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Outline Neural Processing Learning

Neural Processing
I One of the most applications of NN is in mapping inputs to the

corresponding outputs o = f (wx)

I The process of finding o for a given x is named recall.

I Assume that a set of patterns can be stored in the network.
I Autoassociation: The network presented with a pattern similar to a

member of the stored set, it associates the input with the closest
stored pattern.

I A degraded input pattern serves as a cue for retrieval of its original

I Hetroassociation: The associations between pairs of patterns are
stored.
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I Classification: The set of input patterns is divided into a number of
classes. The classifier recall the information regarding class
membership of the input pattern. The outputs are usually binary.

I Classification can be considered as a special class of hetroassociation.

I Recognition: If the desired response is numbers but input pattern does
not fit any pattern.
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I Function Approximation: Having I/O of a system, their
corresponding function f is approximated.

I This application is useful for control

I In all mentioned aspects of neural processing, it is assumed the data is
already stored to be recalled

I Data are stored in a network in learning process
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Pattern Classification
I The goal of pattern classification is to assign a physical object, event, or

phenomenon to one of predefined classes.

I Pattern is quantified description of the physical object or event.

I Pattern can be based on time (sensors output signals, acoustic signals) or
place (pictures, fingertips):

I Example of classifiers: disease diagnosis, fingertip identification, radar and
signal detection, speech recognition

I Fig. shows the block diagram of pattern recognition and classification
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Pattern Classification

I Input of feature extractors are sets of data vectors belonging to a
certain category.

I Feature extractor compress the dimensionality as much as does not
ruin the probability of correct classification

I Any pattern is represented as a point in n-dimensional Euclidean space
En, called pattern space.

I The points in the space are n-tuple vectors X = [x1 ... xn]T .

I A pattern classifier maps sets of points in En space into one of the
numbers i0 = 1, ...,R based on decision function i0 = i0(x).

I The set containing patterns of classes 1,..., R are denoted by §i , ....§n

Farzaneh Abdollahi Computational Intelligence Lecture 3 7/41



Outline Neural Processing Learning

Pattern Classification
I The fig. depicts two simple method to generate the pattern vector

I Fig. a: xi of vector X = [x1 ... xn]T is 1 if ith cell contains a portion of
a spatial object, otherwise is 0

I Fig b: when the object is continuous function of time, the pattern
vector is obtained at discrete time instance ti , by letting xi = f (ti ) for
i = 1, ..., n
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I Example: for n = 2 and R = 4

I X = [20 10] ∈ §2, X = [4 6] ∈ §3
I The regions denoted by §i are

called decision regions.
I Regions are seperated by decision

surface
I The patterns on decision surface

does not belong to any class
I decision surface inE 2 is curve, for

general case, E n is
(n − 1)−dimentional
hepersurface.
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Discriminant Functions

I During the classification, the membership in a category should be
determined by classifier based on discriminant functions
g1(X ), ..., gR(X )

I Assume gi (X ) is scalar.

I The pattern belongs to the ith category iff gi (X ) > gj(X ) for
i , j = 1, ...,R, i 6= j .

I ∴ within the region §i , ith discriminant function have the largest value.

I Decision surface contain patterns X without membership in any
classes

I The decision surface is defined as:

gi (X )− gj(X ) = 0
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I Example:Consider six patterns, in two
dimensional pattern space to be classified
in two classes:
{[0 0]′, [−0.5 − 1]′, [−1 − 2]′}: class 1
{[2 0]′, [1.5 − 1]′, [1 − 2]′}: class 2

I Inspection of the patterns shows that the
g(X ) can be arbitrarily chosen

g(X ) = −2x1 + x2 + 2

g(X ) > 0 : class 1

g(X ) < 0 : class 2

g(X ) = 0 : on the surface
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I The classifier can be implemented as shown in Fig. below (TLU is
threshold logic Unit)

I Example 2: Consider a classification problem as shown in fig. below

I the discriminant surface can not be estimated easily.

I It may result in a nonlinear function of x1 and x2.
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Pattern Classification

I In pattern classification we assume
I The sets of classes and their members are known

I Having the patterns, We are looking to find the discriminant surface
by using NN,

I The only condition is that the patterns are separable

I The patterns like first example are linearly separable and in second
example are nonlinearly separable

I In first step, simple sparable systems are considered.
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Linear Machine

I Linear discernment functions are the simplest discriminant functions:
g(x) = w1x1 + w2x2 + ...+ wnxn + wn+1 (1)

I Consider x = [x1, ..., xn]T , and w = [w1, ...,wn]T , (1) can be redefined as
g(x) = wT x + wn+1

I Now we are looking for w and wn+1 for classification

I The classifier using the discriminant function (1) is called Linear Machine.

I Minimum distance classifier (MDC) or nearest neighborhood are employed to
classify the patterns and find w ’s:

I E n is the n-dimensional Euclidean pattern space  Euclidean distance
between two point are ‖xi − xj‖ = [(xi − xj)

T (xi − xj)]1/2.
I Pi is center of gravity of cluster i .
I A MDC computes the distance from pattern x of unknown to each

prototype (‖x − pi‖).
I The prototype with smallest distance is assigned to the pattern.
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Linear Machine
I Calculating the squared distance:
‖x − pi‖2 = (x − pi )

T (x − pi ) = xT x − 2xTpi + pT
i pi

I xT x is independent of i

I ∴ min the equation above is obtained by max the discernment
function: gi (x) = xTpi − 1

2pT
i pi

I We had gi (x) = wT
i x + win+1

I ∴ Considering pi = (pi1, pi2, ..., pin)T ,

I The weights are defined as

wij = pij

win+1 = −1

2
pT
i pi , (2)

i = 1, ...,R, j = 1, ..., n
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Example
I In this example a linear classifier is designed

I Center of gravity of the prototypes are known a priori

p1 =

[
10
2

]
, p2 =

[
2
−5

]
, p3 =

[
−5
5

]
I Using (2) for R = 3, the weights are

w1 =

 10
2
−52

 ,w2 =

 2
−5
−14.5

 ,w3 =

 −5
5
−25


I Discriminant functions are:

g1(x) = 10x1 + 2x2 − 52

g2(x) = 2x1 − 5x2 − 14.5

g3(x) = −5x1 + 5x2 − 25
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The decision lines are:
S12 : 8x1 + 7x2 − 37.5 = 0

S13 : −15x1 + 3x2 + 27 = 0

S23 : −7x1 + 10x2 − 10.5 = 0

Farzaneh Abdollahi Computational Intelligence Lecture 3 18/41



Outline Neural Processing Learning

Bias or Threshold?

I Revisit the structure of a single layer network

I Considering the threshold (θ) the activation function is defined as

o =

{
1 net ≥ θ
−1 net < θ

(3)

I Now define net1 = net − θ:
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I ∴ The activation function can be considered as

o =

{
1 net1 ≥ 0
−1 net1 < 0

(4)

I ∴Bias can be play as a threshold in activation function.

I Considering neither threshold nor bias implies that discriminant
function always intersects the origin which is not always correct.
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I If R linear functions
gi (x) = w1x1 + w2x2 + ...+ wnxn + wn+1, i = 1, ...,R exists s.t

gi (x) > gj(x) ∀x ∈ §i , i , j = 1, ...,R, i 6= j

the pattern set is linearly separable

I Single layer networks can only classify linearly separable

I Nonlinearly separable patterns are classified by multiple layer networks

I Example: AND: x2 = −x1 + 1 (b = −1,w1 = 1, w2 = 1)

I Example: OR: x2 = −x1 − 1 (b = 1,w1 = 1, w2 = 1)
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Learning

I When there is no a priori knowledge of pi ’s, a method should be found
to adjust weights (wi ).

I We should learn the network to behave as we wish
I Learning task is finding w based on the set of training examples x to

provide the best possible approximation of h(x).
I In classification problem h(x) is discriminant function g(x).

I Two types of learning is defined
1. Supervised learning: At each instant of time when the input is applied

the desired response d is provided by teacher
I The error between actual and desired response is used to correct and

adjust the weights.
I It rewards accurate classifications/ associations and punishes those

yields inaccurate response.
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2. Unsupervised learning: desired response is not known to improve the
network behavior.

I A proper self-adoption mechanism has to be embedded.
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I General learning rule is the weight vector wi = [wi1 wi2 ... win]T

increases in proportion to the product of input x and learning signal r

wk+1
i = wk

i + ∆wk
i

∆wk
i = crk(wk

i , x
k)xk

c is pos. const.: learning constant.
I For supervised learning r = r(wi , x , di )
I For continuous learning

dwi

dt
= crx
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Perceptron Learning Rule
I Perceptron learning rule was first time proposed by Rosenblatt in 1960.

I Learning is supervised.

I The weights are updated based the error between the system output
and desired output

rk = dk − ok

∆W k
i = c(dk

i − ok
i )xk (5)

I Based on this rule weights are adjusted iff output ok
i is incorrect.

I The learning is repeated until the output error is zero for every
training pattern

I It is proven that by using Perceptron rule the network can learn what
it can present

I If there are desired weights to solve the problem, the network weights
converge to them.
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Single Discrete Perceptron Training Algorithm
I Given P training pairs {x1, d1, x2, d2, ..., xp, dp} where xi is

(n × 1), di is (1× 1), i = 1, ...,P

I The augmented input vectors are yi =

[
xi

−1

]
, for i = 1, ...,P

I In the following, k is training step and p is step counter within
training cycle.

1. Choose c > 0
2. Initialized weights at small random values, w is (n + 1)× 1
3. Initialize counters and error: k ←− 1, p ←− 1,E ←− 0
4. Training cycle begins here. Set y ←− yp, d ←− dp, o = sgn(wT y) (sgn

is sign function)
5. Update weights w ←− w + 1

2c(d − o)y
6. Find error: E ←− 1

2 (d − o)2 + E
7. If p < P then p ←− p + 1, k ←− k + 1, go to step 4, otherwise, go to

step 8.
8. If E = 0 the training is terminated, otherwise E ←− 0, p ←− 1 go to

step 4 for new training cycle.
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Convergence of Perceptron Learning Rule

I Learning is finding optimum weights W ∗ s.t.{
W ∗T y > 0 forx ∈ §1
W ∗T y < 0 forx ∈ §2

I Training is terminated when there is no error in classification,
(w∗ = wn = wn+1).

I Assume after n steps learning is terminated.

I It can be shown that n is bounded

I i.e., after limited number of updating, the weights converge to their
optimum values
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Multi-category Single Layer Perceptron

I The perceptron learning rule
so far was limited for two
category classification

I We want to extend it for
multigategory classification

I The weight of each neuron
(TLU) is updated
independent of other
weights.

I The k’s TLU reponses +1
and other TLU’s -1 to
indicate class k
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R-Category Discrete Perceptron Training Algorithm
I Given P training pairs {x1, d1, x2, d2, ..., xp, dp} where xi is

(n × 1), di is (R × 1), i = 1, ...,P

I The augmented input vectors are yi =

[
xi

−1

]
, for i = 1, ...,P

I In the following, k is training step and p is step counter within
training cycle.

1. Choose c > 0
2. Initialized weights at small random values, W = [wij ] is R × (n + 1)
3. Initialize counters and error: k ←− 1, p ←− 1,E ←− 0
4. Training cycle begins here. Set y ←− yp, d ←− dp, oi = sgn(wT

i y) for
i = 1, ...,R (sgn is sign function)

5. Update weights wi ←− wi + 1
2c(di − oi )y for i = 1, ...,R

6. Find error: E ←− 1
2 (di − oi )

2 + E for i = 1, ...,R
7. If p < P then p ←− p + 1, k ←− k + 1, go to step 4, otherwise, go to

step 8.
8. If E = 0 the training is terminated, otherwise E ←− 0, p ←− 1 go to

step 4 for new training cycle.
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Example

I Revisit the three classes example

I The discriminant values are

Discriminant Class 1 [10 2]′ Class 2 [2 − 5]′ Class 3 [−5 5]′

g1(x) 52 -42 -92
g2(x) -4.5 14.5 -49.5
g3(x) -65 -60 25

I So the thresholds values:w13, w23, and w33 are 52, 14.5, and 25,
respectively.

I Assume additional threshold T1 = T2 = T3 = −2 so the threshold are
changed to 50, 12.5, and 23, respectively.
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I Now use perceptron learning rule:

I Consider randomly chosen initial values:
w1

1 = [1 − 2 0]′, w1
2 = [0 − 1 2]′, w1

3 = [1 3 − 1]′

I Use the patterns in sequence to update the weights:
I y1 is input:

sgn([1 − 2 0]

 10
2
−1

) = 1

sgn([0 − 1 2]

 10
2
−1

) = −1

sgn([1 3 − 1]

 10
2
−1

) = 1∗

I TLU # 3 has incorrect response. So
w 2

1 = w 1
1 , w 2

2 = w 1
2 , w 2

3 = [1 3 − 1]′ − [10 2 − 1]′ = [−9 1 0]′
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I y2 is input:

sgn([1 − 2 0]

 2
−5
−1

) = 1∗

sgn([0 − 1 2]

 2
−5
−1

) = 1

sgn([−9 1 0]

 2
−5
−1

) = −1

I TLU # 1 has incorrect response. So
w3

1 = [1 2 0]′ − [2 − 5 − 1]′ = [−1 3 1]′, w3
2 = w2

2 , w3
3 = w2

3
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I y3 is input:

sgn([−1 3 1]

 −5
5
−1

) = 1∗

sgn([0 − 1 2]

 −5
5
−1

) = −1

sgn([−9 1 0]

 −5
5
−1

) = 1

I TLU # 1 has incorrect response. So
w4

1 = [4 − 2 2]′, w4
2 = w3

2 , w4
3 = w3

3

I First learning cycle is finished but the error is not zero, so the training
is not terminated
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I In next training cycles TLU # 2 and 3 are correct.

I TLU # 1 is changed as follows
w5

1 = w4
1 , w6

1 = [2 3 3]′, w7
1 = [7 − 2 4]′, w8

1 = w7
1 , w9

1 = [5 3 5]

I The trained network is o1 = sgn(5x1 + 3x2 − 5)

o2 = sgn(−x2 − 2)

o1 = sgn(−9x1 + x2)

I The discriminant functions for classification are not unique.
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Continuous Perceptron

I In many cases the output is not necessarily limited to two values (±1)

I Therefore, the activation function of NN should be continuous

I The training is indeed defined as adjusting the optimum values of the
weights, s.t. minimize a criterion function

I This criterion function can be defined based on error between the
network output and desired output.

I Sum of square root error is a popular error function

I The optimum weights are achieved using gradient or steepest decent
procedure.
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I Consider the error function:
E = E 0 + λ(w − w∗)2 dE

dw =

2λ(w − w∗), d2E
dw2 = 2λ

I The problem is finding w∗ s.t min
E

I To achieve min error at w = w∗

from initial weight w0, the weights
should move in direction of
negative gradient of the curve.

I ∴ The updating rule is

wk+1 = wk − ηOE (wk)

where η is pos. const. called
learning constant.
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I The error to be minimized is

E k =
1

2
(dk − ok)2

ok = f (netk)

I For simplicity superscript k is skipped. But remember the weights
updates is doing at kth training step.

I The gradient vector is

OE (w) = −(d − o)f ′(net)


∂(net)
∂w1

∂(net)
∂w2

...
∂(net)
∂wn+1


I net = wT y ∂(net)

∂wi
= yi for i = 1, ..., n + 1

I ∴OE = −(d − o)f ′(net)y
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I The TLU activation function is not useful, since its time derivative is
always zero and indefinite at net = 0

I Use sigmoid activation function

f (net) =
2

1 + exp(−net)
− 1

I Time derivative of sigmoid function can be expressed based on the
function itself

f ′(net) =
2exp(−net)

(1 + exp(−net))2
=

1

2
(1− f (net)2)

I o = f (net), therefore,

OE (w) = −1

2
(d − o)(1− o2)y
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I Finally the updating rule is

wk+1 = wk +
1

2
η(dk − ok)(1− ok2)yk (6)

I Comparing the updating rule of continuous perceprton (6) with the
discrete perceptron learning (wk+1 = wk + c

2 (dk − ok)yk)
I The correction weights are in the same direction
I Both involve adding/subtracting a fraction of the pattern vector y
I The essential difference is scaling factor 1− ok2 which is always positive

and smaller than 1.
I In continuous learning, a weakly committed perceptron ( net close to

zero) the correction scaling factor is larger than the more close
responses with large magnitude.
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Single Continuous Perceptron Training Algorithm
I Given P training pairs {x1, d1, x2, d2, ..., xp, dp} where xi is

(n × 1), di is (1× 1), i = 1, ...,P

I The augmented input vectors are yi = [xi − 1]T , for i = 1, ...,P
I In the following, k is training step and p is step counter within

training cycle.

1. Choose η > 0, λ = 1,Emax > 0
2. Initialized weights at small random values, w is (n × 1)× 1
3. Initialize counters and error: k ←− 1, p ←− 1,E ←− 0
4. Training cycle begins here. Set y ←− yp, d ←− dp, o = f (wT y)

(f(net) is sigmoid function)
5. Update weights w ←− w + 1

2η(d − o)(1− o2)y
6. Find error: E ←− 1

2 (d − o)2 + E
7. If p < P then p ←− p + 1, k ←− k + 1, go to step 4, otherwise, go to

step 8.
8. If E < Emax the training is terminated, otherwise E ←− 0, p ←− 1 go

to step 4 for new training cycle.
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R-Category Continues Perceptron

I Gradient training rule derived for R = 2 is
also applicable for multi-category classifier

I The training rule with be changed to

wk+1
i = wk

i +
1

2
η(dk

i − ok
i )(1− ok2

i )yk ,

for i = 1, ...,R

I It is equivalent to individual weight
adjustment

wk+1
ij = wk

ij +
1

2
η(dk

i − ok
i )(1− ok2

i )yk
j ,

for j = 1, ..., n + 1, i = 1, ...,R
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