Signals and Systems Lecture 1: Signals and Systems

Farzaneh Abdollahi

Department of Electrical Engineering
Amirkabir University of Technology

Winter 2012

What are Signals and Systems?

Signal
Signal Energy and Power
Transformations of Independent Variable Signal Properties
Complex Exponential Signals

Systems

System Properties

What are Signals and Systems?

- Signal: a function of one or several independent variables which conveys behavioral information of an event
- Give me some examples :)

What are Signals and Systems?

- Signal: a function of one or several independent variables which conveys behavioral information of an event
- Give me some examples :)
- System: It receives signals, processes them and produces novel signals

- Give me some examples :)

Signal

- In this course we consider signals with one independent variable.
- A signal can be
- Deterministic: It can be described by a math relation or a table. (Give me an example)
- Stochastic: It cannot been described by determined math relation. It may be defined by probability density function, distribution function or etc. (Give me an example)
- A signal also can be
- Continuous Time ($x(\mathrm{t})$): The independent variable (time) is continuous. (Example!)
- Discrete Time (x[n]): The independent variable (time) is discrete. (Example!)
- Digital: Both independent variable and signal domain are discrete.

Signal Energy and Power

- Usually the signals represent physical quantities \rightsquigarrow it captures power and energy
- Consider voltage $(\mathrm{v}(\mathrm{t}))$ and current $(\mathrm{i}(\mathrm{t}))$ across a resistor (R).
- The instantaneous power is: $p(t)=v(t) i(t)=\frac{1}{R} v^{2}(t)$
- Total energy over time interval $\left[t_{1}, t_{2}\right]: \int_{t_{1}}^{t_{2}} p(t) d t=\int_{t_{1}}^{t_{2}} \frac{1}{R} v^{2}(t) d t$
- Average power over time interval $\left[t_{1}, t_{2}\right]$:
$\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} p(t) d t=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} \frac{1}{R} v^{2}(t) d t$

Signal Energy and Power

- In general signals may take on complex values.
- General definition of total energy over time interval $\left[t_{1}, t_{2}\right] /\left[n_{1}, n_{2}\right]$:

$$
\int_{t_{1}}^{t_{2}}|x(t)|^{2} d t \quad \sum_{n_{1}}^{n_{2}}|x[n]|^{2}
$$

- General definition of average power over time interval $\left[t_{1}, t_{2}\right] /\left[n_{1}, n_{2}\right]$:

$$
\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}}|x(t)|^{2} d t \quad \frac{1}{n_{2}-n_{1}+1} \sum_{n_{1}}^{n_{2}}|x[n]|^{2}
$$

Signal Energy and Power

- General definition of total energy over time interval $[-\infty, \infty] /[-\infty, \infty]$:

$$
E_{\infty}=\lim _{T \rightarrow \infty} \int_{-T}^{T}|x(t)|^{2} d t \quad \lim _{N \rightarrow \infty} \sum_{-N}^{N}|x[n]|^{2}
$$

- General definition of average power over time interval $[-\infty, \infty] /[-\infty, \infty]$:

$$
P_{\infty}=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}|x(t)|^{2} d t \quad \lim _{N \rightarrow \infty} \frac{1}{2 N+1} \sum_{-N}^{N}|x[n]|^{2}
$$

Signal Energy and Power

- Based on signal energy and power, a signal may have:
- Finite energy, zero average power
- Finite average power, infinite energy
- Both P_{∞} and E_{∞} are infinite

Signal Energy and Power

- Based on signal energy and power, a signal may have:
- Finite energy, zero average power
- Example: $x=\left\{\begin{array}{ll}4 & 0 \leq t \leq 1 \\ 0 & \text { otherwise }\end{array} \rightsquigarrow E_{\infty}=16, P_{\infty}=0\right.$
- Finite average power, infinite energy
- Both P_{∞} and E_{∞} are infinite

Signal Energy and Power

- Based on signal energy and power, a signal may have:
- Finite energy, zero average power
- Example: $x=\left\{\begin{array}{ll}4 & 0 \leq t \leq 1 \\ 0 & \text { otherwise }\end{array} \rightsquigarrow E_{\infty}=16, P_{\infty}=0\right.$
- Finite average power, infinite energy
- Example: If the signal has nonzero average energy per unite time (nonzero power) $x[n]=4 \rightsquigarrow P_{\infty}=16, E_{\infty}=\infty$
- Both P_{∞} and E_{∞} are infinite

Signal Energy and Power

- Based on signal energy and power, a signal may have:
- Finite energy, zero average power
- Example: $x=\left\{\begin{array}{ll}4 & 0 \leq t \leq 1 \\ 0 & \text { otherwise }\end{array} \rightsquigarrow E_{\infty}=16, P_{\infty}=0\right.$
- Finite average power, infinite energy
- Example: If the signal has nonzero average energy per unite time (nonzero power) $x[n]=4 \rightsquigarrow P_{\infty}=16, E_{\infty}=\infty$
- Both P_{∞} and E_{∞} are infinite
- Example: $x(t)=5 t^{2}$

Transformations of Independent Variable (time axis)

- Time Shift $\left(x\left(t \pm t_{0}\right) / x\left[n \pm n_{0}\right]\right)$ t_{0} and n_{0} are positive.

1. $x\left(t-t_{0}\right) / x\left[n-n_{0}\right]$

- It is a delayed version of $x(t) / x[n]$
- Shift the signal to the right by t_{0} / n_{0}

2. $x\left(t+t_{0}\right) / x\left[n+n_{0}\right]$

- It is an advanced version of $x(t) / x[n]$
- Shift the signal to the left by t_{0} / n_{0}

Transformations of Independent Variable (time axis)

- Time Reversal $(x(-t) / x[-n])$
- Reflects the signal about $t=0 / n=0$
- Time Scaling ($x(a t) / x[a n]$)

1. $|a|>1$

- It is compressed

2. $|a|<1$

- It is stretched
- For discrete signal, n / a should be an integer

Transformations of Independent Variable (time axis)

- In general form $(x(\alpha t+\beta) / x[\alpha n+\beta])$

1. Shift the signal by β

- $\beta>0$: shift to left
- $\beta<0$: shift to right

2. Scale or reverse the signal by α

- $|\alpha|>1$: compress
- $|\alpha|<1$ stretch
- $\alpha<0$ reverse

Signal Properties

- Periodic Signals
- $\exists T>0$ s.t. $x(t)=x(t+T)$
- $\exists N>0$ \& integer s.t. $x[n]=x[n+N]$
- The fundamental period $\left(T_{0} / N_{0}\right)$ is the smallest positive value of T / N which the above equality holds
- Is a constant signal periodic?
- If a signal is not periodic it is called aperiodic

Signal Properties

- Even and Odd signals
- Even Signal: It is identical to its time-reversed (its reflection about the origin)

$$
\begin{aligned}
& x(-t)=x(t) \\
& x[-n]=x[n]
\end{aligned}
$$

- Odd Signal: It is symmetric about the origin

$$
\begin{aligned}
& x(-t)=-x(t) \\
& x[-n]=-x[n]
\end{aligned}
$$

It should be 0 at $(\mathrm{t}=0 / \mathrm{n}=0)$

- Any signal can be broken to sum of an odd and an even signal:
- Even part: $E\{x(t)\}=\frac{1}{2}[x(t)+x(-t)]$
- Odd part: $O\{x(t)\}=\frac{1}{2}[x(t)-x(-t)]$

Continuous-Time Complex Exponential Signals $x(t)=C e^{a t}$

- Based on C and a the signal has different behavior 1. C and a are real
- $a>0 \rightsquigarrow$ growing signal
- $a<0 \rightsquigarrow$ decaying signal
- $a=0 \rightsquigarrow$ constant signal

2．C is real and a is purely imaginary $\left(x(t)=e^{j w_{0} t}\right)$
－It is periodic：

$$
e^{j w_{0} t}=e^{j w_{0}(t+T)}=e^{j w_{0} t} e^{j w_{0} T} \rightsquigarrow e^{j w_{0} T}=1
$$

－If $w_{0}=0 \rightsquigarrow$ It is periodic for any value of T
－If $w_{0} \neq 0 \rightsquigarrow w_{0} T=2 \pi \rightsquigarrow T_{0}=\frac{2 \pi}{\left|w_{0}\right|}$
－$e^{j w_{0} t}$ and $e^{-j w_{0} t}$ have the same fundamental period．

- Cosinusoidal signal $x(t)=A \operatorname{Cos}\left(w_{0} t+\phi\right)$
- Sinusodial signals and exponential signals can be used for expressing physical systems which conserve energy. Example?
- It is periodic: $T_{0}=\frac{2 \pi}{w_{0}},\left(T_{0}\right.$: Fundamental period; w_{0} : Fundamental frequency
- Complex exponential signal can be written in terms of sinusoidal signals with same fundamental period:(Use Euler's relation)
$e^{j \omega_{0} t}=\operatorname{Cos} w_{0} t+j \sin \omega_{0} t$
- Sinusoidal signals can be expressed by complex exponential signals with same fundamental period:

$$
\begin{aligned}
& A \operatorname{Cos}\left(w_{0} t+\phi\right)=\frac{A}{2} e^{j \phi} e^{j w_{0} t}+\frac{A}{2} e^{-j \phi} e^{-j w_{0} t}=A \mathfrak{R e}\left\{e^{j\left(w_{0} t+\phi\right)}\right\} \\
& A \operatorname{Sin}\left(w_{0} t+\phi\right)=A \mathfrak{I} \mathfrak{m}\left\{e^{j\left(w_{0} t+\phi\right)}\right\}
\end{aligned}
$$

Cosinusoidal Signals/ Exponential Signals

$$
x_{1}(t)=\cos \left(w_{1} t\right)
$$

Cosinusoidal Signals/ Exponential Signals

- They have finite average power and infinite total energy:
- In one period: $E_{\text {period }}=\int_{0}^{T_{0}}\left|e^{j w_{0} t}\right|^{2} d t=T_{0}, P_{\text {period }}=\frac{1}{T_{0}} E_{\text {period }}=1$
- By repeating T_{0} infinite time: E_{∞} becomes infinite, $P_{\infty}=1$
- They can be applied in making a set of harmonically related complex exponentials with common period T_{0}
- $\phi_{k}(t)=e^{j k w_{0} t}, k=0, \pm 1, \pm 2, \ldots$
- $e^{j w t}$ is periodic with period T_{0} :
$e^{j w T_{0}}=1 \rightsquigarrow w T_{0}=2 \pi k, w_{0}=\frac{2 \pi}{T_{0}}, k=0, \pm 1, \pm 2, \ldots$
- The k th harmonic is periodic with fundamental freq. $|k| w_{0}$

Time Shift \Leftrightarrow Change Phase

- Time Shift: $A \operatorname{Cos}\left(\omega_{0}\left(t+t_{0}\right)+\phi\right)=A \operatorname{Cos}(\omega_{0} t+\underbrace{\omega_{0} t_{0}}_{\phi_{0}}+\phi)$ Change phase

Time Shift \Leftrightarrow Change Phase

- Time Shift: $A \operatorname{Cos}\left(\omega_{0}\left(t+t_{0}\right)+\phi\right)=A \operatorname{Cos}(\omega_{0} t+\underbrace{\omega_{0} t_{0}}+\phi)$ Change phase ϕ_{0}
- Change phase: $A \operatorname{Cos}\left(\omega_{0} t+\phi+\phi_{0}\right)=A \operatorname{Cos}\left(\omega_{0} t+\omega_{0} t_{0}+\phi\right)$ Time Shift

Time Shift \Leftrightarrow Change Phase

- Time Shift: $A \operatorname{Cos}\left(\omega_{0}\left(t+t_{0}\right)+\phi\right)=A \operatorname{Cos}(\omega_{0} t+\underbrace{\omega_{0} t_{0}}+\phi)$ Change phase
- Change phase: $A \operatorname{Cos}\left(\omega_{0} t+\phi+\phi_{0}\right)=A \operatorname{Cos}\left(\omega_{0} t+\omega_{0} t_{0}+\phi\right)$ Time Shift
- $\operatorname{Cos}\left(\omega_{0} t\right)$ is an Even signal $\rightarrow \operatorname{Cos}\left(\omega_{0} t-\frac{\pi}{2}\right)=\operatorname{Sin}\left(\omega_{0}\right)$ is an Odd Signal

3. Both C and a are complex

- where $C=|C| e^{j \theta}, \quad a=r+j w_{0} \rightsquigarrow C e^{a t}=|C| e^{r t} e^{j\left(w_{0} t+\theta\right)}=$ $|C| e^{r t}\left(\operatorname{Cos}\left(w_{0} t+\theta\right)+j \operatorname{Sin}\left(w_{0} t+\theta\right)\right)$
- $r=0$: both real and imaginary terms are sinusoidal
- $r>0$:real and imaginary terms are increasing

- $r<0$: real and imaginary terms are decreasing

Discontinuous-Time (DT) Complex Exponential Signals $x[n]=C a^{n}=C e^{\beta n}$

1. a and C are real

- $a>1$:

(a)
- $0<a<1$:

- $-1<a<0$:

- $a<-1$:

2. C is real and a is purely imaginary $\left(x[n]=e^{j w_{0} n}\right)$

- Similar to CT exponential signals it is related to Cosinusoidal signals: $x[n]=A \cos \left(w_{0} n+\phi\right)$
- By using Euler's relation: $e^{j w_{0} n}=\operatorname{Cosw}_{0} n+j \operatorname{Sinw} w_{0} n$ $A \operatorname{Cos}\left(w_{0} n+\phi\right)=\frac{A}{2} e^{j \phi} e^{j w_{0} n}+\frac{A}{2} e^{-j \phi} e^{-j w_{0} n}$
- Similar to CT exponential signals its average power is finite (1) and its total energy is infinite

3. Both C and a are complex

- where $C=|C| e^{j \theta}, a=|a| e^{j w_{0}} \rightsquigarrow C a^{n}=|C||a|^{n} e^{j\left(w_{0} n+\theta\right)}=$ $|C||a|^{n}\left(\operatorname{Cos}\left(w_{0} n+\theta\right)+j \operatorname{Sin}\left(w_{0} n+\theta\right)\right)$
- $|a|=1$: both real and imaginary terms are sinusoidal
- $|a|>1$:real and imaginary terms are increasing

- $|a|<1$: real and imaginary terms are decreasing

- $w_{0} \uparrow:$
- $0<w_{0}<\pi \rightsquigarrow$ rate of oscillation \uparrow
- $\pi<w_{0}<2 \pi \rightsquigarrow$
 rate of osc. \downarrow

- $w_{0}=\pi$ has highest rate of osc. $\left(e^{j \pi n}=(-1)^{n}\right)$
- Rate of osc. for $w_{0}=0$ equals to $w_{0}=2 \pi$

- To have periodic DT exponential signal: $e^{j w_{0} n}=e^{j w_{0}(n+N)}$
- $e^{j w_{0} N}=1 \rightsquigarrow N w_{0}=2 \pi m$
- m, N should be an integer
- Fundamental period $N=\frac{2 \pi m}{w_{0}}$
- $x[n]=\operatorname{Cos}\left(\frac{2 \pi n}{12}\right)$ and $x(t)=\operatorname{Cos}\left(\frac{2 \pi t}{12}\right)$ are periodic

$$
\left(T_{0}=N=12\right)
$$

- $x(t)=\operatorname{Cos}\left(\frac{8 \pi t}{31}\right)$ is periodic ($T_{0}=\frac{31}{4}$)

(a)
$x[n\} \sim \cos \{8 \pi n / 31\}$

(b) not periodic!
- $N=12 \pi m$: no integer m can be found to make N an integer
$x(t)=\operatorname{Cos}\left(\frac{t}{6}\right)$ is periodic ($T_{0}=\frac{12}{\pi}$)
- But $x[n]=\operatorname{Cos}\left(\frac{n}{6}\right)$ is Abdollahi

Time Shift \Rightarrow Change Phase

- Time Shift: $A \operatorname{Cos}\left(\omega_{0}\left(n+n_{0}\right)+\phi\right)=A \operatorname{Cos}(\omega_{0} n+\underbrace{\omega_{0} n_{0}}+\phi)$ Change phase

Time Shift \Rightarrow Change Phase

- Time Shift: $A \operatorname{Cos}\left(\omega_{0}\left(n+n_{0}\right)+\phi\right)=A \operatorname{Cos}(\omega_{0} n+\underbrace{\omega_{0} n_{0}}_{\phi_{0}}+\phi)$ Change phase
- Change phase: $A \operatorname{Cos}\left(\omega_{0} n+\phi+\phi_{0}\right)={ }^{?} A \operatorname{Cos}\left(\omega_{0} n+\omega_{0} n_{0}+\phi\right)$ Not Always Time Shift

Compare $e^{j \omega_{0} t}$ in CT and DT

$\mathrm{e}^{j \omega_{0} t}$ in CT	$\mathrm{e}^{j \omega_{0} n}$ in DT
Distinct Signal	Identical Signals for exponentials
for Distinct value of ω_{0}	at frequencies separated by 2π
$\omega_{1} \neq \omega_{2} \rightsquigarrow A \operatorname{Cos}\left(\omega_{1} t\right) \neq A \operatorname{Cos}\left(\omega_{2} t\right)$	$\omega_{1} \neq \omega_{2}$ If $\omega_{2}=\omega_{1}+2 \pi m$
	$\rightsquigarrow A \operatorname{Cos}\left(\omega_{1} n\right)=A \operatorname{Cos}\left(\omega_{2} n\right)$
Periodic for any choice of ω_{0}	Only periodic if $\omega_{0}=\frac{2 \pi m}{N}$
	for some integers $N>0, m$
Fundamental frequency ω_{0}	Fundamental frequency $\frac{\omega_{0}}{m}$
Fundamental Period	Fundamental Period
$\omega_{0}=0 \quad$ undefined	$\omega_{0}=0$ undefined
$\omega_{0} \neq 0 \quad \frac{2 \pi}{\omega_{0}}$	$\omega_{0} \neq 0 \quad m\left(\frac{2 \pi}{\omega_{0}}\right)$

- Harmonically related complex exponentials with common period N
- DT exponential signals can make harmonically related sets : $\phi_{k}[n]=e^{j k\left(\frac{2 \pi}{N}\right) n}$
- BUT we have only N different harmonic $(k=0, \ldots, \pm(N-1))$
- $e^{j(k+N)\left(\frac{2 \pi}{N}\right) n}=e^{j k\left(\frac{2 \pi}{N}\right) n} e^{j 2 \pi n}=e^{j k\left(\frac{2 \pi}{N}\right) n}$
$\therefore \phi_{N}[n]=\phi_{0}[n], \ldots \phi_{-1}[n]=\phi_{N-1}[n], \ldots$

Unit Step and Unit Impulse

- DT unit impulse: $\delta[n]= \begin{cases}0 & n \neq 0 \\ 1 & n=0\end{cases}$
- DT unit step: $u[n]= \begin{cases}0 & n<0 \\ 1 & n \geq 0\end{cases}$
- Unit impulse can be defined based on unite step: $\delta[n]=u[n]-u[n-1]$
- Unit step can be described based on unite impulse: $u[n]=\sum_{m=-\infty}^{n} \delta[m]$
- One can also define it as: $u[n]=\sum_{k=\infty}^{0} \delta[n-k]=\sum_{k=0}^{\infty} \delta[n-k]$
- Unite impulse has sampling property: $x[n] \delta\left[n-n_{0}\right]=x\left[n_{0}\right] \delta\left[n-n_{0}\right]$

Unit Step and Unit Impulse

- CT unit step:

$$
u(t)= \begin{cases}0 & t<0 \\ 1 & t>0\end{cases}
$$

- It is discontinuous (at $\mathrm{t}=0$)
- Impulse Signal
$\delta(t)=\frac{d u(t)}{d t}$
- $\delta(t)=\lim _{\Delta \rightarrow 0} \delta_{\Delta}(t)$

Unit Step and Unit Impulse

- CT unit step:

$$
u(t)= \begin{cases}0 & t<0 \\ 1 & t>0\end{cases}
$$

- It is discontinuous
 (at $\mathrm{t}=0$)
- Impulse Signal
$\delta(t)=\frac{d u(t)}{d t}$
- $\delta(t)=\lim _{\Delta \rightarrow 0} \delta_{\Delta}(t)$

Unit Step and Unit Impulse

- Unit step can be described based on unite impulse: $u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau$
- One can also define it as: $u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau=\int_{0}^{\infty} \delta(t-\sigma) d \sigma$
- Unite impulse has sampling property: $x(t) \delta\left(t-t_{0}\right)=x\left(t_{0}\right) \delta\left(t-t_{0}\right)$

Systems

- A system provides output signals by processing input signals
- Continuous-Time systems: Both input and output signals are continuous.

- Discrete-Time systems: Both input and output signals are discrete. $\mathrm{x}[\mathrm{n}]$

Discrete Time System

Interconnection Systems

- Some systems consist of some interconnected subsystems:
- Series (Cascade) interconnection: Output of first subsystem is input of the second subsystem; output of system is output of subsystem 2.

- Parallel interconnection: Both subsystems receive the same input signal and Output the system is sum of subsystem 1 and subsystem 2.

Interconnection Systems

- Feedback interconnection: Output of subsystem 1 is be input of subsystem 2; output of subsystem 2 is fed back and added to external input to make subsystem 1 input.

System Properties

- System with/without memory:
- Output of a memoryless system for each value of the independent variable at a given time depends on the input at the same time. (Example?)
- If output of a system at a given time depends on either future or past time input, it is called system with memory
- In physical systems memory of a system is related to storing energy like a capacitor in electrical circuit.

System Properties

- System with/without memory:
- Output of a memoryless system for each value of the independent variable at a given time depends on the input at the same time. (Example?)
- If output of a system at a given time depends on either future or past time input, it is called system with memory
- In physical systems memory of a system is related to storing energy like a capacitor in electrical circuit.
- Invertibility
- In invertible system distinct inputs lead to distinct output.
- If an inverse exists, by cascading it with the original system, the resulting output equals to input of the first system

- Does cascading two invertible subsystem yield to invertible system?

System Properties

- Causality
- Output of a causal system depends on the present and past time.
- They are called nonpredictive systems.
- All memoryless systems are causal
- Stability
- Different type of stability is defined for a system such as I/s stability, asymptotic stability and...
- In this course Bounded Input Bounded Output (BIBO) stability is considered:
- small input does not make the output diverge.
- A counterexample is enough to show a system is unstable.
- To show the stability one should prove it through the stability definition.
- Time invariancy
- The characteristic of a time invariant system does not change over time:
- If $x(t) \rightarrow y(t) \Rightarrow x\left(t-t_{0}\right) \rightarrow y\left(t-t_{0}\right)$
- If $x[n] \rightarrow y[n] \Rightarrow x\left[n-n_{0}\right] \rightarrow y\left[n-n_{0}\right]$
- If time is explicitly mentioned in system model-it is called timevaryingのac

System Properties

- Linearity

- For linear system superposition property is hold:
- Additivity property: $x_{1}+x_{2} \Rightarrow y_{1}+y_{2}$
- scaling(homogeneity) property: for a complex $a, a x \Rightarrow a y$
- For linear systems $x(t)=0(x[n]=0) \rightsquigarrow y(t)=0(y[n]=0)$
- Incrementally linear system consists of a linear system adding with a

zero-input response.
- The difference between the responses to any two inputs will be a linear function of the difference between two inputs
- Example: $y(t)=5 x(t)+6$

