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Outline Neural Processing Learning

Neural Processing
I One of the most applications of NN is in mapping inputs to the

corresponding outputs o = f (wx)

I The process of finding o for a given x is named recall.

I Assume that a set of patterns can be stored in the network.
I Autoassociation: The network presented with a pattern similar to a

member of the stored set, it associates the input with the closest
stored pattern.

I A degraded input pattern serves as a cue for retrieval of its original

I Hetroassociation: The associations between pairs of patterns are
stored.
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I Classification: The set of input patterns is divided into a number of
classes. The classifier recall the information regarding class
membership of the input pattern. The outputs are usually binary.

I Classification can be considered as a special class of hetroassociation.

I Recognition: If the desired response is numbers but input pattern does
not fit any pattern.
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I Function Approximation: Having I/O of a system, their
corresponding function f is approximated.

I This application is useful for control

I In all mentioned aspects of neural processing, it is assumed the data is
already stored to be recalled

I Data are stored in a network in learning process
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Pattern Classification
I The goal of pattern classification is to assign a physical object, event, or

phenomenon to one of predefined classes.

I Pattern is quantified description of the physical object or event.

I Pattern can be based on time (sensors output signals, acoustic signals) or
place (pictures, fingertips):

I Example of classifiers: disease diagnosis, fingertip identification, radar and
signal detection, speech recognition

I Fig. shows the block diagram of pattern recognition and classification
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Pattern Classification

I Input of feature extractors are sets of data vectors belonging to a
certain category.

I Feature extractor compress the dimensionality as much as does not
ruin the probability of correct classification

I Any pattern is represented as a point in n-dimensional Euclidean space
En, called pattern space.

I The points in the space are n-tuple vectors X = [x1 ... xn]T .

I A pattern classifier maps sets of points in En space into one of the
numbers i0 = 1, ...,R based on decision function i0 = i0(x).

I The set containing patterns of classes 1,..., R are denoted by §i , ....§n
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Pattern Classification
I The fig. depicts two simple method to generate the pattern vector

I Fig. a: xi of vector X = [x1 ... xn]T is 1 if ith cell contains a portion of
a spatial object, otherwise is 0

I Fig b: when the object is continuous function of time, the pattern
vector is obtained at discrete time instance ti , by letting xi = f (ti ) for
i = 1, ..., n
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I Example: for n = 2 and R = 4

I X = [20 10] ∈ §2, X = [4 6] ∈ §3
I The regions denoted by §i are

called decision regions.
I Regions are seperated by decision

surface
I The patterns on decision surface

does not belong to any class
I decision surface inE 2 is curve, for

general case, E n is
(n − 1)−dimentional
hepersurface.
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Discriminant Functions

I During the classification, the membership in a category should be
determined by classifier based on discriminant functions
g1(X ), ..., gR(X )

I Assume gi (X ) is scalar.

I The pattern belongs to the ith category iff gi (X ) > gj(X ) for
i , j = 1, ...,R, i 6= j .

I ∴ within the region §i , ith discriminant function have the largest value.

I Decision surface contain patterns X without membership in any
classes

I The decision surface is defined as:

gi (X )− gj(X ) = 0
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I Example:Consider six patterns, in two
dimensional pattern space to be classified
in two classes:
{[0 0]′, [−0.5 − 1]′, [−1 − 2]′}: class 1
{[2 0]′, [1.5 − 1]′, [1 − 2]′}: class 2

I Inspection of the patterns shows that the
g(X ) can be arbitrarily chosen

g(X ) = −2x1 + x2 + 2

g(X ) > 0 : class 1

g(X ) < 0 : class 2

g(X ) = 0 : on the surface
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I The classifier can be implemented as shown in Fig. below (TLU is
threshold logic Unit)

I Example 2: Consider a classification problem as shown in fig. below

I the discriminant surface can not be estimated easily.

I It may result in a nonlinear function of x1 and x2.
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Pattern Classification

I In pattern classification we assume
I The sets of classes and their members are known

I Having the patterns, We are looking to find the discriminant surface
by using NN,

I The only condition is that the patterns are separable

I The patterns like first example are linearly separable and in second
example are nonlinearly separable

I In first step, simple separable systems are considered.
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Linear Machine

I Linear discernment functions are the simplest discriminant functions:
g(x) = w1x1 + w2x2 + ...+ wnxn + wn+1 (1)

I Consider x = [x1, ..., xn]T , and w = [w1, ...,wn]T , (1) can be redefined as
g(x) = wT x + wn+1

I Now we are looking for w and wn+1 for classification

I The classifier using the discriminant function (1) is called Linear Machine.

I Minimum distance classifier (MDC) or nearest neighborhood are employed to
classify the patterns and find w ’s:

I E n is the n-dimensional Euclidean pattern space  Euclidean distance
between two point are ‖xi − xj‖ = [(xi − xj)

T (xi − xj)]1/2.
I Pi is center of gravity of cluster i .
I A MDC computes the distance from pattern x of unknown to each

prototype (‖x − pi‖).
I The prototype with smallest distance is assigned to the pattern.
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Linear Machine
I Calculating the squared distance:
‖x − pi‖2 = (x − pi )

T (x − pi ) = xT x − 2xTpi + pT
i pi

I xT x is independent of i

I ∴ min the equation above is obtained by max the discernment
function: gi (x) = xTpi − 1

2pT
i pi

I We had gi (x) = wT
i x + win+1

I ∴ Considering pi = (pi1, pi2, ..., pin)T ,

I The weights are defined as

wij = pij

win+1 = −1

2
pT
i pi , (2)

i = 1, ...,R, j = 1, ..., n
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Example
I In this example a linear classifier is designed

I Center of gravity of the prototypes are known a priori

p1 =

[
10
2

]
, p2 =

[
2
−5

]
, p3 =

[
−5
5

]
I Using (2) for R = 3, the weights are

w1 =

 10
2
−52

 ,w2 =

 2
−5
−14.5

 ,w3 =

 −5
5
−25


I Discriminant functions are:

g1(x) = 10x1 + 2x2 − 52

g2(x) = 2x1 − 5x2 − 14.5

g3(x) = −5x1 + 5x2 − 25
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The decision lines are:
S12 : 8x1 + 7x2 − 37.5 = 0

S13 : −15x1 + 3x2 + 27 = 0

S23 : −7x1 + 10x2 − 10.5 = 0
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Bias or Threshold?

I Revisit the structure of a single layer network

I Considering the threshold (θ) the activation function is defined as

o =

{
1 net ≥ θ
−1 net < θ

(3)

I Now define net1 = net − θ:
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I ∴ The activation function can be considered as

o =

{
1 net1 ≥ 0
−1 net1 < 0

(4)

I ∴Bias can be play as a threshold in activation function.

I Considering neither threshold nor bias implies that discriminant
function always intersects the origin which is not always correct.
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I If R linear functions
gi (x) = w1x1 + w2x2 + ...+ wnxn + wn+1, i = 1, ...,R exists s.t

gi (x) > gj(x) ∀x ∈ §i , i , j = 1, ...,R, i 6= j

the pattern set is linearly separable

I Single layer networks can only classify linearly separable patterns

I Nonlinearly separable patterns are classified by multiple layer networks

I Example: AND: x2 = −x1 + 1 (b = −1,w1 = 1, w2 = 1)

I Example: OR: x2 = −x1 − 1 (b = 1,w1 = 1, w2 = 1)
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Learning

I When there is no a priori knowledge of pi ’s, a method should be found
to adjust weights (wi ).

I We should learn the network to behave as we wish
I Learning task is finding w based on the set of training examples x to

provide the best possible approximation of h(x).
I In classification problem h(x) is discriminant function g(x).

I Two types of learning is defined
1. Supervised learning: At each instant of time when the input is applied

the desired response d is provided by teacher
I The error between actual and desired response is used to correct and

adjust the weights.
I It rewards accurate classifications/ associations and punishes those

yields inaccurate response.
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2. Unsupervised learning: desired response is not known to improve the
network behavior.

I A proper self-adoption mechanism have to be embedded.

H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 2 23/58



Outline Neural Processing Learning

I General learning rule is the weight vector wi = [wi1 wi2 ... win]T

increases in proportion to the product of input x and learning signal r

wk+1
i = wk

i + ∆wk
i

∆wk
i = crk(wk

i , x
k)xk

c is pos. const.: learning constant.
I For supervised learning r = r(wi , x , di )
I For continuous learning

dwi

dt
= crx
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Hebb Learning

I Reference: Hebb, D.O. (1949), The
organization of behavior, New York: John
Wiley and Sons

I Wikipedia:”Donald Olding Hebb (July 22,
1904 August 20, 1985) was a Canadian
psychologist who was influential in the
area of neuropsychology, where he sought
to understand how the function of
neurons contributed to psychological
processes such as learning. ”

I ”He has been described as the father of
neuropsychology and neural networks.”

http://www.scholarpedia.org/article/Donald_Hebb
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I Hebbean rule is the oldest and simplest learning rule.

I ”The general idea is an old one, that any two cells or systems of cells
that are repeatedly active at the same time will tend to become
’associated’, so that activity in one facilitates activity in the other.”
(Hebb 1949, p. 70)

I Hebb’s principle is a method of learning, i.e., adjust the weights
between model neurons.

I The weight between two neurons increases if the two neurons activate
simultaneously and reduces if they activate separately.

I Mathematically the Hebbian learning can be expressed:
rk = yk (5)

∆wk
i = cxk

i yk

I ∴ Larger input yields more effect on its corresponding weights.
I For supervised learning y is replaced by d in (5).

I This rule is known as Correlation rule
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Learning Algorithm for Supervised Hebbian Rule

I Assume m I/O pairs of (s, d) are available for training

1. Consider a random initial values for weights
2. Set k = 1
3. xk

i = sk
i , yk = dk , i = 1, ..., n

4. Update the weights as follows

wk+1
i = wk

i + xk
i yk , i = 1, ..., n

bk+1 = bk + yk

5. k = k + 1 if k ≤ m return to step 3 (Repeat steps 3 and 4 for another
pattern), otherwise end

I In this algorithm bias is also updated.

I Note: If the I/O data are binary, there is no difference between
x = 1, y = 0 and x = 0, y = 0 in Hebbian learning.
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Example: And
I The desired I/O pairs are given in the table

x1 x2 b (bias) d (target)

1 1 1 1
1 0 1 0
0 1 1 0
0 0 1 0

I ∆w1 = x1d , ∆w2 = x2d , ∆b = d

I Consider w0 = [0 0 0]

I Using first pattern: ∆w1 = [1 1 1] w1 = [1 1 1]

I ∴x2 = −x1 − 1

I Using pattern 2,3, and 4 does not change weights.

I training is stopped but the weights cannot represent
pattern 1!!
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I Now assume the target is bipolar
x1 x2 b (bias) d (target)

1 1 1 1
1 0 1 -1
0 1 1 -1
0 0 1 -1

I Pattern 1:∆w1 = [1 1 1] w1 = [1 1 1], x2 = −x1 − 1

I Pattern 2:∆w2 = [−1 0 − 1] w2 = [0 1 0]

I Pattern 3:∆w3 = [0 − 1 − 1] w3 = [0 0 − 1]

I Pattern 4:∆w4 = [0 0 − 1] w4 = [0 0 − 2]

I The training is finished but it does not provide correct response to
pattern 1:(
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I Now assume both input and target are bipolar
x1 x2 b (bias) d (target)

1 1 1 1
1 -1 1 -1
-1 1 1 -1
-1 -1 1 -1

I Pattern 1:∆w1 = [1 1 1] w1 = [1 1 1], x2 = −x1 − 1 (correct for p1

and p4)

I Pattern 2:∆w2 = [−1 1 − 1] w2 = [0 2 0], x2 = 0 (correct for p1, p2

and p4)

I Pattern 3:∆w3 = [1 − 1 − 1] w3 = [1 1 − 1], x2 = −x1 + 1
(correct for all patterns)

I Pattern 4:∆w4 = [1 1 − 1] w4 = [2 2 − 2]x2 = −x1 + 1

I Correct for all patterns:)
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Perceptron Learning Rule
I Perceptron learning rule was first time proposed by Rosenblatt in 1960.

I Learning is supervised.

I The weights are updated based the error between the system output
and desired output

rk = dk − ok

∆W k
i = c(dk

i − ok
i )xk (6)

I Based on this rule weights are adjusted iff output ok
i is incorrect.

I The learning is repeated until the output error is zero for every
training pattern

I It is proven that by using Perceptron rule the network can learn what
it can present

I If there are desired weights to solve the problem, the network weights
converge to them.
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I In classification, consider R = 2
I The Decision lines are

W̄ T x − b = 0 (7)

W̄ = [w1, w2, ..., wn]T , x = [x1, x2, ..., xn]T

I Considering bias, the augmented weight and input vectors are
y = [x1, x2, ..., xn, − 1]T , W = [w1, w2, ..., wn, b]T

I Therefore, (7) can be written

W T y = 0 (8)

I Since in learning, we are focusing on updating weights, the decision
lines are presented on weights plane.

I ∴ The decision line always intersects the origin (w = 0).
I Its normal vector is y which is perpendicular to the plane
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I The normal vector always points toward
W T y > 0.

I Positive decision region, W T y > 0 is
class 1

I Negative decision region, W T y < 0 is
class 2

I Using geometrical analysis, we are looking
for a guideline for developing weight
vector adjustment procedure.
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I Case A: W 1 is in neg. half-plane, y1

belongs to class 1
I W 1y1 < 0 W T should be moved

toward gray section.
I The fast solution is moving W 1 in the

direction of steepest increase which is
the gradient

∇w (W T y1) = y1

I ∴ The adjusted weights become

W ′ = W 1 + cy1

I c > 0 is called correction increment or
learning rate, it is the size of adjustment.

I W ′ is the weights after correction.
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I Case B: W 1 is in pos. half-plane, y1

belongs to class 2
I W 1y1 > 0 W T should be moved

toward gray section.
I The fast solution is moving W 1 in the

direction of steepest decrease which is
the neg. gradient

I ∴ The adjusted weights become

W ′ = W 1 − cy1
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I Case C: Consider three augmented
patterns y1, y2 and y3, given in
sequence

I The response to y1, y2 should be 1
and for y3 should be -1

I The lines 1, 2, and 3 are fixed for
variable weights.

I Starting with W 1 and input y1,
W T y1 < 0 W 2 = W 1 + cy1

I For y2,
W T y2 < 0 W 3 = W 2 + cy2

I For y3,
W T y3 > 0 W 4 = W 3 − cy3

I W 4 is in the gray area (solution)
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I To summarize, the updating rule is

W ′ = W 1 ± cy

where
I Pos. sign is for undetected pattern of class 1
I Neg. sign is for undetected pattern of class 2
I For correct classification, no adjustment is made.

I The updating rule is, indeed, (6)
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Single Discrete Perceptron Training Algorithm
I Given P training pairs {x1, d1, x2, d2, ..., xp, dp} where xi is

(n × 1), di is (1× 1), i = 1, ...,P

I The augmented input vectors are yi =

[
xi

−1

]
, for i = 1, ...,P

I In the following, k is training step and p is step counter within
training cycle.

1. Choose c > 0
2. Initialized weights at small random values, w is (n + 1)× 1
3. Initialize counters and error: k ←− 1, p ←− 1,E ←− 0
4. Training cycle begins here. Set y ←− yp, d ←− dp, o = sgn(wT y) (sgn

is sign function)
5. Update weights w ←− w + 1

2c(d − o)y
6. Find error: E ←− 1

2 (d − o)2 + E
7. If p < P then p ←− p + 1, k ←− k + 1, go to step 4, otherwise, go to

step 8.
8. If E = 0 the training is terminated, otherwise E ←− 0, p ←− 1 go to

step 4 for new training cycle.
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Convergence of Perceptron Learning Rule
I Learning is finding optimum weights W ∗ s.t.{

W ∗T y > 0 forx ∈ §1
W ∗T y < 0 forx ∈ §2

I Training is terminated when there is no error in classification,
(w∗ = wn = wn+1).

I Assume after n steps learning is terminated.

I Objective: Show n is bounded, i.e., after limited number of updating,
the weights converge to their optimum values

I Assume W 0 = 0

I For δ = min{abs(W ∗T y)}:{
W ∗T y ≥ δ > 0 forx ∈ §1

W ∗T y ≤ −δ < 0 (−W ∗T y ≥ δ) forx ∈ §2
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I If at each step the error is nonzero, the weights are updated:

W k+1 = W k ± y (9)

I Multiply (9) by W ∗T

W ∗TW k+1 = W ∗TW k ±W ∗T y=⇒W ∗TW k+1 ≥W ∗TW k + δ

I For n times updating rule, and considering W 0 = 0

W ∗TW n ≥W ∗TW 0 + nδ = nδ (10)

I Using Schwartz inequality ‖W n‖2 ≥ (W ∗T W n)2

‖W ∗‖2

‖W n‖2 ≥ n2δ2

B
(11)

where ‖W ∗‖2 = B
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I On the other hand

‖W k+1‖2 = (W k ± y)T (W k ± y) = W kTW k + yT y ± 2W kT y (12)

I Weights are updated when there is an error, i.e., −sgn(W kT y)
appears in last term of (12){

W kT y < 0 error for class 1
W kT y > 0 error for class 2

I ∴ The last term of (12) is neg. and

‖W k+1‖2 ≤ ‖W k‖2 + M (13)

where ‖y‖2 ≤ M
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I After n times updating and considering W 0 = 0

‖W n‖2 ≤ nM (14)

I Considering (11) and (14)

n2δ2

B
≤ ‖W n‖2 ≤ nM 

n2δ2

B
≤ nM

∴ n ≤ MB

δ2

I So n is bounded
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Multi-category Single Layer Perceptron

I The perceptron learning rule
so far was limited for two
category classification

I We want to extend it for
multigategory classification

I The weight of each neuron
(TLU) is updated
independent of other
weights.

I The k’s TLU reponses +1
and other TLU’s -1 to
indicate class k
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R-Category Discrete Perceptron Training Algorithm
I Given P training pairs {x1, d1, x2, d2, ..., xp, dp} where xi is

(n × 1), di is (R × 1), i = 1, ...,P

I The augmented input vectors are yi =

[
xi

−1

]
, for i = 1, ...,P

I In the following, k is training step and p is step counter within
training cycle.

1. Choose c > 0
2. Initialized weights at small random values, W = [wij ] is R × (n + 1)
3. Initialize counters and error: k ←− 1, p ←− 1,E ←− 0
4. Training cycle begins here. Set y ←− yp, d ←− dp, oi = sgn(wT

i y) for
i = 1, ...,R (sgn is sign function)

5. Update weights wi ←− wi + 1
2c(di − oi )y for i = 1, ...,R

6. Find error: E ←− 1
2 (di − oi )

2 + E for i = 1, ...,R
7. If p < P then p ←− p + 1, k ←− k + 1, go to step 4, otherwise, go to

step 8.
8. If E = 0 the training is terminated, otherwise E ←− 0, p ←− 1 go to

step 4 for new training cycle.
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Example

I Revisit the three classes example

I The discriminant values are

Discriminant Class 1 [10 2]′ Class 2 [2 − 5]′ Class 3 [−5 5]′

g1(x) 52 -42 -92
g2(x) -4.5 14.5 -49.5
g3(x) -65 -60 25

I So the thresholds values:w13, w23, and w33 are 52, 14.5, and 25,
respectively.
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I Now use perceptron learning rule:

I Consider randomly chosen initial values:
w1

1 = [1 − 2 0]′, w1
2 = [0 − 1 2]′, w1

3 = [1 3 − 1]′

I Use the patterns in sequence to update the weights:
I y1 is input:

sgn([1 − 2 0]

 10
2
−1

) = 1

sgn([0 − 1 2]

 10
2
−1

) = −1

sgn([1 3 − 1]

 10
2
−1

) = 1∗

I TLU # 3 has incorrect response. So
w 2

1 = w 1
1 , w 2

2 = w 1
2 , w 2

3 = [1 3 − 1]′ − [10 2 − 1]′ = [−9 1 0]′

H. A. Talebi, Farzaneh Abdollahi Neural Networks Lecture 2 46/58



Outline Neural Processing Learning

I y2 is input:

sgn([1 − 2 0]

 2
−5
−1

) = 1∗

sgn([0 − 1 2]

 2
−5
−1

) = 1

sgn([−9 1 0]

 2
−5
−1

) = −1

I TLU # 1 has incorrect response. So
w3

1 = [1 2 0]′ − [2‘− 5 − 1]′ = [−1 3 1]′, w3
2 = w2

2 , w3
3 = w2

3
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I y3 is input:

sgn([−1 3 1]

 −5
5
−1

) = 1∗

sgn([0 − 1 2]

 −5
5
−1

) = −1

sgn([−9 1 0]

 −5
5
−1

) = 1

I TLU # 1 has incorrect response. So
w4

1 = [4 − 2 2]′, w4
2 = w3

2 , w4
3 = w3

3

I First learning cycle is finished but the error is not zero, so the training
is not terminated
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I In next training cycles TLU # 2 and 3 are correct.

I TLU # 1 is changed as follows
w5

1 = w4
1 , w6

1 = [2 3 3]′, w7
1 = [7 − 2 4]′, w8

1 = w7
1 , w9

1 = [5 3 5]

I The trained network is o1 = sgn(5x1 + 3x2 − 5)

o2 = sgn(−x2 − 2)

o3 = sgn(−9x1 + x2)

I The discriminant functions for classification are not unique.
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Continuous Perceptron

I In many cases the output is not necessarily limited to two values (±1)

I Therefore, the activation function of NN should be continuous

I The training is indeed defined as adjusting the optimum values of the
weights, s.t. minimize a criterion function

I This criterion function can be defined based on error between the
network output and desired output.

I Sum of square root error is a popular error function

I The optimum weights are achieved using gradient or steepest decent
procedure.
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I Consider the error function:
E = E0 + λ(w − w∗)2 dE

dw =

2λ(w − w∗), d2E
dw2 = 2λ

I The problem is finding w∗ s.t min
E

I To achieve min error at w = w∗

from initial weight w0, the weights
should move in direction of
negative gradient of the curve.

I ∴ The updating rule is

wk+1 = wk − ηOE (wk)

where η is pos. const. called
learning constant.
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I The error to be minimized is

E k =
1

2
(dk − ok)2

ok = f (netk)

I For simplicity superscript k is skipped. But remember the weights
updates is doing at kth training step.

I The gradient vector is

OE (w) = −(d − o)f ′(net)


∂(net)
∂w1

∂(net)
∂w2

...
∂(net)
∂wn+1


I net = wT y ∂(net)

∂wi
= yi for i = 1, ..., n + 1

I ∴OE = −(d − o)f ′(net)y
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I The TLU activation function is not useful, since its time derivative is
always zero and indefinite at net = 0

I Use sigmoid activation function

f (net) =
2

1 + exp(−net)
− 1

I Time derivative of sigmoid function can be expressed based on the
function itself

f ′(net) =
2exp(−net)

(1 + exp(−net))2
=

1

2
(1− f (net)2)

I o = f (net), therefore,

OE (w) = −1

2
(d − o)(1− o2)y
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I Finally the updating rule is

wk+1 = wk +
1

2
η(dk − ok)(1− ok2)yk (15)

I Comparing the updating rule of continuous perceprton (15) with the
discrete perceptron learning (wk+1 = wk + c

2 (dk − ok)yk)
I The correction weights are in the same direction
I Both involve adding/subtracting a fraction of the pattern vector y
I The essential difference is scaling factor 1− ok2 which is always positive

and smaller than 1.
I In continuous learning, for a weaker committed perceptron ( net close

to zero) the correction scaling factor is larger than the more close
responses with large magnitude.
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Single Continuous Perceptron Training Algorithm
I Given P training pairs {x1, d1, x2, d2, ..., xp, dp} where xi is

(n × 1), di is (1× 1), i = 1, ...,P

I The augmented input vectors are yi = [xi − 1]T , for i = 1, ...,P
I In the following, k is training step and p is step counter within

training cycle.

1. Choose η > 0, λ = 1,Emax > 0
2. Initialized weights at small random values, w is (n × 1)× 1
3. Initialize counters and error: k ←− 1, p ←− 1,E ←− 0
4. Training cycle begins here. Set y ←− yp, d ←− dp, o = f (wT y)

(f(net) is sigmoid function)
5. Update weights w ←− w + 1

2η(d − o)(1− o2)y
6. Find error: E ←− 1

2 (d − o)2 + E
7. If p < P then p ←− p + 1, k ←− k + 1, go to step 4, otherwise, go to

step 8.
8. If E < Emax the training is terminated, otherwise E ←− 0, p ←− 1 go

to step 4 for new training cycle.
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R-Category Continues Perceptron

I Gradient training rule derived for R = 2 is
also applicable for multi-category classifier

I The training rule with be changed to

wk+1
i = wk

i +
1

2
η(dk

i − ok
i )(1− ok2

i )yk ,

for i = 1, ...,R

I It is equivalent to individual weight
adjustment

wk+1
ij = wk

ij +
1

2
η(dk

i − ok
i )(1− ok2

i )yk
j ,

for j = 1, ..., n + 1, i = 1, ...,R
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ADAptive LInear NEuron (ADALINE)
I Similar to Perceptron with different activation function.

I Activation function is linear xTw = d (16)

where x = [x1 x2 ...xn 1]T , w = [w1 w2 ...wn b]T ,
d = [d1 d2 ...dn]T is desired output.

I For m patterns, Eq. (16) will be
x11w1 + x12w2 + . . .+ x1nwn + b = d1

x21w1 + x22w2 + . . .+ x2nwn + b = d2

...

xm1w1 + xm2w2 + . . .+ xmnwn + b = dm

=


x11 x12 . . . x1n 1
x21 x22 . . . x2n 1

...
...

. . .
... 1

xm1 xm2 . . . xmn 1




w1

w2

...
b

 =


d1

d2

...
dm


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xT xw = xTd ⇒ w = x∗d

I x∗ is pseudo inverse matrix of x

x∗ = (xT x)−1xT

I This method is not useful in practice
I The weights are obtained from fixed patterns
I All the patterns are applied in one shot.

I In most practical applications, patterns encountered sequentially one
at a time.

wk+1 = wk + α(dk − wkxk)xk (17)

I This method is named Widraw-Hoff Procedure

I This learning method is also based in min least square error method
between output and desired signal
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