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Introduction

» Phase Plane Analysis: is a graphical
method for studying second-order systems
by

» providing motion trajectories
corresponding to various initial
conditions.

> then examine the qualitative features of
the trajectories.

» finally obtaining information regarding
the stability and other motion patterns
of the system.

» It was introduced by mathematicians such
as Henri Poincar in 19th century.

http://en.wikipedia.org/wiki/Henri_PoincarC3%A9
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Introduction
(0]

Motivations

» Importance of Knowing Phase Plane Analysis:

» Since it is on second-order, the solution trajectories can be
represented by carves in plane ~ provides easy visualization of the
system qualitative behavior.

» Without solving the nonlinear equations analytically, one can study
the behavior of the nonlinear system from various initial conditions.

> |t is not restricted to small or smooth nonlinearities and applies
equally well to strong and hard nonlinearities.

» There are lots of practical systems which can be approximated by
second-order systems, and apply phase plane analysis.

» Disadvantage of Phase Plane Method: It is restricted to at most
second-order and graphical study of higher-order is computationally
and geometrically complex.
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Int ion Plane alitati 3 i Linear Syst

Concept of Phase Plane

» Phase plane method is applied to autonomous 2nd order system
described as follows:

x1 = f(x1,x2) (1)
xp = fh(x1,x2) (2)

> fi, h:R>?—=R.

» System response (x(t) = (x1(t), x2(t))) to initial condition
X0 = (x10, x20) is a mapping from R to R2.

» The x; — x» plane is called State plane or Phase plane

» The locus in the x; — x2 plane of the solution x(t) for all t >0 is a
curve named trajectory or orbit that passes through the point xg

» The family of phase plane trajectories corresponding to various initial
conditions is called Phase protrait of the system.
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f Linear Systen

Example 1. Phase portrait of a friction-less mass-spring

» Dynamic of friction-less
mass-spring shown in Fig. is

X+x=0

» If the mass is at rest at length of

Xg. then

x(t) = xpcost ~ x(t) = —xpsin t.
» Eliminating ¢ yields x? + X% = x3. 3
» . the trajectories are circle with

center of 0 and radius of xg.

» System trajectories neither
converge to origin nor diverge to ®
Inflnity > |t iS mal’glna“y Stable A mass-spring system and its phase portrait
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In Phase Plane Qualitat avio 2 or Nonl

Singular Points

» Consider Eqgs (1) and (2)
X _ blax) _ 0

> At equilibrium points 5 = 0,50 =0 ~ 2 = Foaxa) = 0 (itis
indefinite).

» For this reason, equilibrium points are also called singular points.

» Singular point is an important concepts which reveals great info
about properties of system such as stability.
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Linear S

How to Construct Phase Plane Trajectories?

» Despite of exiting several routines to
generate the phase portraits by computer, it
is useful to learn roughly sketch the portraits
or quickly verify the computer outputs.

» Some methods named: Isocline, Vector field
diagram, delta method, Pell's method, etc 2

» Vector Field Diagram: s -0
» Revisiting (1) and (2):
( ) . . x= (1,1) «
x=f(x) = { f(x) ] x = (X1, %2) X
» To each vector (xi,x2), a corresponding Vector field representation.

vector (fi(x1,x2), fi(x1,x2)) known as a
vector field is associated.
» Example: If f(x) = (2x2, x2), for
x = (1,1), next point is
1,1)+(2,1) = (3,2
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Vector Field Diagram

» By repeating this for sufficient point
in the state space, a vector field
diagram is obtained.

» Noting that Do — %w vector field at

dxy
a point is tangent to trajectory

through that point.
» .. starting from xo and by using the
vector field with sufficient points,
the trajectory can be constructed.

» Example: Pendulum without friction

X1 = Xo

xo = —10sinxg

Farzaneh Abdollahi Nonlinear Control
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of Linear Systems

Isocline Method

» The term isocline derives from the Greek words for " same slope.”
» Consider again Eqgs (1) and (2), the slope of the trajectory at point x:

_dx H(x,x)

S(x)

B dixl B ﬂ(X17X2)

» An isocline with slope « is defined as S(x) = «

» . all the points on the curve f(x1,x2) = afi(x1,x2) have the same
tangent slope a.

» Note that the "time" is eliminated here = The responses xi(t) and xx(t)
cannot be obtained directly.

» Only qualitative behavior can be concluded, such as stable or oscillatory
response.
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Phase Plane Qu
O

Isocline Method

» The algorithm of constructing the phase portrait by isocline method:

1. Plot the curve S(x) = « in state-space (phase plane)
2. Draw small line with slope .. Note that the direction of the line depends on
the sign of f; and £, at that point.

: /
f1>0 f1<0
5H>0 £<0

Isocline with positive slope.

3. Repeat the process for sufficient number of « s.t. the phase plane is full of
isoclines.
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or of Linez

Example: Pendulum without Friction

» Consider the dynamics x; = x2, X2 = —sinxy .".S(x) = %;’Xl =c
» Isoclines: x» = %sinxl

» Trajectories for different init. conditions can be obtained by using the
given algorithm

> The response for xo = (5, 0) is depicted in Fig.

> The closed curve traiectorv confirms marginal stabilitv of the system.

Graphical construction of the phase portrait of the pendulum
equation (without friction) by the isocline method.
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Introduction  Phase Plane C £ € of Linear Systems

Example: Pendulum with Friction

» Dynamics of pendulum with friction:

X1 =X, X = —0.5X2 —sinx; .5(x) = =05 — ¢

> Isoclines: x» = sinxy

0.5+c¢ 5+c
» Similar Isoclines but with different slopes
» Trajectory is drawn for xp = (g, 0)

» The trajectory shrinks like an spiral converging to the origin

Graphical construction of the phase portrait of the pend
equation (with friction) by the isocline method.

Farzaneh Abdollahi Nonlinear Control Lecture 2 13/68



r of Linear Systems

Qualitative Behavior of Linear Systems
» First we analyze the phase plane of linear systems since the behavior of
nonlinear systems around equilibrium points is similar of linear ones

» For LTI system:
x=Ax, A€ R?*? xy:initial state~x(t) = Me "t M~1xg
Jy+ Jordan block of A, M : Matrix of eigenvectors M~1AM = J,

» Depending on the eigenvalues of A, J, has one of the following forms:

. - a0
Ai ¢ real & distinct ~~ J, = 0 ]
. A\ Kk
Ai ¢ real & multiple ~ J, = 0 ) } . k=0,1,
) — _ [ a -
Aj . complex ~» J, = 5 a ]

» The sistem behavior i is dlfferent at each case
Farzaneh Abdollahi Nonlinear Control Lecture 2 14/68



tio ’lane  Quali f Linear Systems

Case 1: \1 A\ #0

» In this case M = [v; v»| where v; and v, are real eigenvectors associated
with A1 and \»

» To transform the system into two decoupled first-order diff equations, let
z=M"1x:
21 = )\121

22 = )\222
» The solution for initial states (zo1, Zo2):

Art Aot
9

Zl(t) = Zzjp€ Zz(t):ZQ()e

eliminating t~zy = Cz{\Z/Al, szzo/(21o)’\2/)‘1 (3)

» Phase portrait is obtained by changing C € R and plotting (3).
» The phase portrait depends on the sign of A1 and .
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f Linear Systems or of Nonlir

Casell A <A\ <0

At Aot

» t — 0o = the terms e™!* and e™?" tend to zero
» Trajectories from entire state-space tend to
origin ~~ stable
node. ;
Aot

v

et — Q faster ~~ Ay is fast eignevalue and \ \ \

v» is fast eigenvector.

Slope of the curves: dz = C (/\Q/AI_I) -

\{

v

A2 < A1 < 0~A2/A\1 > 1, s0 sIope is
» zeroaszg — 0
» infinity as z; — o0.

\

Phase portrait of a stable node in modal coo

v

. the trajectories are

> tangent to z; axis, as they approach to origin
» parallel to 2> axis, as they are far from origin.
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|!7T74»(1A1l,1ff(711 Pt Plane
Case 1.1: M < A1 <0

» Since z» approaches to zero faster than z;, trajectories are sliding
along z; axis
» In X plane also trajectories are:

» tangent to the slow eigenvector vy for near origin
» parallel to the fast eigenvector v, for far from origin

X2

X1

Phase portrait of a stable node,
Farzaneh Abdollahi Nonlinear Control Lecture 2 17/68



Introduction Pt Plane

Case 1.2: My > A1 >0

A1 Aot

> t — 00 = the terms e™? and e

» The shape of the trajectories are the same, with opposite directions
> unstable node

grow exponentially, so

Yo

;m
/

Phase portrait of an unstable node.
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Introduction Pt ane Qualitative Behavior of Linear Systems Loc

Case 1.3: \ry <0< )\
> t > o0 = et — 0, but eMt — 00,50

> )\, : stable eigenvalue, v,: stable eigenvector
> . unstable eigenvalue, vi: unstable eigenvector

» Trajectories are negative exponentials since f\‘—f is negative.

» Trajectories are

» decreasing in z direction, but increasing in z; direction
> tangent to z; as |z1]l — oo and tangent to z as Iz;] — 0

1

A
DA

Phase portrait of a saddle point in modal coordin:
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f Linear Systems >f Nonline

Case 1.3: \ry <0< )\
» The exceptions of this hyperbolic shape:

> two trajectories along z-axis — 0 as t — 0, called stable trajectories
> two trajectories along zj-axis — oo as t — 0, called unstable trajectories

» This equilibrium point is called saddle point

» Similarly in X plane, stable trajectories are along v», but unstable
trajectories are along the v;

» For A\; < 0 < A3 the direction of the traiectories are changed.

o :

Phase portrait of a saddle point.
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n e B of Linear Systems
O

Case 2: Complex Eigenvalues, A\;» = o £ j3
Z1 = az1— Bz
Z = Pzt azn

» The solution is oscillatory = polar coordinates
(r=1\/zZ2+22, 0= tanfl(i—i))

o= arwr(t) = et

0 = [~0(t) =06+ Bt

» This results in Z plane is a logarithmic spiral where @ determines the form
of the trajectories:
» o <0:ast— oco~r — 0 and angle 6 is rotating. The spiral converges to
origin = Stable Focus.
» o >0: as t — oo~r — 0o and angle @ is rotating. The spiral diverges
away from origin = Unstable Focus.

» « = 0: Trajectories are circles with radius )= Center
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Amirkabir

Introduction  Phase Plane Qualitative Behavior of Linear Systems Local Be jor of Nonlinear S S S oy

Case 2: Complex Eigenvalues, A\;» = o £ j3

Zy ) &2
; E§F|: 5 j 7 < i % ; Z] Z1
(a) (b) (c)

Typical trajectories in the case of complex eigenvalues.
(a) @ < 0; (b) &> 0; (c) &= 0.

Xo X3 20 ]
% ; X ; ? ; X X1
() (b) ()

Phase portraits for (a) a stable focus; (b) an unstable focus; (c)
a center.
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Farzaneh Abdollahi

Case 3: Nonzero Multiple Eigenvalues Ay = X\ = XA # 0

> Let z = M 1x:

21 = Aa+tkn, n=An
the solution is ZZl(t) = e’\t(zlo -+ kZ20t), Zg(t) = ZQOGAtW
k
4 = 2 [Zlo LIS (Zz)]
70 A \Zo0
» Phase portrait are depicted for k =0 and kK = 1.
» When the eignevectors are different ~~k = 0:

» similar to Case 1, for A < 0 is stable, A > 0 is .
» Decaying rate is the same for both modes (A1 = \») ~~ trajectories are lines

Phase portraits for the case of nonzero multiple eigenvalues when

:(a) < 0. 0
Nonlinear Control Lecture 2



Introduction ane itative Behavior of Linear Systems Local Behavi Nonlinear Sys

Case 3: Nonzero Multiple Eigenvalues Ay = X\ = XA # 0

» There is no fast-slow asymptote.

» k =1 is more complex, but it is still similar to Case 1:

22 %
. (b)

Z] Z

(@

Phase portraits for the case of nonzero multiple eigenvalues when
k=1 (a) A< 0; (b) A> 0.
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of Linear Systems

Case 4.1: One eigenvalue is zero Ay =0, A, #0

» A is singular in this case

» Every vector in null space of A is an
equilibrium point

» M =[v1 v], vi, v : corresponding
eigenvectors, v € N'(A).
21 = O, 22 = )\222

solution: z1(t) = 2z, z(t) = zx0e™!

» Phase portrait depends on sign of \:
» Ay < 0: Trajectories converge to
equilibrium line
» Xy > 0: Trajectories diverge from
equilibrium line

Farzaneh Abdollahi Nonlinear Control Lecture 2
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Qualltatlve Behavior of Linear Systems or of Nonlir
(0]

Case 4.2: Both eigenvalues zero A\; = A\, =0

> Let z = M~ 1x n = o,

2 =0
solution: Zl(t) = Zz10 + Zo0t, Zg(t) = 790
> z; linearly increases/decreases base on the sign of z
» 2, axis is equilibrium subspace in Z-plane
» Dotted line is equilibrium subspace

> The difference between Case 4.1 and 4.2: all trajectories start off the
equilibrium set move parallel to it.

Phase portraits when A; = Az = 0.
Farzaneh Abdollahi Nonlinear Control Lecture 2 26,68



Qualitative Beh of Linear Systems or Nonl

As Summary:

» Six types of equilibrium points can be identified:

» stable/unstable node
» saddle point

» stable/ unstable focus
> center

» Type of equilibrium point depends on sign of the eigenvalues

» If real part of eignevalues are Positive ~~ unstability
> If real part of eignevalues are Negative ~~ stability

» All properties for linear systems hold globally

» Properties for nonlinear systems only hold locally
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Linear System

Local Behavior of Nonlinear Systems

» Qualitative behavior of nonlinear systems is obtained locally by
linearization around the equilibrium points

» Type of the perturbations and reaction of the system to them determines
the degree of validity of this analysis

» A simple example: Consider the linear perturbation case
A — A+ AA, where AA € R2%2 : small perturbation
» Eigenvalues of a matrix continuously depend on its parameters
» Positive (Negative) eigenvalues of A remain positive (negative) under small
perturbations.
» For eigenvalues on the jw axis no matter how small perturbation is, it
changes the sign of eigenvalue.
» Therefore
» node or saddle point or focus equilibrium point remains the same under
small perturbations
» This analysis is not valid for a center equilibrium point
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Linear Perturbation

» Consider the following perturbation when equilibrium point is a center:

J, = [ —Iul i ] , W : perturbed parameter

> Regardless the size of i

» 1> 0~- an unstable focus equilibrium point,
» 1 < 0~ a stable focus equilibrium point,

» .. center equilibrium point is not robust under small perturbations

» Node, focus, and saddle points are called structurally stable since their
qualitative behavior remains valid under small perturbations

» Center equilibrium point is not structurally stable

Farzaneh Abdollahi Nonlinear Control Lecture 2 29/68



oduction Pt

Linear Perturbation

» A with nonzero real eigenvalues and small perturbation results in a pair of

complex eigenvalues
» . a stable(unstable) node remains stable(unstable) node or changes to
stable(unstable) focus.
» When A has eigenvalues at zero, perturbations moves eigenvalues away
from zero ~~ major change in phase prostrate:
1. =0 X\ #0
Perturbation of the zero eigenvalue = A1 = p, p is positive or negative.
A2 # 0 = its perturbation keeps it away from zero.
Two real distinct eigenvalues = depends on sign of p and A2 equilibrium

point of perturbed systems is node or saddle point
Since |A1] < |X2| = e?* changes faster ~~ results in the typical portraits

vYyy

v
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or of Linez s inear System:

e
(a)

(b)

Phase portraits of a

perturbed system when A; = 0 :
@ <0 () >0 IR

» Similar to case 4.1, trajectories starting off the eigenvector v; and
converge to that vector along lines parallel to v».

» But as they approach to the vector v; they become tangent to it and
move along.

» If 4 >0 ~~ tends to co (saddle point)

< 0 ~» converges to 0 (stable node

> |f
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Linear Perturbation A\ = X\, = 0

2. Both eigenvalues of A are zero
» Four possible perturbations of the Jordan form will be:

ERIERI IO

center focus node saddle

» . The perturbations may results in all possible phase portraits of an isolated
point : a center, focus, node or a saddle point.
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Introduction

» Linear systems can have

> an isolated equilibrium point  or
> a continuum of equilibrium points (When detA = 0)

» Qualitative behavior of second-order nonlinear system can be
investigated by
» generating phase portrait of system globally by computer programs
> linearize the system around equilibria and study the system behavior near
them without drawing the phase portrait
> Let (x10, x20) are equilibrium points of

1 = f(xi,x)
e = h(x,x) (4)

> fi, f are continuously differentiable about (xi0, x20)
> Since we are interested in trajectories near (xio, x20), define
X1 =Yy1+ X0, X2 =Yy2+ X0
> yi1, Y are small perturbations form equilibrium point.
Farzaneh Abdollahi Nonlinear Control Lecture 2 33/68



Introduction E ehavior of Linear Systems Local Behavior of No
[eYe) Q0000000000000

Qualitative Behavior Near Equilibrium Points
» Expanding (4) into its Taylor series

) } ) o0f Of

x1 = X10 + y1 = fi(x10, x20) + 871 y1+ 8—1 yo+H.O.T.
— X1 | (x10,%20) %2 | (x10,%20)

: } ) of; of;

X2 = X0 + Yo = fa(x10, X20) + 872 y1+ 872 v+ H.O.T.
— XL | (x10,%20) X2 | (x10,%20)

» For sufficiently small neighborhood of equilibrium points, H.O.T. are
negligible

i=anyitany, of;

yo=anyi+any: = U 0Ox

X0

» The equilibrium point of the linear system is (y1 = y» = 0)

ofi  Of of
. al  ar 3 I
= A s A = = o = —
Y Y [ a1 ax ] [ %é g%g 1 Ox o
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of Linear Systems Local Behavi
000000

Qualitative Behavior Near Equilibrium Points

> Matrix % is called Jacobian Matrix.

» The trajectories of the nonlinear system in a small neighborhood of an
equilibrium point are close to the trajectories of its linearization about
that point:

» if the origin of the linearized state equation is a

» stable (unstable) node, or a stable (unstable) focus or a saddle point,

» then in a small neighborhood of the equilibrium point, the trajectory of

the nonlinear system will behave like a
» stable (unstable) node, or a stable (unstable) focus or a saddle point.
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Introductio

Example: Tunnel Diode Circuit

= %[—h(xl) 4 %]

1
Xo = Z[—Xl — Rxo + U]

» u=12v, R=15KQ, C =2pF, L=>5uH, time in nanosecond, current
in mA

Xx] = 0.5[—h(X1) + X2]
Xy = 0.2[—X1 —1.5x + 1.2]

> Suppose h(x1) = 17.76x; — 103.79x% + 229.62x3 — 226.31x{ + 83.72xP
» equilibrium points (x; = X2 = 0):
@ = (0.063,0.758), @ = (0.285,0.61), Q; = (0.884,0.21)
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Example: Tunnel Diode Circuit
» The global phase portrait is generated by
a computer program is shown in Fig.

» Except for two special trajectories which
approach @, all trajectories approach
either Q1 or Q3.

» Near equilibrium points @1 and Q3 are
stable nodes, Q; is like saddle point.

121=

0.8

» The two special trajectories from a curve ,
that divides the plane into two halves with ,
different behavior ( ). i

Z04

» All trajectories originating from left side
of the curve approach to @

Phase portrait of the tunnel diode circuit

» All trajectories originating from left side
of the curve approach to @3
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Introduction of Linear Systems Local Behavior of Nonlinear Systems
[eYe) 0000000008 00000 0

Tunnel Diode:Qualitative Behavior Near Equilibrium Points

» Jacobian matrix

of [ 05h(x1) 05

ox -02 -03
, dh 2 3 4
h(x1) = —— = 17.76 —207.58x; + 688.86x7 — 905.24x} + 418.6x{

dxq
» Evaluate the Jacobian matrix at the equilibriums Q1, @2, Qs:

—3.598 0.5

Q: = (0.063,0.758), A, = { 02 03

} , A1 = —3.57, A\, = —0.33 stable focus

@, = (0.285,0.61), A, = { i§22 _0(')53 ] , A1 = 1.77, A = —0.25 saddle point
Qs = (0.884,0.21), A3 = [ 7_16437 _0653 ] , A1 = —1.33, A = —0.4 stable node

» - similar results given from global phase portrait:

Farzaneh Abdollahi Nonlinear Control Lecture 2




Tunnel Diode Circuit

» In practice, There are only two stable equilibrium points: Q1 or Q3.
» Equilibrium point at @, in never observed,

» Even if set up the exact initial conditions corresponding t Q,, the
ever-present physical noise causes the trajectory to diverge from @

» Such circuit is called bistable, since it has two steady-state operating
points.

» Triggering form@; to Qs or vice versa is achieved by changing the load
line

Farzaneh Abdollahi Nonlinear Control Lecture 2 39/68
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Example: Pendulum

).(1 = X2
k k
Xy = gsinxlf—xz, 5:1,—:0.5
/ m / m

» A computer-generated phase portrait is shown
in Fig.

» It is periodic in x; with period 27

» The trajectories approach to diff. Euq. points
corresponding to # of full swings before
settling down.

> The trajectories starting at points A and B
have same initial position but diff. speed.

Phase portrait of the pendulum equation

» Trajectory starting at B has more initial
kinetic energy ~~ makes a full swing before

settle down.
Farzaneh Abdollahi Nonlinear Control Lecture 2 40/68



f Linear Systems

Example: Pendulum

» All distinct feature of the system's
qualitative behavior can be captured in
—M<xg <TL

» equilibrium point at this period are: (0,0)
and (7, 0). ’ ,,

\
0 n

» Except the specific trajectories which end
up to the unstable equilibrium point (I1,0)

. . .. |
» All trajectories approach to origin (stable -

ey . ; _
equi | i brl um poi nt) L hase portrait of the Pendulum equation over the reg
= region

» Unstable equilibrium points are not
observable because of noise and etc. ~~
the trajectories diverge from them.
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Pendulum:Qualitative Behavior Near Equilibrium Points

» Jacobian matrix

of 0 1

Ox —cosx; —0.5

@ = (0,0): A = [ _01 _(1) 5 } , A1,2 = —0.25 £ j0.097stable node
0 1 )

@ = (7,0): A= [ 1 05 ] , A1 = —1.28, X\, = 0.78 saddle point

Farzaneh Abdollahi Nonlinear Control Lecture 2
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Ph ualitative B Line Local Beha of near Systems

feYe) " ) . . Q0000 e 00000 ’

» Special case: If the Jacobian matrix has eigenvalues on jw, then the
qualitative behavior of nonlinear system near the equilibrium point could
be quite distinct from the linearized one.

» Example: _ ) )
x1 = —xo— pxa(xy +x3)

X = x| — MXQ(Xl2 + X22)

» It has equilibrium point at origin x* = 0.

A:{(l) _01]:>)\172:j:j:> center

» Now consider the nonlinear system
x1 = rcosl, xo=rsinf=r=npr’, =1

» . nonlinear system is stable if © > 0 and is unstable if © < 0

» .. the qualitative behavior of nonlinear and linearized one are different.
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In ction Ph B

Limit Cycle

> A system oscillates when it has a nontrivial periodic solution
x(t+T) = x(t), Vt >0, for someT >0

The word " nontrivial” is used to exclude the constant solutions.

v

v

The image of a periodic solution in the phase portrait is a closed
trajectory, calling periodic orbit or closed orbit.

v

We have already seen oscillation of linear system with eigenvalues +j.

v

The origin of the system is a center, and the trajectories are closed

v

the solution in Jordan form:
z1(t) = rycos(Bt+ o), z2 = rosin(Bt + bp)

/ —1 220
n = Z]?0+Z2207 00 = tan 1 7
10

> ro: amplitude of oscillation _ o
» Such oscillation where there is a continuum of closed orbits is referred to

harmonic oscillator.
Farzaneh Abdollahi Nonlinear Control Lecture 2 44/68



In Phase 2 o 2 Local Behavior of No ar Systems

Limit Cycle

» The physical mechanism leading to these oscillations is a periodic exchange of
energy stored in the capacitor (electric field) and the inductor (magnetic field).

» We have seen that such oscillation is not robust~~ any small perturbations
destroy the oscillation.

» The linear oscillator is not structurally stable
» The amplitude of the oscillation depends on the initial conditions.

» These problems can be eliminated in nonlinear oscillators. A practical nonlinear
oscillator can be build such that

» The nonlinear oscillator is structurally stable
» The amplitude of oscillation (at steady state) is independent of initial
conditions.
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Limit Cycle

» On phase plane, a limit cycle is defined as an isolated closed orbit.
» For limit cycle the trajectory should be

1. closed: indicating the periodic nature of the motion
2. isolated: indicating limiting nature of the cycle with nearby trajectories
converging to/ diverging from it.

» The mass spring damper does not have limit cycle; they are not isolated.

> Depends on trajectories motion pattern in vicinity of limit cycles, there
are three type of limit cycle:

» Stable Limit Cycles: as t — oo all trajectories in the vicinity converge to
the limit cycle.

» Unstable Limit Cycles: as t — oo all trajectories in the vicinity diverge from
the limit cycle.

» Semi-stable Limit Cycles: as t — oo some trajectories in the vicinity
converge to/ and some diverge from the limit cycle.
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of Linear Syster ar Systems

Examplel.a: stable limit cycle

X1 = Xp— X1(x12 —|—x22 -1)
o = —x1—xo(xF+x3—1)
» Polar coordinates (x; := rcos(H) xo =: rsin(6))
= —r(r*-1)
0 = -1
> If trajectories start on the unit circle (x2(0) + x2(0) = r?> = 1), then
r = 0 = The trajectory will circle the origin of the phase plane with
period of i
» r <1 = F > 0= trajectories converges to the unit circle from inside.
» r>1 = r < 0 = trajectories converges to the unit circle from

outside.

» Unit circle is a stable limit cycle for this system.
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of Linear Syster

Examplel.b: unstable limit cycle
1 = xo+x(xF+x5—1)

X o= —x1+xa(xF+ x5 1)

» Polar coordinates (x1 := rcos(6), xa =: rsin(6))

= r(r2—1)
6 = -1

» If trajectories start on the unit circle (x?(0) + x2(0) = r?> = 1), then
r = 0 = The trajectory will circle the origin of the phase plane with
period of i

> r <1 = r < 0= trajectories diverges from the unit circle from
inside.

> r>1 = r > (0= trajectories diverges from the unit circle from
outside.

» Unit circle is an unstable limit cycle for this system.
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Examplel.c: semi stable limit cycle
x1 = xo—x1(xF + x5 —1)3

X o= —x1—xo(xF + x5 — 1)

» Polar coordinates (x1 := rcos(6), xa =: rsin(6))
Fo= —r(r*—1)>
0 = -1
» If trajectories start on the unit circle (x?(0) + x2(0) = r?> = 1), then
r = 0 = The trajectory will circle the origin of the phase plane with
period of i
> r <1 = r < 0= trajectories diverges from the unit circle from
inside.
» r>1 = r < 0= trajectories converges to the unit circle from
outside.

» Unit circle is a semi-stable limit cycle for this system.
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, ———

» Negative oscillators are important
class of electronic oscillators.

Resistive

Element

» assuming inductor and capacitor are linear

(a) Basic oscillator circuit

> Resistive element is active:
i=h(v), h(0)=0, h(0)<0 :
h(v) — £o0 as v — £oo.

h(v): first derivative of h(v) respect to v

v

» Applying KCL leads to the state equation:

(b) Typical nonlinear driving-point characteris tic
X1 = X
X = —x3 —eh(x1)x

e=/L/C, xy=v, xa=v
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Linear Syst Systems

Example2:Negative Resistance Oscillator

» It has only one equilibrium point in origin.
» Jacobian matrix

A_% o 1
T ox 0T | -1 eh(0)

> h(O) < 0~-, the origin is either an unstable node or unstable focus,
depending on the value of h(0).

» Trajectories diverge away from origin and head toward infinity.

» This feature is due to the negative resistance of the resistive element near
the origin ~~ it supplies energy.
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Introduction of Linear Systems

Example2:Negative Resistance Oscillator

» This point can be seen analytically by studying the system energy

1 1 1
= ECV%—i—ELiE, Ve = X1, il_:—h(xl)—gx2, e=+/L/C

= C{Xle + [Eh(Xl) + XQ][Elfl(Xl)).(l + Xz]} ,
C{x1x2 + [eh(x1) + x2][eh(x1)x2 — x1 — eh(x1)x2]}
= Clxaxa +eh(x1)x1 — xixz] = —eCxyh(x1)

» Near origin the trajectory gains energy since : for all small |x1|, the term
x1h(x1) is negative.
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Example2:Negative Resistance Oscillator

» According to the Fig., h(x1) gains energy
within the strip —a < x; < b and loses
outside the strip.

» There is an exchange of energy when
the trajectory gets inside and outside Y

of the strip. i by %1
» A stationary oscillation occurs when !

along a trajectory the net exchange of
. A sketch of h(z,) (solid) and —z1h(z1) (dashed) which shows
energy over one cycle is zero. postive for —a € 21 £ b.

» Such a trajectory will be closed orbit.

» The negative-resistance oscillator has
such a property.
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Example2:Negative Resistance Oscillator

> If h(x1) = —(1 — x2), the oscillator is named
Van-der-Pol oscillator:

).(1 = X2

o = —x1—e(l—xP)x

» The phase portraits for three values of ¢ is
shown: small (¢ = 0.2), medium (e = 1),
large (¢ = 5)

» In all three cases: a unique closed orbit
attracts all trajectories starting off the orbit.

» For small €: the closed orbit is a smooth orbit, - p7mv2a3m;u=o
close to a circle of radius 2 ( for ¢ < 0.3). 1XE

» For medium ¢ : the circular shape of the Z’ ?‘\\
closed orbit is distorted. £ z 4

» For Large € : the cloaed orbit is severly x N

distorted. s sortat of the.Van s PN e = .0
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Local Behavior of No ar Systems

Example2:Negative Resistance Oscillator

» In Var-der-Pol oscillator has

» only one isolated stable periodic orbit
» untable node at origin.

» Example for unstable limit cycle: Van=der-Pol oscillator in reverse time

X1 = —Xo

Xg = X1 *6(1 *X12)X2
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Bendixson's Criterion: Nonexistence Theorem of Limit Cycle

» Gives a sufficient condition for nonexistence of a periodic solution:

» Suppose Q is simply connected region in 2-dimention space in this region
we define Vf = g—fl + %’:22 If Vf is not identically zero over any
subregion of Q) and does not change sign in 2, then €2 contain no limit
cycle for the nonlinear system

x1 = fi(x1, %)
X2 = fx1,x)
» Simply connected set: the boundary of the set is connected + the set is

connected

» Connected set: for connecting any two points belong to the set, there is a
line which remains in the set.

» The boundary of the set is connected if for connecting any two points
belong to boundary of the set there is a line which does not cross the set

exmaple of connected but not simply connected set
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Bendixson's Criterion

» Proof by contradiction:

> Recall that $2 = 2 — fdx; — fidx, = 0,
". Along a cIosed curve L of a limit cycle:

/(fdel - fldXz) =0
L

» Using Stoke’s Theorem: (f, f.ndl = [ [ Vfds =0 S is enclosed by L)

0h of
// (8X1 8X2> dX1dX2 =0
» This is true if

» VF=0Vx€eSor
> Vf changes signin S
» This is in contradiction with the assumption that g}fll + % does not vanish

and does not change sign~> there is no closed trajectory
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Nonexistence Theorem of Periodic Solutions for Linear
Systems

» Sufficient condition for nonexistence of a periodic solution in linear

systems:
X1 = a11x1 + aexe
Xo = az1X1 + axnx2
of ofh __ odi
S T oe = ALt axn # 0= no periodic sol.

» This is consistent with eigenvalue analysis form of center point which is
obtained for periodic solutions:

A2 — (a1 + an) A+ (a11a20 — arzan) =0

center ", aij1+ax» =0, ajiaxp —apar >0

Farzaneh Abdollahi Nonlinear Control Lecture 2 59/68



Linear System

Limit Cycle

» Example for nonexistence of limit cycle
x1 = g(x) + 4x1x22
Xo = h(Xl) =+ 4X]?X2

. Of o __ 2 2 2

» No limit cycle exist in R? for this system.
» Note that: there is no equivalent theorem for higher order systems.
» Positive Limit Set:

> Let x(t) be a solution of the nonlinear system

» A point z is called a of the sol. trajectory x if

3 a sequence t,, s.t. lim t, — ooand lim x(t,) =2
n—-oo n—-o0

» The set of all positive limit points of x(t) is called the positive limit set of

x(t).
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Poincare-Bendixson Criterion: Existence Theorem of Limit Cycle

» If there exists a closed and bounded set M s.t.
1. M contains no equilibrium point or contains only one equilibrium point such

that the Jacobian matrix % at this point has eigenvalues with positive real

parts (unstable focus or node).
2. Every trajectory starting in M stays in M for all future time

» The idea behind the theorem is that all possible shape of limit points in a
plane (R?) are either equilibrium points or periodic solutions.

» Hence, if the positive limit set contains no equilibrium point, it must have
a periodic solution.
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or of Linez Local Behavior of No ar Systems
0000000000000 000800

Poincare-Bendixson Criterion: Existence Theorem of Limit Cycle

» If M has unstable node/focus, in vicinity
of that equilibrium point all trajectories
move away

» By excluding the vicinity of unstable
node/focus, the set M is free of
equilibrium and all trajectories are trapped
in it.

» No equivalent theorem for R", n > 3.

» A solution could be bounded in R3, but
neither it is periodic nor it tends to a
periodic solution.
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Example for Existence Theorem of Limit Cycle

1 = —xp—x1(xF+x3—1)
o = x1—x(q +x5 1)

» Polar coordinate:
Fo= (1-r)r

06 = -1
periodic sol.
r=i
» r<O0forr>1+mn, m >0 4

» F>0forr<l—1p, 1>m >0 %

» The area found by the circles with radius
1 — 1y and 1 4 11 satisfies the condition
of the P.B. theorem ~~ a periodic solution
exists.
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of Linear Syster

Existence Theorem of Limit Cycle
» A method to investigate whether or not trajectories remain inside M:

>

>

Consider a simple closed curve V(x) = ¢, where V(x) is a p.d.
continuously differentiable function
The vector f at a point x on the curve points

> inward if the inner product of f and the gradient vector VV/(x) is negative:

f(x).VV(x) = g—):ﬂ(x) + %ﬁ(x) <0

> outward if f(x).VV(x) >0

> tangent to the curve if f(x).VV(x) =0.
Trajectories can leave a set only if the vector filed points outward at some
points on the boundary.
For a set of the form M = {V/(x) < c}, for some ¢ > 0, trajectories
trapped inside M if f(x).VV/(x) < 0 on the boundary of M.
For an annular region of the form M = {W/(x) > ¢; and V(x) < ¢} for
some ¢1, ¢ > 0, trajectories remain inside M if f(x).VV(x) <0 on
V(x) = ¢ and f(x).VW(x) > 0 on W(x) = c1.
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Example for Existence Theorem of Limit Cycle

» Consider the system

o= xi+x—xi(¢ +x3)

o= —2x+x —x(x +X3)

v

The system has a unique equilibrium point at the origin.

v

The Jacobian matrix

of _[13x12x22 12x1X2} _[1 1}
0

Ox —2-2x1x0 1 —x%—3x3 -2 1

x=0

v

has eigenvalues at 1 + jv/2
Let M = V(x) < c, where V(x) = xZ + x3.

M is bounded and contains one eignenvalue with positive real part

v

v
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Linear Syst Systems

Example for Existence Theorem of Limit Cycle

» On the surface V(x) = ¢, we have

T+ 5 () = 2aba + 0 —xa0d +3)]
+2X2[_2X1 + Xy — X2(X]? + X22)]
— 2(X% + X22) — 2(X12 + X22)2 — 2X1X2

<204 +3) = 204 +x3)% + (€ +x3) = 3¢ — 2¢?

» Choosing ¢ > 1.5 ensures that all trajectories trapped inside M.

» .. by PB criterion, there exits at least one periodic orbit.
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Index Theorem

» Inside any periodic orbit 7, there must be at least one equilibrium point.
Suppose the equilibrium points inside «y are hyperbolic, then if N is the
number of nodes and foci and S is the number of saddles, it must be that

N—-S§S=1

» An equilibrium point is hyperbolic if the jacobian at that point has no
eigenvalue on the imaginary axis.

» It is useful in ruling out the existence of periodic orbits
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Linear Syst Systems

Index Theorem

» Example: The system

X1 = —X1+Xx1x2
X1 = X1+ Xx0—2x1x2
» has two equilibrium points at (0,0) and (1,1). The Jacobian:
£/ I SR 1 A ey
x| (0,0) 1 1] Ox]l(1,0) -1 -l
» (0,0) is a saddle point and (1,1) is a stable focus.
» Only a single focus can be encircled by a stable focus.
» Periodic orbit in other region such as that encircling both Eq. points are

ruled out.
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