ A locally Lipschitz function on D is not necessarily Lipschitz on D since
the Lipschitz condition may not hold uniformly (with the same Lipschitz
constant) for all points in D.

I A function f (x) is said to be globally Lipschitz if it is Lipschitz on Rn.

I The same terminology holds for f (t, x) if the Lipschitz condition is hold
uniformly in t for all t in a certain interval.
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Existence and Uniqueness

I A function f (t, x) is said to be locally Lipschitz on [a, b]×D ⊂ R × Rn if
each point of x ∈ D has a neighborhood D0 such that f (t, x) satisfies the
Lipschitz condition for same Lipschitz constant L0 on [a, b]× D0.

I If it is true for ∀[a, b] ⊂ [t0,∞]=⇒ f is locally Lipschitz on [t0,∞]× D.

I If f is scalar, f : R −→ R, the Lipschitz condition can be expressed as:

|f (y)− f (x)|
|y − x |

≤ L

I The line connecting every two points of f , cannot have a slope > L.

I ∴ If a function has infinite slope at some points, the function cannot be
locally Lipschitz at those points.

I Discontinuous functions cannot be locally Lipschitz at the points of
discontinuity.
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Existence and Uniqueness

I Example: f (x) = x1/3 is not locally Lip. at x = 0 since
f ′(x) = (1/3)x−2/3 −→∞ as x −→ 0.

I If f ′(x) in some region is bounded by k , then f is lip on that region with
Lip. constant L = k .

I This fact is also true for vector valued functions

I Lemma 3.1: Let f : [a, b]× D −→ Rm be continuous for some domain
D ∈ Rn. If for a convex subset W ⊂ D there is a constant L ≥ 0 s.t.

‖∂f

∂x
(t, x)‖ ≤ L on [a, b]×W ,

then ‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖ for all t ∈ [a, b], x ∈W , and y ∈W .

I ∴ a Lipschitz constant can be calculated using ∂f /∂x
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Proof of Lemma 3.1

I Let ‖.‖p be any norm p ∈ [1,∞] and determine q s.t. 1
p + 1

q = 1. Fix t
on [a, b] and assume x ∈W , y ∈W .

I Define γ(s) = (1− s)x + sy , s ∈ R, γ(s) ∈ D,

I W ⊂ D is convex  γ(s) ∈W for 0 ≤ s ≤ 1.

I Take z ∈ Rm s.t.

‖z‖q = 1, zT [f (t, y)− f (t, x)] = ‖f (t, y)− f (t, x)‖p

I set g(s) = zT f (t, γ(s)). Since, g(s) is a continuously differentiable
real-valued function over the open interval which includes [0, 1], from
mean-value theorem , ∃s1 ∈ (0, 1) s.t.

g(1)− g(0) = g ′(s1)
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Proof of Lemma 3.1 Cont’d

I Evaluating g at s = 0 and s = 1:

zT [f (t, y)− f (t, x)] = zT ∂f

∂x
(t, γ(s1))(y − x)

I and using chain rule in calculating g ′(s) and Hölder inequality,
|zT w | ≤ ‖z‖q‖w‖p:

‖f (t, y)− f (t, x)‖p ≤ ‖z‖q
∥∥∥∥∂f

∂x
(t, γ(s1))

∥∥∥∥
p

‖y − x‖p ≤ L ‖y − x‖p
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Existence and Uniqueness

I If f is Lip. on W , ⇒ it is uniformly continuous on W , (prove it)
but the converse is not true

I The function f (x) = x1/3 is continuous on R, but it’s not locally lip on
x = 0.

I Lip. condition is weaker than continuous differentiability condition :
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Existence and Uniqueness

I Lemma 3.2 If f (t, x) and [∂f
∂x ](t, x) are continuous on [a, b]× D for

some domain D ⊂ Rn, then f is locally Lip. in x on [a, b]× D.
I Proof:

I For x0 ∈ D, let r be so small that the ball D0 = {x ∈ Rn|‖x − x0‖ ≤ r} is
contained in D

I The set D0 is convex and compact
I By continuity, ∂f

∂x is bounded on [a, b]× D0.
I Let L0 is a bound for ∂f

∂x on [a, b]× D0

I By Lemma 3.1, f (t, x) is Lip. on [a, b]× D0 with Lip. constant L0.

I Lemma 3.3: If f (t, x) and [∂f
∂x ](t, x) are continuous on [a, b]× Rn, then

f is globally Lip. in x on [a, b]× Rn iff [∂f
∂x ] is uniformly bounded on

[a, b]× Rn.
I x(t) is uniformly bounded if ∃c > 0, independent of t0 > 0, and for every

a ∈ (0, c), there is β = β(a) > 0, independent of t0, s.t.

‖x(t0)‖ ≤ a⇒‖x(t)‖ ≤ β,∀t ≥ t0
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Example 1

f (x) =

[
−x1 + x1x2

x2 − x1x2

]
I f is continuously differentiable on R2 =⇒ f is locally Lip. on R2.

I f is not globally Lip. since ∂f
∂x is not uniformly bounded on R2.

I However, it is Lip. on any compact set on R2.
I Find the Lip. constant on set W = {x ∈ R2||x1| ≤ a1, |x2| ≤ a2}.

I fist find jacobian matrix ∂f
∂x =

[
−1 + x2 x1

−x2 1− x1

]
I Use ∞ norm for vectors and induced norm for matrices:

‖∂f

∂x
‖∞ = max{| − 1 + x2|+ |x1|, |x2|+ |1− x1|}

| − 1 + x2|+ |x1| ≤ 1 + a2 + a1, |x2|+ |1− x1| ≤ a2 + 1 + a1

‖∂f

∂x
‖∞ ≤ 1 + a1 + a2 L0 = 1 + a1 + a2
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Example 2

f (x) =

[
x2

−sat(x1 + x2)

]
I f is not continuously differentiable on R2.

I Lip. condition is evaluated by definition.

I Use ‖.‖2 and also note that

|sat(η)− sat(ζ)| ≤ |η − ζ|
∴ ‖f (x)− f (y)‖2 ≤ (x2 − y2)2 + (x1 + x2 − y1 − y2)2

= (x1 − y1)2 + 2(x1 − y1)(x2 − y2) + 2(x2 − y2)2

I We have

a2 + 2ab + 2b2 =

[
a
b

]T [
1 1
1 2

] [
a
b

]
≤ λmax

{[
1 1
1 2

]}∥∥∥∥[ a
b

]∥∥∥∥2

2

I ∴‖f (x)− f (y)‖2 ≤
√

2.618‖x − y‖2, ∀x , y ∈ R2
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I If we use the more conservative inequality

a2 + 2ab + 2b2 ≤ 2a2 + 3b2 ≤ 3(a2 + b2)

I The Lip constant
√

3 is obtained.
I Therefore

I Type of norm does not affect the Lip. property, but it does affect the Lip.
constant

I If the Lip. condition is satisfied for some L0, it is also hold for all L > L0.
I Lip. constant is not unique
I Theorem 3.1 is a local theorem
I It guarantees the existence and uniqueness for the interval [t0, t0 + δ].
I Existence and uniqueness for the interval [t0, t1] is not clear.
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I In general, we cannot extend δ s.t. t + δ = t1

I ∴ there is a maximum interval [t0,T ] that the unique solution which starts
from (t0, x0) exists.

I T might be smaller than t1, in this case when t −→ T , the solution leaves
the set on which f is locally Lip.

I Example 3.3 ẋ = −x2, x(0) = −1

I f is locally Lip. for all x ∈ R.

I It is locally Lip. on all compact subset of R

x(t) =
1

t − 1
Unique solution on [0, 1]

I As t −→ 1 x(t) leaves the set.

I Finite escape time indicates that the trajectories go to infinity in finite
time.

I ∴ The trajectory has finite escape time at t = 1
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When the solution interval can be extended indefinitely?

I One way to keep the solution x(t) always in the set: f (t, x) be glob. Lip.

I Theorem 3.2 (Global Existence and Uniqueness) Suppose that
f (t, x) is piecewise continuous in t and satisfies

‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖ ∀x , y ∈ Rn, ∀t ∈ [t0, t1]

Then, ẋ = f (t, x), x(t0) = x0 has a unique solution on [t0, t1].
I Example 3.4: ẋ = A(t)x + g(t) = f (t, x)

I where A(t) and g(t) are piecewise continuous functions in t.
I Over any finite interval, elements of A(t) and g(t) are bounded

‖A(t)‖ ≤ a using any induced norm

I All conditions of Theorem 3.2 is satisfied since ∀x , y ∈ Rn and t ∈ [t0, t1]:

‖f (t, x)− f (t, y)‖ = ‖A(t)(x − y)‖ ≤ ‖A(t)‖‖x − y‖ ≤ a‖x − y‖
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I Example 3.4. Contd.
I Linear System has a unique solution over [t0, t1].
I t1 can be arbitrarily large  if A(t) and g(t) are piecewise continuous

functions, system has a unique solution for t ≥ t0 and cannot have ”finite
escape time”.

I The global Lip. condition is reasonable for linear systems.

I In general, it is rarely satisfied for nonlinear systems

I Local Lip. condition is essentially related to smoothness of f

I It is automatically satisfied if f is continuously differentiable

I Except for hard nonlinearities which are idealization of nonlinear
phenomena, physical system models satisfy Lip. condition

I Continuous functions which are not locally Lip. are rare in practice.

I However, the global Lip. condition cannot be satisfied by many physical
systems.
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I Theorem 3.2 provides conservative condition on unique solution of
nonlinear systems

I Example 3.5: ẋ = −x3 = f (x)
I f (x) is not globally Lip. since Jacobian ∂f

∂x is not bounded in R.
I However, for x(t0) = x0, the unique solution is given by

x(t) = sign(x0)

√
x2

0

1 + 2x2
0 (t − t0)

I By having some knowledge about the solution x(t), one can prove less
conservative condition for uniqueness using local Lip. condition on f
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I Theorem 3.3: Let f (t, x) is piecewise continuous in t and is locally Lip.
in x for all t ≥ t0 and all x ∈ D ⊂ Rn. Let W be a compact subset of D,
x0 ∈W and every solution of ẋ = f (t, x), x(t0) = x0 lies entirely in W .
Then, there is a unique solution that is defined for all t ≥ t0.

I Proof:
I The proof is based on the fact that if the solution remains in the set W , it

cannot have ”finite escape time”.
I By Theorem 3.1, the unique solution exist in the interval [t0, t0 + δ]. From

the previous discussion we know that if T is finite, the solution must leave
D, however, since the solution never leaves W , we conclude that T =∞.

I The problem in applying this theorem is to show that the solution never
leaves the set W .

I We desire to check the assumption that every solution lies in a compact
set without actually solving the differential equation.

I Lyapunov’s stability theorem is an important tool for this purpose.
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Example 3.6:

ẋ = −x3 = f (x)

I f (x) is locally Lip. on R

I

{
x(t) > 0 =⇒ ẋ < 0
x(t) < 0 =⇒ ẋ > 0

I Let x(0) = a, and compact set W = {x ∈ R||x | ≤ a}
I It is clear that no solution can leave the set W .

I There is a unique solution for t ≥ 0.
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Summery

I Solution exitance for ẋ = f (x , t) is achieved by continuity or at least
piecewise continuity of function f in t.

I Lipschitz condition can provide sufficient condition for unique solution

I Theorem 3.1: Let f (t, x) be piecewise continuous in t and satisfy the
Lipschitz condition:

‖f (t, x)− f (t, y)‖ ≤ L‖x − y‖ ∀x , y ∈ B = {x ∈ Rn|‖x − x0‖ ≤ r},
∀t ∈ [t0, t1]

Then, there exists δ > 0 such that the state equation ẋ = f (t, x) with
x(t0) = x0 has a unique solution over [t0, t0 + δ].
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Summery

I Locally Lipschitz
I The condition is satisfied on a subset D ⊂ Rn

I It guarantees unique solution over [t0, t0 + δ]
I A function f (x) is Lipschitz on a set W if it satisfies Lipschitz condition for

all points with the same Lipschitz constant.
I To check the Lipschitz conation a convex subset W ⊂ D, it is sufficient to

satisfy: ‖ ∂f
∂x (t, x)‖ ≤ L on [a, b]×W .

I To find Lip. constant, L, type of norm does not affect the Lip. property,
but it does affect the Lip. constant.

I Lip. constant is not unique.
I Continuously differentiability of f (t, x) on [a, b]× D guarantees f to be

locally Lip.
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Summery

I Globally Lipschitz
I The condition is satisfied on Rn

I It guarantees unique solution over [t0, t1], (no matter how large t1 is)
I Continuously differentiability of f (t, x)+ uniformly boundedness of ∂f

∂x on
[a, b]× Rn guarantees f to be globally Lip.

I uniformly boundedness of ∂f
∂x is a killer condition and difficult to be

satisfied for nonlinear systems in practice.
I By finding a compact subset W in which every solution of ẋ lies entirely,

locally Lip. also guarantees a unique solution for all t ≥ t0.
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