

Computational Intelligence Lecture 3:Fuzzy Relations

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010

A E > A E >

э

1/22

Classical Relation

Fuzzy Relation Projection Cylindrical Extension Cartesian Product of Fuzzy Sets Composition

Extension Principle

- (∃) -

-

э

- U_i t = 1, ..., n: *n* arbitrary classical sets.
- ► $U_1 \times U_2 \times \ldots \times U_n$ is the set of all ordered *n*-tuples (u_1, \ldots, u_n) : $U_1 \times U_2 \times \ldots \times U_n = \{(u_1, u_2, \ldots, u_n) | u_1 \in U_1, u_2 \in U_2, \ldots, u_n \in U_n\}$
- ▶ For binary relation (n = 2): $U_1 \times U_2 = \{(u_1, u_2) | u_1 \in U_1, u_2 \in U_2\}$
- $\bullet \ U_1 \neq U_2 \leadsto U_1 \times U_2 \neq U_2 \times U_1.$

Classical Relation

- ► A relation among sets U_1 , U_2 , ..., U_n ($Q(U_1, U_2, ..., U_n)$):
 - ► a subset of the Cartesian product $U_1 \times U_2 \times \ldots \times U_n$: $Q(U_1, U_2, \ldots, U_n) \subset U_1 \times U_2 \times \ldots \times U_n$
- ► a relation is itself a set ~, all of the basic set operations can be applied to it without modification.
- ► It can be represented by membership function: $\mu_Q(u_1, ..., u_n) = \begin{cases} 1 & if (u_1, ..., u_n) \in Q(U_1, U_2, ..., U_n) \\ 0 & otherwise \end{cases}$
- The values of the membership function μ_Q can be shown by a relational matrix.

ロト イロト イモト イモト 二日

Example:

•
$$U = \{1, 2, 3\}, V = \{a, b\}$$

- $U \times V = (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}$
- ▶ let Q(U, V) be a relation named "the first element is no smaller than 2"

•
$$Q(U, V) = \{(2, a), (2, b), (3, a), (3, b)\}$$

$U \setminus V$	а	b
1	0	0
2	1	1
3	1	1

(4回) (4回) (4回)

3

- A classical relation represents a crisp (zero-one) relationship among sets.
- But, for certain relationships, it is difficult to express the relation by a zero-one assessment
- ▶ In fuzzy relation the degree the strength of the relation is defined by different membership on the unit interval [0, 1].
- A fuzzy relation is a fuzzy set defined in the Cartesian product of crisp sets U₁, U₂, ..., U_n.
 Q = {((u₁, u₂, ..., u_n), µ_Q(u₁, u₂, ..., u_n))|(u₁, u₂, ..., u_n) ∈ U₁ × U₂ × ..., × U_n}, µ_Q : U₁ × U₂ × ..., × U_n → [0, 1]
- **Example:**Fuzzy relation: "x is approximately equal to y" (AE).

•
$$U = V = R$$
,

- $\mu_{AE}(x, y) = e^{-(x-y)^2}$
- This membership function is not unique

・ロト ・回ト ・ヨト ・ヨト

3

Example: Dormitory based on Distance of cities.

Fuzzy Relation

- $V = \{ Tehran, Tabriz, Karaj, Qom \}, U = \{ Tehran, Esfahan \}$
- Relation: "very far"
- use number between 0 and 1 for degree of relation

U/V	Tehran	Tabriz	Karaj	Qom
Tehran	0	0.9	0.1	0.3
Esfahan	0.7	0.95	0.8	0.5

Extension Principl

Projection

Projection

• **Example:** A crisp relation in $V \times U = R^2$

•
$$A = \{(x, y) \in R^2 | (x-1)^2 + (y-1)^2 \le 1\}$$
 as

- A_1 the projection of A on U: $[0,1] \subset U$
- A_2 the projection of A on V: $[0,1] \subset V$

- ∢ ⊒ →

-

э

- Q: a fuzzy relation in $U_1 \times \ldots \times U_n$
- $\{i_1, \ldots, i_k\}$ a subsequence of $\{1, 2, \ldots, n\}$

► The projection of Q on U_{i1} × ... × U_{ik} is a fuzzy relation Q_P in U_{i1} × ... × U_{ik} s.t.:

 $\mu_{Q_p}(u_{i_1},\ldots,u_{i_k}) = \max_{u_{j_1} \in U_{j_1},\ldots,u_{j(n-k)}} \in U_{j(n-k)}\mu_Q(u_1,\ldots,u_n)$

• $\{u_{j_1}.Idots, u_{j(n-k)}\}$ is the complement of $\{u_{i_1}, \ldots, u_{i_k}\}$

• For binary fuzzy relation $U \times V$:

• Q_1 projection in U: $\mu_{Q_1}(x) = \max_{y \in V} \mu_Q(x, y)$

• **Example:** Recall the "AE" example

- Projection in U: $AE_1 = \int_U \max_{y \in V} e^{-(x-y)^2}/x = \int_U 1/x$
- Projection in V: $AE_2 = \int_V \max_{x \in U} e^{-(x-y)^2}/y = \int_V 1/y$

► Example: Recall the "very far" example

- Q_1 : projection on u: $Q_1 = 0.9/Tehran + 0.95/Esfahan$
- ► Q₂: projection on V:

 $Q_2 = 0.7/Tehran + 0.95/Tabriz + 0.8/Karái + 0.5/Qom^{3}$

10/22

Fuzzy Relation

- Extending the projection of fuzzy cylindrically.
- Example: Recall the circle example
 - A_{1E} Cylindric extention of A₁ to U × V = R²

•
$$A_{1E} = [0,1] \times (-\infty,\infty) \subset R^2$$

- The projection constrains a fuzzy relation to a subspace
- The cylindric extension extends a fuzzy relation (or fuzzy set) from a subspace to the whole space.

11/22

- Let Q_p be a fuzzy relation in U_{i1} × ... × U_{ik} and {i₁,..., i_k} is a subsequence of {1, 2, ..., n}, then the cylindric extension of Q_p to U_l × ... × U_n is a fuzzy relation Q_{pE} in U_l × ... × U_n µ_{Q_{pE}(u₁,..., u_n) = µ_{Q_p}(u_{i1},..., u_{ik})}
- ► For binary set:
 - $U \times V$,
 - ▶ Q₁ a fuzzy set in U
 - Q_{1E} the cylindric extension to $U \times V$
 - $\mu_{Q_{1E}}(x,y) = \mu_{Q_1}(x)$
- Example: Recall the "AE" example

•
$$A_{E_{1E}} = \int_{U \times V} 1/(x, y) = U \times V$$

•
$$A_{E_{2E}} = \int_{U \times V} 1/(x, y) = U \times V$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ...

Example: Recall the "very far" example

• Q_{1E} : cylindrical ext. of Q_1 to $U \times V$: $Q_{1E} =$ 0.9/(Tehran, Tehran) + 0.9(Tabriz, Tehran) + 0.9/(Karaj, Tehran) + 0.9/(Qom, Tehran) + 0.95/(Tehran, Esfahan), 0.95/(Tabriz, Esfahan) +0.95/(Karaj, Esfahan) + 0.95/(Qom, Esfahan)

•
$$Q_{1E}$$
: cylindrical ext. of Q_2 to $U \times V$:
 $Q_{2E} =$

0.7/(Tehran, Tehran) + 0.7(Tehran, Esfahn) + 0.95/(Tabriz, Tehran) + 0.95/(Tabriz, Esfahan) + 0.8/(Karaj, Tehran), 0.8/(Karaj, Esfahan) + 0.5/(Qom, Tehran) + 0.5/(Qom, Esfahan)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let A₁, ..., A_n be fuzzy sets in U_l, ..., U_n, respectively. The Cartesian product of A₁, ..., A_n denoted by A_l × ... × A_n, is a fuzzy relation in U_l × ... × U_n: µ_{A1}×...×A_n(u₁, ..., u_n) = µ_{A1}(u₁) * ... * µ_{An}(u_n)
- where * represents any t-norm operator.
- ► Lemma: If Q is a fuzzy relation in $U_I \times ... \times U_n$ and $Q_I, ..., Q_n$ are its projections on $U_I, ..., U_n$, respectively, then

 $Q \subset Q_1 imes \ldots imes Q_n$

where we use "min" for the t-norm

< 注) < 注)

Cartesian Product of Fuzzy Sets

- Let A₁,..., A_n be fuzzy sets in U_l, ..., U_n, respectively. The Cartesian product of A₁, ..., A_n denoted by A_l × ... × A_n, is a fuzzy relation in U_l × ... × U_n: µ_{A1×...×An}(u₁, ..., u_n) = µ_{A1}(u₁) * ... * µ_{An}(u_n)
- where * represents any t-norm operator.
- ► Lemma: If Q is a fuzzy relation in U_l × ... × U_n and Q_l, ..., Q_n are its projections on U_l, ..., U_n, respectively, then

where we use "min" for the t-norm

14/22

► P(U, V) and Q(V, W): two crisp binary relations that share a common set V.

Fuzzy Relation

- ► The composition of P and Q, (PoQ), is a relation in U × W s.t. (x, z) ∈ Q iff there exists at least one y ∈ V s.t. (x, y) ∈ P and (y, z) ∈ Q.
- ► Lemma: PoQ is the composition of P(U, V) and Q(V, W) iff

 $\mu_{PoQ}(x,z) = \max t[\mu_P(x,y), \mu_Q(y,z)]$ (1)

for any $(x, z) \in U \times W$, where t is any t-norm.

A E 5 A E 5

► Proof:

- ► If *PoQ* is the composition:
 - $(x,z) \in PoQ \rightarrow \exists y \in V \text{ s.t. } \mu_P(x,y) = 1\&\mu_Q(y,z) = 1$
 - $:: \mu_{PoQ}(x,z) = 1 = \max_{y \in V} t[\mu_P(x,y), \mu_Q(y,z)]$
 - If $(x, z) \notin PoQ \rightarrow for any y \in V, \mu_P(x, y) = 0 or \mu_Q(y, z) = 0$
 - $\blacktriangleright \therefore \mu_{PoQ}(x,z) = 0 = \max_{y \in V} t[\mu_P(x,y), \mu_Q(y,z)].$
 - ► Eq. (1) is true.
- Conversely, if the Eq. (1) is true:
 - $(x,z) \in PoQ \rightarrow \max_{y \in V} t[\mu_P(x,y), \mu_Q(y,z)] = 1$
 - ▶ ∴ there exists at least one $y \in V$ s.t. $\mu_P(x, y) = \mu_Q(Y, z) = 1$ (Axiom t1)
 - For $(x, z) \notin PoQ \rightarrow \max_{y \in V} [\mu_P(x, y), \mu_Q(y, z)] = 0$
 - $\therefore \nexists y \in V$ s.t. $\mu_P(x, y) = \mu_Q(y, z) = 1.$
 - ::PoQ is the composition

(4回) (4回) (4回)

Fuzzy Composition

- Composition for fuzzy relations is defined similar to crisp relations
- Based on different definition of t-norm different composition is obtained.
- The two most popular compositions:
 - ► Max-Min: of fuzzy relations P(U, V) and Q(V, W) is a fuzzy relation PoQ in U × W s.t. µ_{PoQ}(x, z) = max_{y∈V} min[µ_P(x, y), µ_Q(y, z)]
 - It uses the min for t-norm
 - where $(x, z) \in U \times W$.
 - Max-Product: of fuzzy relations P(U, V) and Q(V, W) is a fuzzy relation PoQ in U × W s.t. µ_{PoQ}(x, z) = max_{y∈V}[µ_P(x, y).µ_Q(y, z)] where (x, z) ∈ U × W.
 - It uses algebraic product for t-norm

米田 とくほと くほと

17/22

Example: Recall Dormitory example

Fuzzy Relation

► V = { Tehran, Tabriz, Karaj, Qom }, U = { Tehran, Esfahan }, W = { Boomehen, Kashan, Ardebil }

	U/V	Tehran	Tabriz	Karaj	Qom
► P(U, V) "very far"	Tehran	0	0.9	0.1	0.3
	Esfahan	0.7	0.95	0.8	0.5

・ 同 ト ・ ヨ ト ・ ヨ ト

► V = { Tehran, Tabriz, Karaj, Qom}, U = { Tehran, Esfahan}, W = { Boomehen, Kashan, Ardebil }

	U/V	Tehran	Tabr	iz	Karaj	Qom
► P(U, V) "very far"	Tehran	0	0.9)	0.1	0.3
	Esfahan	0.7	0.9	5	0.8	0.5
	V/W	Boome	hen	Ka	shan	Ardebil
	Tehran	1		(0.4	0.1
• $Q(V, W)$:"very near"	' Tabriz	0.2			0	0.8
	Karaj	0.6		(0.3	0.1
	Qom	0.7		0	.95	0

・ 同 ト ・ ヨ ト ・ ヨ ト

e Classical Relation

Fuzzy Relation

Extension Prince

► PoQ(U, W) using Max-min

Р						
U/V	Tehran	Tabriz	Karaj	Qom	$V \setminus W$	Boo
Tehran	0	0.9	0.1	0.3	Tehran	
Esfahan	0.7	0.95	0.8	0.5	Tabriz	
			1		1/ .	

]	$V \setminus W$	Boomehen	Kashan	Ardebil
1	Tehran	1	0.4	0.1
T	Tabriz	0.2	0	0.8
_	Karaj	0.6	0.3	0.1
	Qom	0.7	0.95	0

Q

Min	00	.9 0.1 (0.3	
•••••	1 0	.2 0.6	0.7	
	0 0	.2 0.1 (0.3	
	Мах		PoQ	
	U/W	Boomehen	Kashan	Ardebil
	Tehran	0.3	0.3	0.8
	Esfahan	0.7	0.5	0.8

<ロ> <同> <同> < 同> < 同>

2

► PoQ(U, W) using Max-Product

Р					
U/V	Tehran	Tabriz	Karaj	Qom	
Tehran	0	0.9	0.1	0.3	
Esfahan	0.7	0.95	0.8	0.5	

	Q		
$V \setminus W$	Boomehen	Kashan	Ardebil
Tehran	1	0.4	0.1
Tabriz	0.2	0	0.8
Karaj	0.6	0.3	0.1
Qom	0.7	0.95	0

(人間) トイヨト イヨト

2

19/22

- The relational matrix for the fuzzy composition PoQ can be computed according to the following method:
 - For max-min composition
 - ▶ write out each element in the matrix product *PQ*, But treat:
 - each multiplication as a min operation
 - each addition as a max operation
 - For max-product composition,
 - ▶ write out each element in the matrix product PQ, but treat
 - each addition as a max operation.

골 노 내 골 노

Extension Principle

- Objective: the domain of a function be extended from crisp points in U to fuzzy sets in U
- $f: U \rightarrow V$ a function from crisp set U to crisp set V.
- ► A: a fuzzy set U
- B = f(A) a fuzzy set in V
 - If f is an one-to-one mapping $\mu_B(y) = \mu_A[f^{-1}(y)], y \in V$
 - where $f[f^{-1}(y)] = y$
- If f is not one-by-one what should we do ?:(
- Example: $f(x_1) = f(x_2) = y, x_1 \neq x_2 \rightsquigarrow \mu_A(x_1) \neq \mu_A(x_2)$
 - Two different values is obtained for $\mu_B(y)$

- 4 同 1 - 4 回 1 - 4 回 1

Extension Principle

- Extension Principle: $\mu_B(y) = \max_{x \in f^{-1}(y)} \mu_A(x), y \in V$
 - $f^{-1}(y)$: set of all points $x \in U$ s.t. f(x) = y
- **Example** $U = \{1, ..., 10\}, x \in U, f(x) = x^2 \in V = \{1, ..., 100\}$
- ▶ Fuzzy set: " small" = 1/1 + 1/2 + 0.8/3 + 0.6/4 + 0.4/5
- ▶ ∴ "small² = 1/1 + 1/4 + 0.8/9 + 0.6/16 + 0.4/25

- 4 同 ト 4 ヨ ト 4 ヨ ト

