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I Phase Plane Analysis: is a graphical
method for studying second-order systems
by

I providing motion trajectories
corresponding to various initial
conditions.

I then examine the qualitative features of
the trajectories.

I finally obtaining information regarding
the stability and other motion patterns
of the system.

I It was introduced by mathematicians such
as Henri Poincar in 19th century.

http://en.wikipedia.org/wiki/Henri_Poincar%C3%A9
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Motivations

I Importance of Knowing Phase Plane Analysis:
I Since it is on second-order, the solution trajectories can be

represented by carves in plane  provides easy visualization of the
system qualitative behavior.

I Without solving the nonlinear equations analytically, one can study
the behavior of the nonlinear system from various initial conditions.

I It is not restricted to small or smooth nonlinearities and applies
equally well to strong and hard nonlinearities.

I There are lots of practical systems which can be approximated by
second-order systems, and apply phase plane analysis.

I Disadvantage of Phase Plane Method: It is restricted to at most
second-order and graphical study of higher-order is computationally
and geometrically complex.
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Concept of Phase Plane

I Phase plane method is applied to autonomous 2nd order system
described as follows:

ẋ1 = f1(x1, x2) (1)

ẋ2 = f2(x1, x2) (2)

I f1, f2 : R2 → R.

I System response (x(t) = (x1(t), x2(t))) to initial condition
x0 = (x10, x20) is a mapping from R to R2.

I The x1 − x2 plane is called State plane or Phase plane

I The locus in the x1 − x2 plane of the solution x(t) for all t ≥ 0 is a
curve named trajectory or orbit that passes through the point x0

I The family of phase plane trajectories corresponding to various initial
conditions is called Phase protrait of the system.
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Example 1: Phase portrait of a friction-less mass-spring

I Dynamic of friction-less
mass-spring shown in Fig. is

ẍ + x = 0

I If the mass is at rest at length of
x0. then
x(t) = x0 cos t  ẋ(t) = −x0 sin t.

I Eliminating t yields x2 + ẋ2 = x2
0 .

I ∴ the trajectories are circle with
center of 0 and radius of x0.

I System trajectories neither
converge to origin nor diverge to
infinity  it is marginally stable.
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Singular Points

I Consider Eqs (1) and (2)

I At equilibrium points ẋ1 = 0, ẋ2 = 0  ẋ2
ẋ1

= f2(x1,x2)
f1(x1,x2)

= 0
0 (it is

indefinite).

I For this reason, equilibrium points are also called singular points.

I Singular point is an important concepts which reveals great info
about properties of system such as stability.
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How to Construct Phase Plane Trajectories?
I Despite of exiting several routines to

generate the phase portraits by computer, it
is useful to learn roughly sketch the portraits
or quickly verify the computer outputs.

I Some methods named: Isocline, Vector field
diagram, delta method, Pell’s method, etc

I Vector Field Diagram:
I Revisiting (1) and (2):

ẋ = f (x) =

[
f1(x)
f2(x)

]
, ẋ = (ẋ1, ẋ2)

I To each vector (x1, x2), a corresponding
vector (f1(x1, x2), f1(x1, x2)) known as a
vector field is associated.

I Example: If f (x) = (2x2
1 , x2), for

x = (1, 1), next point is
(1, 1) + (2, 1) = (3, 2)
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Vector Field Diagram

I By repeating this for sufficient point
in the state space, a vector field
diagram is obtained.

I Noting that dx2
dx1

= f2
f1
 vector field at

a point is tangent to trajectory
through that point.

I ∴ starting from x0 and by using the
vector field with sufficient points,
the trajectory can be constructed.

I Example: Pendulum without friction

ẋ1 = x2

ẋ2 = −10 sin x1
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Isocline Method

I The term isocline derives from the Greek words for ”same slope.”

I Consider again Eqs (1) and (2), the slope of the trajectory at point x :

S(x) =
dx2

dx1
=

f2(x1, x2)

f1(x1, x2)

I An isocline with slope α is defined as S(x) = α

I ∴ all the points on the curve f2(x1, x2) = αf1(x1, x2) have the same
tangent slope α.

I Note that the ”time” is eliminated here V The responses x1(t) and x2(t)
cannot be obtained directly.

I Only qualitative behavior can be concluded, such as stable or oscillatory
response.
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Isocline Method

I The algorithm of constructing the phase portrait by isocline method:

1. Plot the curve S(x) = α in state-space (phase plane)
2. Draw small line with slope α. Note that the direction of the line depends on

the sign of f1 and f2 at that point.

3. Repeat the process for sufficient number of α s.t. the phase plane is full of
isoclines.
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Example: Pendulum without Friction
I Consider the dynamics ẋ1 = x2, ẋ2 = −sinx1 ∴S(x) = −sinx1

x2
= c

I Isoclines: x2 = −1
c sinx1

I Trajectories for different init. conditions can be obtained by using the
given algorithm

I The response for x0 = (π2 , 0) is depicted in Fig.

I The closed curve trajectory confirms marginal stability of the system.
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Example: Pendulum with Friction
I Dynamics of pendulum with friction:

ẋ1 = x2, ẋ2 = −0.5x2 − sinx1 ∴S(x) = −0.5−sinx1
x2

= c

I Isoclines: x2 = −1
0.5+c sinx1

I Similar Isoclines but with different slopes

I Trajectory is drawn for x0 = (π2 , 0)

I The trajectory shrinks like an spiral converging to the origin
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Qualitative Behavior of Linear Systems
I First we analyze the phase plane of linear systems since the behavior of

nonlinear systems around equilibrium points is similar of linear ones

I For LTI system:
ẋ = Ax , A ∈ R2×2, x0 : initial state x(t) = MeJr tM−1x0

Jr : Jordan block of A, M : Matrix of eigenvectors M−1AM = Jr

I Depending on the eigenvalues of A, Jr has one of the following forms:

λi : real & distinct  Jr =

[
λ1 0
0 λ2

]
λi : real & multiple  Jr =

[
λ k
0 λ

]
, k = 0, 1,

λi : complex  Jr =

[
α −β
β α

]
I The system behavior is different at each case
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Case 1: λ1 6= λ2 6= 0

I In this case M = [v1 v2] where v1 and v2 are real eigenvectors associated
with λ1 and λ2

I To transform the system into two decoupled first-order diff equations, let
z = M−1x :

ż1 = λ1z1

ż2 = λ2z2

I The solution for initial states (z01, z02):

z1(t) = z10eλ1t , z2(t) = z20eλ2t

eliminating t z2 = Cz
λ2/λ1

1 , C = z20/(z10)λ2/λ1 (3)

I Phase portrait is obtained by changing C ∈ R and plotting (3).

I The phase portrait depends on the sign of λ1 and λ2.
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Case 1.1: λ2 < λ1 < 0

I t →∞ ⇒ the terms eλ1t and eλ2t tend to zero
I Trajectories from entire state-space tend to

origin  the equilibrium point x = 0 is stable
node.

I eλ2t → 0 faster  λ2 is fast eignevalue and
v2 is fast eigenvector.

I Slope of the curves: dz2
dz1

= C λ2
λ1

z
(λ2/λ1−1)
1

I λ2 < λ1 < 0 λ2/λ1 > 1, so slope is
I zero as z1 −→ 0
I infinity as z1 −→∞.

I ∴ the trajectories are
I tangent to z1 axis, as they approach to origin
I parallel to z2 axis, as they are far from origin.
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Case 1.1: λ2 < λ1 < 0

I Since z2 approaches to zero faster than z1, trajectories are sliding
along z1 axis

I In X plane also trajectories are:
I tangent to the slow eigenvector v1 for near origin
I parallel to the fast eigenvector v2 for far from origin
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Case 1.2: λ2 > λ1 > 0

I t →∞ ⇒ the terms eλ1t and eλ2t grow exponentially, so
I The shape of the trajectories are the same, with opposite directions
I The equilibrium point is socalled unstable node
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Case 1.3: λ2 < 0 < λ1

I t →∞ ⇒ eλ2t −→ 0, but eλ1t −→∞,so
I λ2 : stable eigenvalue, v2: stable eigenvector
I λ1 : unstable eigenvalue, v1: unstable eigenvector

I Trajectories are negative exponentials since λ2
λ1

is negative.

I Trajectories are
I decreasing in z2 direction, but increasing in z1 direction
I tangent to z1 as |z1| → ∞ and tangent to z2 as |z1| → 0
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Case 1.3: λ2 < 0 < λ1

I The exceptions of this hyperbolic shape:
I two trajectories along z2-axis → 0 as t → 0, called stable trajectories
I two trajectories along z1-axis →∞ as t → 0, called unstable trajectories

I This equilibrium point is called saddle point

I Similarly in X plane, stable trajectories are along v2, but unstable
trajectories are along the v1

I For λ1 < 0 < λ2 the direction of the trajectories are changed.

Farzaneh Abdollahi Nonlinear Control Lecture 2 20/68



Introduction Phase Plane Qualitative Behavior of Linear Systems Local Behavior of Nonlinear Systems

Case 2: Complex Eigenvalues, λ1,2 = α± jβ

ż1 = αz1 − βz2

ż2 = βz1 + αz2

I The solution is oscillatory =⇒ polar coordinates

(r =
√

z2
1 + z2

2 , θ = tan−1( z2
z1

))

ṙ = αr r(t) = r0eαt

θ̇ = β θ(t) = θ0 + βt

I This results in Z plane is a logarithmic spiral where α determines the form
of the trajectories:

I α < 0 : as t →∞ r → 0 and angle θ is rotating. The spiral converges to
origin =⇒ Stable Focus.

I α > 0: as t →∞ r →∞ and angle θ is rotating. The spiral diverges
away from origin =⇒ Unstable Focus.

I α = 0: Trajectories are circles with radius r0=⇒ Center
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Case 2: Complex Eigenvalues, λ1,2 = α± jβ
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Case 3: Nonzero Multiple Eigenvalues λ1 = λ2 = λ 6= 0
I Let z = M−1x : ż1 = λz1 + kz2, ż2 = λz2

the solution is :z1(t) = eλt(z10 + kz20t), z2(t) = z20eλt 

z1 = z2

[
z10

z20
+

k

λ
ln

(
z2

z20

)]
I Phase portrait are depicted for k = 0 and k = 1.
I When the eignevectors are different  k = 0:

I similar to Case 1, for λ < 0 is stable, λ > 0 is unstable.
I Decaying rate is the same for both modes (λ1 = λ2)  trajectories are lines
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Case 3: Nonzero Multiple Eigenvalues λ1 = λ2 = λ 6= 0

I There is no fast-slow asymptote.

I k = 1 is more complex, but it is still similar to Case 1:
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Case 4.1: One eigenvalue is zero λ1 = 0, λ2 6= 0
I A is singular in this case

I Every vector in null space of A is an
equilibrium point

I There is a line (subspace) of equilibrium
points

I M = [v1 v2] , v1, v2 : corresponding
eigenvectors, v1 ∈ N (A).

ż1 = 0, ż2 = λ2z2

solution: z1(t) = z10, z2(t) = z20eλ2t

I Phase portrait depends on sign of λ2:
I λ2 < 0: Trajectories converge to

equilibrium line
I λ2 > 0: Trajectories diverge from

equilibrium line

I in X plane, the equilibrium set is v1
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Case 4.2: Both eigenvalues zero λ1 = λ2 = 0
I Let z = M−1x ż1 = z2, ż2 = 0

solution: z1(t) = z10 + z20t, z2(t) = z20

I z1 linearly increases/decreases base on the sign of z20

I z2 axis is equilibrium subspace in Z-plane

I Dotted line is equilibrium subspace

I The difference between Case 4.1 and 4.2: all trajectories start off the
equilibrium set move parallel to it.
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As Summary:

I Six types of equilibrium points can be identified:
I stable/unstable node
I saddle point
I stable/ unstable focus
I center

I Type of equilibrium point depends on sign of the eigenvalues
I If real part of eignevalues are Positive  unstability
I If real part of eignevalues are Negative  stability

I All properties for linear systems hold globally

I Properties for nonlinear systems only hold locally
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Local Behavior of Nonlinear Systems
I Qualitative behavior of nonlinear systems is obtained locally by

linearization around the equilibrium points

I Type of the perturbations and reaction of the system to them determines
the degree of validity of this analysis

I A simple example: Consider the linear perturbation case
A −→ A + ∆A, where ∆A ∈ R2×2 : small perturbation

I Eigenvalues of a matrix continuously depend on its parameters
I Positive (Negative) eigenvalues of A remain positive (negative) under small

perturbations.
I For eigenvalues on the jω axis no matter how small perturbation is, it

changes the sign of eigenvalue.

I Therefore
I node or saddle point or focus equilibrium point remains the same under

small perturbations
I This analysis is not valid for a center equilibrium point
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Linear Perturbation

I Consider the following perturbation when equilibrium point is a center:

Jr =

[
µ 1
−1 µ

]
, µ : perturbed parameter

I Regardless the size of µ
I µ > 0 an unstable focus equilibrium point,
I µ < 0 a stable focus equilibrium point,

I ∴ center equilibrium point is not robust under small perturbations

I Node, focus, and saddle points are called structurally stable since their
qualitative behavior remains valid under small perturbations

I Center equilibrium point is not structurally stable
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Linear Perturbation

I A with nonzero real eigenvalues and small perturbation results in a pair of
complex eigenvalues

I ∴ a stable(unstable) node remains stable(unstable) node or changes to
stable(unstable) focus.

I When A has eigenvalues at zero, perturbations moves eigenvalues away
from zero  major change in phase prostrate:

1. λ1 = 0 λ2 6= 0
I Perturbation of the zero eigenvalue ⇒ λ1 = µ, µ is positive or negative.
I λ2 6= 0 ⇒ its perturbation keeps it away from zero.
I Two real distinct eigenvalues ⇒ depends on sign of µ and λ2 equilibrium

point of perturbed systems is node or saddle point
I Since |λ1| � |λ2| ⇒ eλ2t changes faster  results in the typical portraits
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Linear Perturbation λ1 = 0 λ2 6= 0

I Similar to case 4.1, trajectories starting off the eigenvector v1 and
converge to that vector along lines parallel to v2.

I But as they approach to the vector v1 they become tangent to it and
move along.

I If µ > 0  tends to ∞ (saddle point)
I If µ < 0  converges to 0 (stable node)
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Linear Perturbation λ1 = λ2 = 0

2. Both eigenvalues of A are zero
I Four possible perturbations of the Jordan form will be:[

0 1
−µ2 0

]
︸ ︷︷ ︸

center

,

[
µ 1
−µ2 µ

]
︸ ︷︷ ︸

focus

,

[
µ 1
0 µ

]
︸ ︷︷ ︸

node

,

[
µ 1
0 −µ

]
︸ ︷︷ ︸

saddle

I ∴ The perturbations may results in all possible phase portraits of an isolated
point : a center, focus, node or a saddle point.
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I Multiple Equilibria
I Linear systems can have

I an isolated equilibrium point or
I a continuum of equilibrium points (When detA = 0)

I Unlike linear systems, nonlinear systems can have multiple isolated
equilibria.

I Qualitative behavior of second-order nonlinear system can be
investigated by

I generating phase portrait of system globally by computer programs
I linearize the system around equilibria and study the system behavior near

them without drawing the phase portrait
I Let (x10, x20) are equilibrium points of

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2) (4)

I f1, f2 are continuously differentiable about (x10, x20)
I Since we are interested in trajectories near (x10, x20), define

x1 = y1 + x10, x2 = y2 + x20

I y1, y2 are small perturbations form equilibrium point.
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Qualitative Behavior Near Equilibrium Points
I Expanding (4) into its Taylor series

ẋ1 = ẋ10 + ẏ1 = f1(x10, x20)︸ ︷︷ ︸
0

+
∂f1
∂x1

∣∣∣∣
(x10,x20)

y1 +
∂f1
∂x2

∣∣∣∣
(x10,x20)

y2 + H.O.T .

ẋ2 = ẋ20 + ẏ2 = f2(x10, x20)︸ ︷︷ ︸
0

+
∂f2
∂x1

∣∣∣∣
(x10,x20)

y1 +
∂f2
∂x2

∣∣∣∣
(x10,x20)

y2 + H.O.T .

I For sufficiently small neighborhood of equilibrium points, H.O.T. are
negligible {

ẏ1 = a11y1 + a12y2

ẏ2 = a21y1 + a22y2
, aij =

∂fi
∂x

∣∣∣∣
x0

, i = 1, 2

I The equilibrium point of the linear system is (y1 = y2 = 0)

ẏ = Ay , A =

[
a11 a12

a21 a22

]
=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

∂f

∂x

∣∣∣∣
x0
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Qualitative Behavior Near Equilibrium Points

I Matrix ∂f
∂x is called Jacobian Matrix.

I The trajectories of the nonlinear system in a small neighborhood of an
equilibrium point are close to the trajectories of its linearization about
that point:

I if the origin of the linearized state equation is a
I stable (unstable) node, or a stable (unstable) focus or a saddle point,

I then in a small neighborhood of the equilibrium point, the trajectory of
the nonlinear system will behave like a

I stable (unstable) node, or a stable (unstable) focus or a saddle point.
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Example: Tunnel Diode Circuit

ẋ1 =
1

C
[−h(x1) + x2]

ẋ2 =
1

L
[−x1 − Rx2 + u]

I u = 1.2v , R = 1.5K Ω, C = 2pF , L = 5µH, time in nanosecond, current
in mA

ẋ1 = 0.5[−h(x1) + x2]

ẋ2 = 0.2[−x1 − 1.5x2 + 1.2]

I Suppose h(x1) = 17.76x1 − 103.79x2
1 + 229.62x3

1 − 226.31x4
1 + 83.72x5

1

I equilibrium points (ẋ1 = ẋ2 = 0):
Q1 = (0.063, 0.758), Q2 = (0.285, 0.61), Q3 = (0.884, 0.21)
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Example: Tunnel Diode Circuit
I The global phase portrait is generated by

a computer program is shown in Fig.

I Except for two special trajectories which
approach Q2, all trajectories approach
either Q1 or Q3.

I Near equilibrium points Q1 and Q3 are
stable nodes,Q2 is like saddle point.

I The two special trajectories from a curve
that divides the plane into two halves with
different behavior (separatrix curves).

I All trajectories originating from left side
of the curve approach to Q1

I All trajectories originating from left side
of the curve approach to Q3
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Tunnel Diode:Qualitative Behavior Near Equilibrium Points
I Jacobian matrix

∂f

∂x
=

[
0.5h́(x1) 0.5
−0.2 −0.3

]
h́(x1) =

dh

dx1
= 17.76− 207.58x1 + 688.86x2

1 − 905.24x3
1 + 418.6x4

1

I Evaluate the Jacobian matrix at the equilibriums Q1, Q2, Q3:

Q1 = (0.063, 0.758), A1 =

[
−3.598 0.5
−0.2 −0.3

]
, λ1 = −3.57, λ2 = −0.33 stable focus

Q2 = (0.285, 0.61), A2 =

[
1.82 0.5
−0.2 −0.3

]
, λ1 = 1.77, λ2 = −0.25 saddle point

Q3 = (0.884, 0.21), A3 =

[
−1.427 0.5
−0.2 −0.3

]
, λ1 = −1.33, λ2 = −0.4 stable node

I ∴ similar results given from global phase portrait.
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Tunnel Diode Circuit

I In practice, There are only two stable equilibrium points: Q1 or Q3.
I Equilibrium point at Q2 in never observed,

I Even if set up the exact initial conditions corresponding t Q2, the
ever-present physical noise causes the trajectory to diverge from Q2

I Such circuit is called bistable, since it has two steady-state operating
points.

I Triggering formQ1 to Q3 or vice versa is achieved by changing the load
line
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Example: Pendulum

ẋ1 = x2

ẋ2 =
g

l
sin x1 −

k

m
x2,

g

l
= 1,

k

m
= 0.5

I A computer-generated phase portrait is shown
in Fig.

I It is periodic in x1 with period 2π

I The trajectories approach to diff. Euq. points
corresponding to # of full swings before
settling down.

I The trajectories starting at points A and B
have same initial position but diff. speed.

I Trajectory starting at B has more initial
kinetic energy  makes a full swing before
settle down.
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Example: Pendulum

I All distinct feature of the system’s
qualitative behavior can be captured in
−Π < x1 ≤ Π.

I equilibrium point at this period are: (0, 0)
and (π, 0).

I Except the specific trajectories which end
up to the unstable equilibrium point (Π, 0)

I All trajectories approach to origin (stable
equilibrium point)

I Unstable equilibrium points are not
observable because of noise and etc.  
the trajectories diverge from them.
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Pendulum:Qualitative Behavior Near Equilibrium Points

I Jacobian matrix

∂f

∂x
=

[
0 1

− cos x1 −0.5

]
Q1 = (0, 0) : A1 =

[
0 1
−1 −0.5

]
, λ1,2 = −0.25± j0.097stable node

Q2 = (π, 0) : A2 =

[
0 1
1 −0.5

]
, λ1 = −1.28, λ2 = 0.78 saddle point
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I Special case: If the Jacobian matrix has eigenvalues on jω, then the
qualitative behavior of nonlinear system near the equilibrium point could
be quite distinct from the linearized one.

I Example:
ẋ1 = −x2 − µx1(x2

1 + x2
2 )

ẋ2 = x1 − µx2(x2
1 + x2

2 )

I It has equilibrium point at origin x∗ = 0.

A =

[
0 −1
1 0

]
⇒ λ1,2 = ±j ⇒ center

I Now consider the nonlinear system

x1 = r cos θ, x2 = r sin θ ⇒ ṙ = µr3, θ̇ = 1

I ∴ nonlinear system is stable if µ > 0 and is unstable if µ < 0

I ∴ the qualitative behavior of nonlinear and linearized one are different.
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Limit Cycle

I A system oscillates when it has a nontrivial periodic solution

x(t + T ) = x(t), ∀t ≥ 0, for someT > 0

I The word ”nontrivial” is used to exclude the constant solutions.

I The image of a periodic solution in the phase portrait is a closed
trajectory, calling periodic orbit or closed orbit.

I We have already seen oscillation of linear system with eigenvalues ±jβ.

I The origin of the system is a center, and the trajectories are closed

I the solution in Jordan form:
z1(t) = r0 cos(βt + θ0), z2 = r0 sin(βt + θ0)

r0 =
√

z2
10 + z2

20, θ0 = tan−1 z20

z10
I r0: amplitude of oscillation

I Such oscillation where there is a continuum of closed orbits is referred to
harmonic oscillator.
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Limit Cycle

I The physical mechanism leading to these oscillations is a periodic exchange of
energy stored in the capacitor (electric field) and the inductor (magnetic field).

I We have seen that such oscillation is not robust any small perturbations
destroy the oscillation.

I The linear oscillator is not structurally stable

I The amplitude of the oscillation depends on the initial conditions.

I These problems can be eliminated in nonlinear oscillators. A practical nonlinear
oscillator can be build such that

I The nonlinear oscillator is structurally stable
I The amplitude of oscillation (at steady state) is independent of initial

conditions.
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Limit Cycle

I On phase plane, a limit cycle is defined as an isolated closed orbit.
I For limit cycle the trajectory should be

1. closed: indicating the periodic nature of the motion
2. isolated: indicating limiting nature of the cycle with nearby trajectories

converging to/ diverging from it.

I The mass spring damper does not have limit cycle; they are not isolated.
I Depends on trajectories motion pattern in vicinity of limit cycles, there

are three type of limit cycle:
I Stable Limit Cycles: as t →∞ all trajectories in the vicinity converge to

the limit cycle.
I Unstable Limit Cycles: as t →∞ all trajectories in the vicinity diverge from

the limit cycle.
I Semi-stable Limit Cycles: as t →∞ some trajectories in the vicinity

converge to/ and some diverge from the limit cycle.
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Limit Cycle

Farzaneh Abdollahi Nonlinear Control Lecture 2 47/68



Introduction Phase Plane Qualitative Behavior of Linear Systems Local Behavior of Nonlinear Systems

Example1.a: stable limit cycle

ẋ1 = x2 − x1(x2
1 + x2

2 − 1)

ẋ2 = −x1 − x2(x2
1 + x2

2 − 1)

I Polar coordinates (x1 := rcos(θ), x2 =: rsin(θ))

ṙ = −r(r2 − 1)

θ̇ = −1

I If trajectories start on the unit circle (x2
1 (0) + x2

2 (0) = r2 = 1), then
ṙ = 0 =⇒ The trajectory will circle the origin of the phase plane with
period of 1

2π .

I r < 1 =⇒ ṙ > 0 =⇒ trajectories converges to the unit circle from inside.

I r > 1 =⇒ ṙ < 0 =⇒ trajectories converges to the unit circle from
outside.

I Unit circle is a stable limit cycle for this system.
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Example1.b: unstable limit cycle
ẋ1 = x2 + x1(x2

1 + x2
2 − 1)

ẋ2 = −x1 + x2(x2
1 + x2

2 − 1)

I Polar coordinates (x1 := rcos(θ), x2 =: rsin(θ))

ṙ = r(r2 − 1)

θ̇ = −1

I If trajectories start on the unit circle (x2
1 (0) + x2

2 (0) = r2 = 1), then
ṙ = 0 =⇒ The trajectory will circle the origin of the phase plane with
period of 1

2π .

I r < 1 =⇒ ṙ < 0 =⇒ trajectories diverges from the unit circle from
inside.

I r > 1 =⇒ ṙ > 0 =⇒ trajectories diverges from the unit circle from
outside.

I Unit circle is an unstable limit cycle for this system.
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Example1.c: semi stable limit cycle
ẋ1 = x2 − x1(x2

1 + x2
2 − 1)2

ẋ2 = −x1 − x2(x2
1 + x2

2 − 1)2

I Polar coordinates (x1 := rcos(θ), x2 =: rsin(θ))

ṙ = −r(r2 − 1)2

θ̇ = −1

I If trajectories start on the unit circle (x2
1 (0) + x2

2 (0) = r2 = 1), then
ṙ = 0 =⇒ The trajectory will circle the origin of the phase plane with
period of 1

2π .

I r < 1 =⇒ ṙ < 0 =⇒ trajectories diverges from the unit circle from
inside.

I r > 1 =⇒ ṙ < 0 =⇒ trajectories converges to the unit circle from
outside.

I Unit circle is a semi-stable limit cycle for this system.
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Example2:Negative Resistance Oscillator

I Negative oscillators are important
class of electronic oscillators.

I assuming inductor and capacitor are linear

I Resistive element is active:
i = h(v), h(0) = 0, h́(0) < 0
h(v)→ ±∞ as v → ±∞.

h́(v): first derivative of h(v) respect to v

I Applying KCL leads to the state equation:

ẋ1 = x2

ẋ2 = −x1 − εh́(x1)x2

ε =
√

L/C , x1 = v , x2 = v̇
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Example2:Negative Resistance Oscillator

I It has only one equilibrium point in origin.

I Jacobian matrix

A =
∂f

∂x
|x=0 =

[
0 1

−1 εh́(0)

]
I h́(0) < 0 , the origin is either an unstable node or unstable focus,

depending on the value of εh́(0).

I Trajectories diverge away from origin and head toward infinity.

I This feature is due to the negative resistance of the resistive element near
the origin  it supplies energy.
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Example2:Negative Resistance Oscillator

I This point can be seen analytically by studying the system energy

E =
1

2
Cv2

C +
1

2
Li2L , vC = x1, iL = −h(x1)− 1

ε
x2, ε =

√
L/C

Ė = C{x1ẋ1 + [εh(x1) + x2][εh́(x1)ẋ1 + ẋ2]}
= C{x1x2 + [εh(x1) + x2][εh́(x1)x2 − x1 − εh́(x1)x2]}
= C [x1x2 + εh(x1)x1 − x1x2] = −εCx1h(x1)

I Near origin the trajectory gains energy since : for all small |x1|, the term
x1h(x1) is negative.
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Example2:Negative Resistance Oscillator

I According to the Fig., h(x1) gains energy
within the strip −a ≤ x1 ≤ b and loses
outside the strip.

I There is an exchange of energy when
the trajectory gets inside and outside
of the strip.

I A stationary oscillation occurs when
along a trajectory the net exchange of the
energy over one cycle is zero.

I Such a trajectory will be closed orbit.

I The negative-resistance oscillator has
such a property.
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Example2:Negative Resistance Oscillator
I If h́(x1) = −(1− x2

1 ), the oscillator is named
Van-der-Pol oscillator:

ẋ1 = x2

ẋ2 = −x1 − ε(1− x2
1 )x2

I The phase portraits for three values of ε is
shown: small (ε = 0.2), medium (ε = 1),
large (ε = 5)

I In all three cases: a unique closed orbit
attracts all trajectories starting off the orbit.

I For small ε: the closed orbit is a smooth orbit,
close to a circle of radius 2 ( for ε < 0.3).

I For medium ε : the circular shape of the
closed orbit is distorted.

I For Large ε : the cloaed orbit is severly
distorted.
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Example2:Negative Resistance Oscillator

I In Var-der-Pol oscillator has
I only one isolated stable periodic orbit
I untable node at origin.

I Example for unstable limit cycle: Van=der-Pol oscillator in reverse time

ẋ1 = −x2

ẋ2 = x1 − ε(1− x2
1 )x2
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Bendixson’s Criterion: Nonexistence Theorem of Limit Cycle

I Gives a sufficient condition for nonexistence of a periodic solution:

I Suppose Ω is simply connected region in 2-dimention space in this region
we define ∇f = ∂f1

∂x1
+ ∂f2

∂x2
. If ∇f is not identically zero over any

subregion of Ω and does not change sign in Ω, then Ω contain no limit
cycle for the nonlinear system

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
I Simply connected set: the boundary of the set is connected + the set is

connected
I Connected set: for connecting any two points belong to the set, there is a

line which remains in the set.
I The boundary of the set is connected if for connecting any two points

belong to boundary of the set there is a line which does not cross the set

exmaple of connected but not simply connected set
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Bendixson’s Criterion
I Proof by contradiction:

I Recall that dx2

dx1
= f2

f1
=⇒ f2dx1 − f1dx2 = 0,

I ∴ Along a closed curve L of a limit cycle:∫
L

(f2dx1 − f1dx2) = 0

I Using Stoke’s Theorem: (
∫
L

f .ndl =
∫ ∫

S
∇fds = 0 S is enclosed by L)∫ ∫

S

(
∂f1
∂x1

+
∂f2
∂x2

)
dx1dx2 = 0

I This is true if
I ∇f = 0 ∀x ∈ S or
I ∇f changes sign in S

I This is in contradiction with the assumption that ∂f1
∂x1

+ ∂f2
∂x2

does not vanish
and does not change sign there is no closed trajectory.
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Nonexistence Theorem of Periodic Solutions for Linear
Systems

I Sufficient condition for nonexistence of a periodic solution in linear
systems:

ẋ1 = a11x1 + a12x2

ẋ2 = a21x1 + a22x2

I ∴ ∂f1
∂x1

+ ∂f2
∂x2

= a11 + a22 6= 0=⇒ no periodic sol.

I This is consistent with eigenvalue analysis form of center point which is
obtained for periodic solutions:

λ2 − (a11 + a22)λ+ (a11a22 − a12a21) = 0

center ∴ a11 + a22 = 0, a11a22 − a12a21 > 0
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Limit Cycle
I Example for nonexistence of limit cycle

ẋ1 = g(x2) + 4x1x2
2

ẋ2 = h(x1) + 4x2
1 x2

I ∴ ∂f1
∂x1

+ ∂f2
∂x2

= 4(x2
1 + x2

2 ) > 0 ∀x ∈ R2

I No limit cycle exist in R2 for this system.

I Note that: there is no equivalent theorem for higher order systems.
I Positive Limit Set:

I Let x(t) be a solution of the nonlinear system
I A point z̄ is called a positive limit point of the sol. trajectory x if

∃ a sequence tn, s.t. lim
n−→∞

tn −→ ∞ and lim
n−→∞

x(tn) = z̄

I The set of all positive limit points of x(t) is called the positive limit set of
x(t).
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Poincare-Bendixson Criterion: Existence Theorem of Limit Cycle

I If there exists a closed and bounded set M s.t.

1. M contains no equilibrium point or contains only one equilibrium point such
that the Jacobian matrix ∂f

∂x at this point has eigenvalues with positive real
parts (unstable focus or node).

2. Every trajectory starting in M stays in M for all future time

=⇒ M contains a periodic solution

I The idea behind the theorem is that all possible shape of limit points in a
plane (R2) are either equilibrium points or periodic solutions.

I Hence, if the positive limit set contains no equilibrium point, it must have
a periodic solution.
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Poincare-Bendixson Criterion: Existence Theorem of Limit Cycle

I If M has unstable node/focus, in vicinity
of that equilibrium point all trajectories
move away

I By excluding the vicinity of unstable
node/focus, the set M is free of
equilibrium and all trajectories are trapped
in it.

I No equivalent theorem for Rn, n ≥ 3.

I A solution could be bounded in R3, but
neither it is periodic nor it tends to a
periodic solution.
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Example for Existence Theorem of Limit Cycle

ẋ1 = −x2 − x1(x2
1 + x2

2 − 1)

ẋ2 = x1 − x2(x2
1 + x2

2 − 1)

I Polar coordinate:
ṙ = (1− r2)r

θ̇ = −1

I ṙ ≤ 0 for r ≥ 1 + η1, η1 > 0
I ṙ ≥ 0for r ≤ 1− η2, 1 > η2 > 0

I The area found by the circles with radius
1− η2 and 1 + η1 satisfies the condition
of the P.B. theorem  a periodic solution
exists.
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Existence Theorem of Limit Cycle
I A method to investigate whether or not trajectories remain inside M:

I Consider a simple closed curve V (x) = c , where V (x) is a p.d.
continuously differentiable function

I The vector f at a point x on the curve points
I inward if the inner product of f and the gradient vector ∇V (x) is negative:

f (x).∇V (x) =
∂V

∂x1
f1(x) +

∂V

∂x2
f2(x) < 0

I outward if f (x).∇V (x) > 0
I tangent to the curve if f (x).∇V (x) = 0.

I Trajectories can leave a set only if the vector filed points outward at some
points on the boundary.

I For a set of the form M = {V (x) ≤ c}, for some c > 0, trajectories
trapped inside M if f (x).∇V (x) ≤ 0 on the boundary of M.

I For an annular region of the form M = {W (x) > c1 and V (x) ≤ c2} for
some c1, c2 > 0, trajectories remain inside M if f (x).∇V (x) ≤ 0 on
V (x) = c2 and f (x).∇W (x) ≥ 0 on W (x) = c1.

Farzaneh Abdollahi Nonlinear Control Lecture 2 64/68



Introduction Phase Plane Qualitative Behavior of Linear Systems Local Behavior of Nonlinear Systems

Example for Existence Theorem of Limit Cycle

I Consider the system

ẋ1 = x1 + x2 − x1(x2
1 + x2

2 )

ẋ2 = −2x1 + x2 − x2(x2
1 + x2

2 )

I The system has a unique equilibrium point at the origin.

I The Jacobian matrix

∂f

∂x

∣∣∣∣
x=0

=

[
1− 3x2

1 − x2
2 1− 2x1x2

−2− 2x1x2 1− x2
1 − 3x2

2

]
x=0

=

[
1 1
−2 1

]
I has eigenvalues at 1± j

√
2

I Let M = V (x) ≤ c , where V (x) = x2
1 + x2

2 .

I M is bounded and contains one eignenvalue with positive real part
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Example for Existence Theorem of Limit Cycle

I On the surface V (x) = c , we have

∂V

∂x1
f1(x) +

∂V

∂x2
f2(x) = 2x1[x1 + x2 − x1(x2

1 + x2
2 )]

+2x2[−2x1 + x2 − x2(x2
1 + x2

2 )]

= 2(x2
1 + x2

2 )− 2(x2
1 + x2

2 )2 − 2x1x2

≤ 2(x2
1 + x2

2 )− 2(x2
1 + x2

2 )2 + (x2
1 + x2

2 ) = 3c − 2c2

I Choosing c > 1.5 ensures that all trajectories trapped inside M.

I ∴ by PB criterion, there exits at least one periodic orbit.

Farzaneh Abdollahi Nonlinear Control Lecture 2 66/68



Introduction Phase Plane Qualitative Behavior of Linear Systems Local Behavior of Nonlinear Systems

Index Theorem

I Inside any periodic orbit γ, there must be at least one equilibrium point.
Suppose the equilibrium points inside γ are hyperbolic, then if N is the
number of nodes and foci and S is the number of saddles, it must be that
N − S = 1.

I An equilibrium point is hyperbolic if the jacobian at that point has no
eigenvalue on the imaginary axis.

I It is useful in ruling out the existence of periodic orbits
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Index Theorem

I Example: The system

ẋ1 = −x1 + x1x2

ẋ1 = x1 + x2 − 2x1x2

I has two equilibrium points at (0, 0) and (1, 1). The Jacobian:[
∂f

∂x

]∣∣∣∣
(0,0)

=

[
−1 0
1 1

]
;

[
∂f

∂x

]∣∣∣∣
(1,1)

=

[
0 1
−1 −1

]
I (0, 0) is a saddle point and (1, 1) is a stable focus.

I Only a single focus can be encircled by a stable focus.

I Periodic orbit in other region such as that encircling both Eq. points are
ruled out.
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