

Computational Intelligence Lecture 2: What Are Neural Networks

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

Farzane		

3

1/11

()	utl	ine	

Neuron Modeling of NN Activation Function

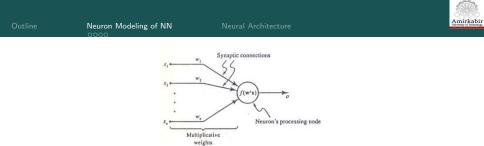
Neural Architecture

Farzaneh Abdollahi

Image: A matrix

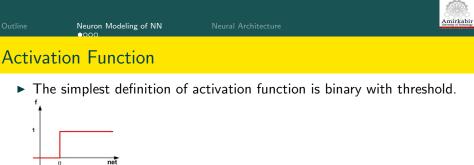
2

∃ ► < ∃ ►</p>



Neuron Modeling of NN

- McCullouch-Pitts model is introduced in 1943 and the first network is designed
- They found out that more precise computations is achieved by combining several neurons in a NN system.
- The model considers several drastic simplifications:
 - It allows only binary states (0-1)
 - Operates under a discrete time assumption
 - Wights and neuron's threshold are fixed
- Nowadays, Computing algorithms employ a varieties of neuron models with more diversified features.



ふうきん おきん

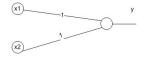
- ▶ The main artificial neuron models that is used later in this course is:
- Each neuron consists of a processing element with synaptic input connections and a single output
- ► The neuron output is defined as $o = f(W^T X) = f(\sum_{i=1}^n w_i x_i)$

where $W = [w_1 \ w_2 \ \dots \ w_n]^T$ is the weight vector and $X = [x_1 \ x_2 \ \dots \ x_n]^T$ is input vector. • $f(W^T X)$ is activation function.

where $net = W^T X$, and θ is threshold level to fire

neuron

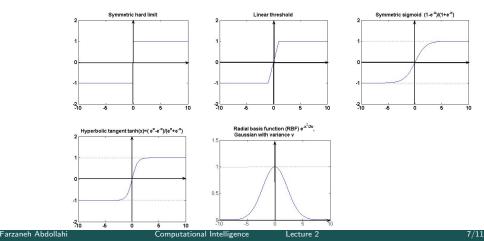
- Therefore, output y is defined as $y = \begin{cases} 1 & net \ge \theta \\ 0 & net < \theta \end{cases}$
- ► The use of threshold will be more discussed in Perceptron and classification.
- Any function f(net) that is monotonically nondecreasing and continuous s.t. net ∈ R and f(net) ∈ (-1, 1) can be considered as a NN activation function


- 4 回 ト 4 回 ト 4 回 ト

► Example:And

<i>x</i> ₁	<i>x</i> ₂	\rightarrow	y
1	1		1
1	0		0
0	1		0
0	0		0

$$y = \left\{ egin{array}{ccc} 1 & \textit{net} \geq heta \ 0 & \textit{net} < heta \end{array}, heta = 2 \end{array}
ight.$$

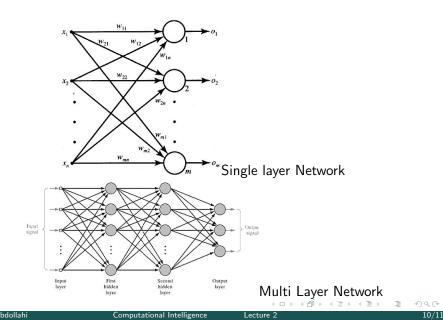


イロン イロン イヨン イヨン

2

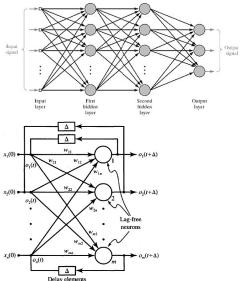
- Most popular activation functions:
 - Linear It is usually used in output layer when continuous functions are required (such as in control): f(net) = net

- The output of each neuron can be
 - unipolar binary: 0 and 1
 - ▶ bipolar: -1 and 1
- ► Sometimes, unipolar functions cannot represent the output properly.
- Unipolar functions are not proper functions for generalization as well


E 1 4 E 1

Neural Architecture

- Neurons at NN are arranged in layers
- ► Neurons in the same layer behave in the same manner.
- Key factors in determining the behavior of a neuron are its activation function and the pattern of its weight connections
- Within each layer, neurons usually have the same activation function and the same pattern of connections to other neurons.
- Neural nets are often classified to:
 - 1. Single Layer
 - includes one layer of connection weights.
 - ▶ input units: the units which receive signals from the outside world
 - output units which the response of the net can be read.
 - 2. Multi Layer
 - It has layers of nodes between the input units and the output units. (hidden units)
 - Multilayer nets can solve more complicated problems than can single-layer nets, but training may be more_difficult. < >> < >> <</p>



Outline

- The NN based on type of the connection can also be categorized to:
 - 1. Feed forward Networks
 - the signals flow from the input units to the output units, in a forward direction.
 - Like Multilayer perceptrons, RBF, etc
 - 2. Feedback Networks
 - It can be obtained from the feed forward network and a feedback connection form the neurons' outputs to their inputs.
 - Like Hopfield networks

A E > A E >

- T

э

11/11