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Basic Structure of Fuzzy Neural Networks (FNN)
Definition of Fuzzy Neurons

 The objective of FNN is to extend the capability of the neural
networks to handle “vague” information than “crisp” information
only.

e Classifying of FNN:
1- a fuzzy neuron with crisp sighals used to evaluate fuzzy weights,

2- a fuzzy neuron with fuzzy signals which is combined with fuzzy
weights,

3- a fuzzy neuron described by fuzzy logic equations.
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A multifactorial function is actually a projective mapping from an
m-array space to a one-array space, denoted by M, .

M, [0,1]" — [0,1}, (z1, -+, &Zm) ¥ Mp(z1,- - Tm)

a natural partial ordering “<” is defined as follows

(VX,Y = [O,l]m) (X <Y = (z; Ly, j= 1,2,---,m))

Basic operators ( +, .) in multifactorial function change as bellow:
(V:- A)a (V: ')1 (_I_: /\)7 etc

Where V is MAX and A is MIN
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A fuzzy neuron is regarded as a mapping FN :

FN :{0,1]™ — [0,1]

v . TTNIYYNL A vy
Ly V7 A .{V\JL} _— \J.V.lm\\.{l.) U}’.
For
6 € [0,1]

@:R—[0,1] wheregp(u)=0,u<o0

¢ is a mapping or an activation function

a fuzzy neuron.

This Figure illustrates the L1 \
working mechanism of T2
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Example:

The following mappings from [0,1|" to [0,1] are all fuzzy neurons:

= ol S wize — 0)
y—@\;wi.f..l U},

=1

where w; € [0,1] and >, w; = 1.
T
y = f,a( \ (wizi) — 9)1.
1=1

where w; € [0,1] and V_, w; = 1.

y = tp( \2(@1\/%) —9),

1=

where w; € [01 1] and V?:l w; < V?:l x;.
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Fuzzy Neural Networks
Neural Network Representation of Fuzzy Relation Equations

A typical kind of fuzzy relation equation:

Y ~ D - P
Zs YA — 1D

Where X is input vector
X = ($1:$21 v aﬁﬂ)

R is matrix of coefficients, B is constant matrix

R = (Tij)nxm B:(bl,b‘z,"',bm)

And operator “0” is defined as follow:
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network representing fuzzy relation equations:

11 @_> bl
ry — 7‘2//
- W@_ b,

Tn > . @—s bm
» where the activation tunctions ot the neurons f,,f,....,f,, are all

taken as identity functions and the threshold values are zero

» Fuzzy relation equations can be solved using a fuzzy § learning
algorithm.
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A Fuzzy Neural Network Based on FN(V, A)

The network is known to have fuzzy associative memories (FAM)
ability based on FN(V, A).

wil

,"I:l -9 w12 ~ @ > yl

T2 > ij L - Y2

Iy - @ T — ® ~ Um
L Lo

The relation between input and output of this network is as
follows: ¢ y1 = (w11 Azy) V(we Axg) V-V (wp Azy)
Yo = (wlg ANzi)V (wgg A :I:g) VeV (?_Ung AN .ﬁ';‘n)

LU = (Wim A 21) V (wom Az2) V-V (Wem A Zp)
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Matrix form of FAM based on FN(V, A) is as follow
Y=XoW

where Y = (y1:y21' ] ':ym)ﬁ X = ($17$2:‘ ) *'.rmn) and

[‘wu Wi - Wim \

Wwo1 Wop -+ Wom

\wﬂl Wnp2 - ’wnm)

For given a set of samples:

{(a37b3)|8 — 1727 T >p}3
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where a; = (asla Q52" " aasn)a
bs — (bslabSQ:"':bsm)a S = 132:"' y I

Weight matrix W by means of the following system of fuzzy
relation equations can be obtained:

’aloW=b1
< agoW:bg
La, oW = b,

Morever, a. and b, can be calculated respectively as follow:
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where a; = (asla Q52" " aasn)a
bs — (bslabSQ:"':bsm)a S = 132:"' y I

Weight matrix W by means of the following system of fuzzy
relation equations can be obtained:

’aloW=b1
< agoW:bg
La, oW = b,

Morever, a. and b, can be calculated respectively as follow:
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and,

Weight matrix W by means of the following system of fuzzy

relation equations can be obtained:
AoW =B.
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A Fuzzy § Learning Algorithm

Neural Network Representation of Fuzzy Relation Equations
Describing procedures for the fuzzy 6 learning algorithm:

- mitial valuse w

Step 1 Rdandomize wy;

0
Lj

wi ;i =wg ((=12,....,nj=12,..,m).

Lj
Often assigned with (W[—[} =1), (Vij)
Step 2 Collect a pair of samples (a,, b.). Let s = 1.

Step 3 Calculate the outputs incurred by a,. Let k = 1.

T
b = \/(wij/\agi), i=12,...,m
=1
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Step 4 Adjust weights. Let

5] S
TﬂH_':I = TITP"‘I.I:T‘I‘\‘I_Q '; = f".":l]f_"'l'l]_'] = r -+ 1 \lf_ TITP:"I.(TI'\ 2 hﬂQP:H MM ' TITP:"I.I:T‘I‘\ =
UF““‘-‘L’ L \-FJ.&.I.J.‘-'L.?J J.-\-r-: T el L N e L e N kl"l..- i _l..“.f.-l'l'l' L \-PJ.&.I.J.‘-'LJ LI F i Tl L1 FL- L0 L L \-FJ.&.I.J.‘-'LJ
_ i] UC) _ 1’155;: wij(t)Aas; > bs;
wii(k+1) = .
w;; (k) otherwise,

Where 0 < n < 1 1s the learning rate.

Step S Looping. Go to Step 3 until the following condition holds:

(V ij)(wij (k) —w;;(k+1) < E),
where £ > 0 1s small number for stopping the algorithm. set k = k + 1.

Step 6 repeat a new mput. Lets = s + 1 and go to Step 2 until s = p
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Example:

Given samples az, b, s=1,2,3,4:

a; = (0.3,0.4,0.5,0.6), by = (0.6,0.4,0.5),
a» = (0.7,0.2,1.0,0.1), by = (0.7,0.7,0.7),
as = (0.4,0.3,0.9,0.8), bs = (0.8,0.4,0.5),
a, = (0.2,0.1,0.2,0.3), by = (0.3,0.3,0.3).
So,
/0.3 0.4 0.5 0.6\ /0.6 0.4 0.5\
0.7 0.2 1.0 0.1 0.7 0.7 0.7
A = , B =
0.4 0.3 0.9 0.8 0.8 0.4 0.5
\0.20.10.20.3 / \0.30.303 )/
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and
/03040506 [wi wiz wiz /0.6 0.4 0.5
0.7 0.2 1.0 0.1 Wo1 Woo Was B 0.7 0.7 0.7
04030908 | | w3y wsowas | | 080405

\0.20.10203/ \wy wes wyz /) \030303)

When 0.5 < n < 1 and € = 0.0001

at &k = 80 we have stable W as follows:

/1.0 1.0 1.0 \
1.0 1.0 1.0
0.7 0.4 0.5
\ 1.0 0.4 0.5 /
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Except for wy,, W33, and w;

A Fuzzy 6 Learning Algorithm
0000e

The following table details the difference.

BP learning

00000000 OO00O0000

several tests show that most values in W are the same

n

k

w31

w33

w43

0.5

63

0.700001

0.500001

0.400001

0.4

31

0.700001

0.500001

0.420001

0.3

110

0.700002

0.200002

0.440001

0.3

167

0.700003

0.500004

0.460003

0.1

324

0.700009

0.500009

0.480008
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BP learning algorithm of FAM's

The back propagation (BP) algorithm for the connection weight
matrix W of the FAM is presented as follow

= V{i[?i f\wij} (j' — 13'-'?m)'

Define d—variate functions La, Sm: R, x [0,1]¢ — [0,1] as

d d
> x; - exp{szi} Z z; - exp{—sxz;}
La(s;x1, .., Tq) = — 3 s Sm(s;zq1,...,%q) = 1 .
'—21 eXp4{ 5% | z exp{—sxz;}
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it, is easy to show, Vz1,...,z4 € [0, 1], the following facts hold:

Vs >0, La(s;zy,...,xq), Sm(s;zy,...,2q) € [9:1 Ao ANxg, TV V :t:d].

Lemma 1: suppose d>1, s>0, and x;, x,, ..., x, € [0,1]. Then the
following estimation gets:

d
\V {z;} — La(s;zq, ..., :r:d)‘g (d—1) - exp{—s(ﬁ?max — -’55)};
i=1

Az} = Sm(sizr, o za)| < (d = 1) - exp{—s(2, — zmn)}:

1=1
Therefore,
. d d
S_lﬂlm La(s;xy,...,zq) = i\—_f1{mi}’ s]—lnlﬂm Sm(s; @y, ..., Tq4) = i,fz\l{:lri}.
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Lemma 2 the functions La(s;x,,..., x;) and Sm(s;x,,..., x,) are
continuously differentiable on [0,1]"d. moreover,

forjell,..., d},

d
L : ceesy - ]
O a,(s,:{:l, :I:d) . exp(sa:;;) - {Z(Siﬂi — 8T; — 1)3}{13(33:?;)};

(1)
% (i exp(sma)) =1
.. 0Sm(s;x1,...,4) exp(—sx ;) e
(ii) . = J ; Z(s:r?; —sx; + 1) exp(—sx;) ¢.
0z (i=§1 BXP(“_S-’E{)) {1:1 }

By Lemma 2, It can be concluded that the following facts hold for
the constanta € [0.11 :

dLa(s;ﬂt,a)ﬂ ! — (sa — sx — xp(s(a — x))};

dx (1 + exp(s(a —x)))? {1 ( 1) exp(s( ))}1
dSm(s;z,a) 1 o ol

de " (1 +exp(—s(a— x)))2 {1+ (sa— sz +1)exp(—s( .))}_’
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So for a given constant a € [0,1], it follows that

d(a Vv z)
dLa(s;z,a) ! e TF.

SL]{!I}D:: dzx 1 o
[ 5 T = a;
d(a 1 x)
. dSm(s;z,a) a4 Z # a,
111]:1 P J£
8— d:]: l r=a
2’ -

BP learning algorithm
Suppose {(x,, y.)Ik € P} is a fuzzy pattern pair family for training.
The input pattern x, of FAM equations, the corresponding real

output pattern will be:
O = (Gif! “‘30Tk71-) D O = X oW,
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Where:

ﬂ?‘—_ \/{:E?ﬂwij} (k€ P,j € M).

i N

The error function E(W) is defined as follows:

P
=%;||ﬂk—Ykli2 ZZ (of —u¥)*.

I-.:lg]

» As E(W) is non-differentiable respect to w;
not be designed by using E(W) directly.

» So the functions La and Sm is used to replaced the fuzzy
operators V and 4, respectively.

;» the BP algorithm can

» By Lemma 1, when s is sufficiently large
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» By Lemma 1, when s is sufficiently large

EW) =e(W) = —ZZ (La(s; Sm(s; ml,wlj) Sm(s;ﬂ:ﬁ,wnj))—yf)z.

Pl e —_._

Theorem 1 Give the fuzzy pattern pair family {(x,, y.) [k € P}.
Then e(W) is continuously differentiable with respect to w;; for
€N, jeM

e (W) _ "L —exp(s: AL, k)T (s) ‘ 1+ (szf —sw;;+1) exp(—s(z} —wi_,-)}‘
p=1

Where

I'(s) = pél{ﬂ -exp(s - A(p, k))—exp(s- A(i, k) —1}exp(s - A(p, k),
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and

&(‘E,k) = Sm(s; mf,wij).

Step of BP learning algorithm of FAM's :

Step 1. Initialization. Put w;(0) = 0, and let W(0) = (w;}(0)),,,,» set
t=1.

Step 2. Denote W(t) = (W;;(1)) -

Step 3. Iteration scheme. W(t) iterates with the following law:

A - A7) B N A _
Q=w;(t) -8 e (1) + - Aw;,(t), wii(t+1)=(2Vv0)Al.

Step 4. Stop condition. Discriminate le(W(r+1))l < €? If yes,

output w,(r+1); otherwise, let t =1 + 1 go to Step 2.
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Example:

Choose o = 0.05, n = 0.3. Let s = 100. With 1000 iterations,

No. Input pattern Desired output Real pattern

1 (0.64, 0.50,0.70, 0.60) (0.64,0.70) (0.6400, 0.7000)
2 (0.40,0.45,0.80,0.65) (0.65,0.80) (0.6500,0.7867)
3 (0.75,0.70,0.35,0.25) (0.75,0.50) (0.7250,0.5325)
4 (0.33,0.67,0.35,0.50) (0.67,0.50) (0.6700,0.5000)
5 (0.65,0.70,0.90,0.75) (0.75,0.80) (0.7500, 0.7867)
6 (0.95,0.30,0.45,0.60) (0.80,0.60) (0.7250, 0.6000)
7 (0.80,1.00,0.85,0.70) (0.80,0.80) (0.7864,0.7867)
8 (0.10,0.50,0.70,0.65) (0.65,0.70) (0.6500, 0.7000)
9 (0.70,0.70,0.25, 0.56) (0.70,0.56) (0.7000, 0.5600)
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BP learning algorithm

Modifications in weight space are performed according to:

Awij(n +1) = € E(n) + adw;;(n)

with learning error:

En) = §; o
Output layer: ) !

d;i = (0; 4+ B) (L —o0;) (t; — 0;)
Hidden layer: ! (©3 ( ) (& !

§; = (0 +B).(T—o3) > 6wy
J

Where learning rate €:, momentum a and offset 8 are constant
values chosen by experience.
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Example for Standard Backpropagation:
a set of 10 patterns (alphabetic letters from 'a' to 'j') has been
presented for 0.1<e<2.0 and O<a<1

-

'vglﬁv

2 oAy
X 0
7

= 1";" 2
1

0
0.3

A
02 Momentum

-
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Fuzzy Adaption of Learning Parameters
Fuzzification of learning error E(n)

VS S M B VB
0.001 0.01 01 1.0 10.0

Fuzzification of error changes AE(n)

4

NB NM PM PB
NS | PS

-0.2 —0.05 0.05 0.2
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» Fuzzy set learning rate NB is restricted to -0.04 and PB is
restricted to 0.02

» Fuzzy sets momentum NB and PB are restricted to -0.05 and 0.02
Fuzzified conclusions (adaption of learning rate)

NB NS Z PS PB

Y

—0.02 -0.01 0.008 0.015
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Fuzzified conclusions (adaption of momentum)

NB NS Z PS PB

—-0.015 —0.06 0.005 0.01

The center of gravity defuzzification method has been proposed

Arash Yeganeh Fallah, Naser Sepehry Computational Intelligence Lecture



Basic Structure Fuzzy Neural Networks A Fuzzy 6 Learning Algorithm BP learning

0000 0000000 00000 0000000000000 e00

Decision rule base for learning rate €

AE Neg. Big|Neg. Medium |Neg. Small|Pos. Small{Pos. Medium [Pos. Big
&l

VERY SMALL| NB NS NS Z Z PS
SMALL NB NS Z Z Z PS
MEDIUM NB NS Z Z PS PS
BIG NB NS NS PS PS PB
VERY BIG NB NB NS PS PB PB
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Decision rule base for momentum «a

A Fuzzy & Learning Algorithm

BP learning

0000 000000000080

AE Neg. Big{Neg. Medium|{Neg. Small|Pos. Small|Pos. Medium|Pos. Big
1B

VERY SMALL| NB NS NS Z Z PS
SMALL NB NS NS Z Z PS
MEDIUM NB NS Z Z PS PS
BIG NB NS Z Z PS PB
VERY BIG NB NB NS Z PS PB
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Standard and fuzzy control of learning rate and momentum

'terat‘%ﬂ@m
1

"E’a“m
1000 W

el |

700

111

Standard BP

Fuzzy BP
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