

# Computational Intelligence Lecture 2:Fuzzy Sets

#### Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2010





#### Classical Set

#### Fuzzy Set

Basic Concepts in Fuzzy Sets Operations on Fuzzy Sets Fuzzy Complement Fuzzy Union Fuzzy Intersection

Averaging Operator

イロト 4回 トイミト イラ からへ



#### Classical Set

- ► A classical (crisp) set *A* in the universe of discourse *U*: can be defined by
  - ▶ List method: listing all of its members
  - Rule method: specifying the properties that must be satisfied by the members of the set

$$A = \{x \in U | x \text{ meets some conditions} \}$$

 Membership method: introduces a zero-one membership function (also called characteristic function, discrimination function, or indicator function)

$$\mu_A = \left\{ \begin{array}{ll} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{array} \right.$$





# Example: cars in Tehran

- $\triangleright$  The universe of discourse U.
- ▶ Set *A* is the cars with 4 cylinders:

$$A = \{x \in U | x \text{has 4 cylinders} \} \text{ } OR$$

$$\mu_A = \begin{cases} 1 & \text{if } x \in U \& x \text{ has 4 cylinders} \\ 0 & \text{if } x \in U \& x \text{ does not have 4 cylinder} \end{cases}$$



- ▶ Set *D* is the car made in Iran
- ▶ BUT the distinction between an Iranian car and a non-Iranian a car is not crisp:(
  - ► Most of them are not completely made in Iran
- ► So what should we do??!!





# Fuzzy Set

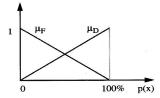
- some sets do not have clear boundaries.
- ▶ **Fuzzy set:** in a universe of discourse U is characterized by a membership function  $\mu_A(x)$  that takes values in the interval [0,1].
- ► In classical sets the membership function of a classical set can only take zero and one
- ▶ In fuzzy set the membership function is a continuous function with range [0, 1].
- ▶ A fuzzy set *A* in *U* is represented by:
  - ▶ a set of ordered pairs of a generic element x and its membership value:  $A = \{(x, \mu_A(x)) | x \in U\}$
  - for continuous U:  $A = \int_U \mu_A(x)/x$ .
  - for discrete U:  $\mu_A(x)$ :  $A = \sum_U \mu_A(x)/x$
  - $\int$  and  $\sum$  do not represent integral and summation.
  - ▶ They denote collection of all points  $x \in U$  with the associated membership function  $\mu_A(x)$





# Example: cars in Tehran (Cont'd)

- ▶ D: The set "Iranian cars in Iran,"
- $\blacktriangleright \mu_D = p(x)$ 
  - ▶ p(x) is the percentage of the parts of car x made in the Iran
  - ▶ it takes values from 0% to 100%.
- ► F: The set "non-Iranian cars in Iran,"
- ▶  $\mu_F(x) = 1 p(x)$





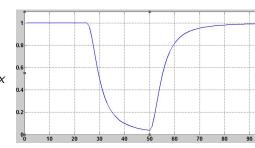
- ▶ Different membership functions can be defined to characterize the same description.
- ▶ The membership functions are not fuzzy, themselves.
- ▶ They are precise mathematical functions.
- ► Fuzzy sets are used to defuzzify the world.
- ▶ How to determine the membership functions?
  - Formulate human knowledge
    - Usually, gives a rough formula of the membership function
    - fine-tuning is required.
  - Data collected from various sensors
    - specify the structures of the membership functions and then fine-tune the parameters based on the data.
- ➤ A fuzzy set has a one-to-one correspondence with its membership function





# Example: Old and Young [1]

- ▶ *U* is in the interval of [0, 100]
- ► young =  $\int_0^{25} 1/x + \int_{25}^{100} (1 + (\frac{x 25}{5})^2)^{-1}/x$
- old =  $\int_{50}^{100} (1 + (\frac{x-50}{5})^{-2})^{-1}/x$

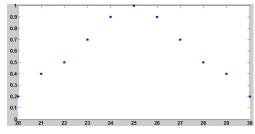




# Example: A Digital Thermometer

- ► *T*: the set for desirable temperature
- **▶** *U* ∈ [18, 33]

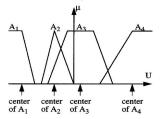
$$\mu_{T} = \frac{.2}{20} + \frac{.4}{21} + \frac{.5}{22} + \frac{.7}{23} + \frac{.9}{24} + \frac{1}{25} + \frac{.9}{26} + \frac{.7}{27} + \frac{.5}{28} + \frac{.4}{29} + \frac{.2}{30}$$





#### Basic Concepts in Fuzzy Sets

- ▶ Support of a fuzzy set A in the universe of discourse U is a crisp set that contains all the elements of U that have nonzero membership values in A:  $supp_A = \{x \in U | \mu_A > 0\}$ 
  - In the digital thermometer example:  $supp_A = [21, 30]$
  - empty fuzzy set: support is empty
  - fuzzy singleton: support is a single point
- ► Center of a fuzzy set:
  - If the mean value of all points at which the membership function of the fuzzy set achieves its maximum value is finite, then this mean value is the center
  - If the mean value equals positive (negative) infinite, then the center is the smallest (largest) among all points that achieve the maximum membership value.





- ► Crossover point of a fuzzy set: the point in *U* whose membership value in *A* equals 0.5.
- ► Height of a fuzzy set: the largest membership value attained by any point.
  - ► Normal fuzzy set: the height of fuzzy set equals to one (digital thermometer).
- ▶  $\alpha$ -cut of a fuzzy set A a crisp set  $A_{\alpha}$  contains all the elements in U that have membership values in A greater than or equal to  $\alpha$ :  $A_{\alpha} = \{x \in U | \mu_A(x) \ge \alpha\}$ 
  - ▶ In digital thermometer for  $\alpha = 0.7$ ,  $T_{\alpha} = [23, 27]$
  - ▶ A fuzzy set A is convex iff its  $\alpha$ -cut is a convex set for  $\forall \alpha \in (0,1]$ .



- ▶ Crossover point of a fuzzy set: the point in U whose membership value in A equals 0.5.
- ► Height of a fuzzy set: the largest membership value attained by any point.
  - ► Normal fuzzy set: the height of fuzzy set equals to one (digital thermometer).
- ▶  $\alpha$ -cut of a fuzzy set A a crisp set  $A_{\alpha}$  contains all the elements in U that have membership values in A greater than or equal to  $\alpha$ :  $A_{\alpha} = \{x \in U | \mu_A(x) \geq \alpha\}$ 
  - ▶ In digital thermometer for  $\alpha = 0.7$ ,  $T_{\alpha} = [23, 27]$
  - ▶ A fuzzy set A is convex iff its  $\alpha$ -cut is a convex set for  $\forall \alpha \in (0,1]$ .
    - ▶ In Euclidean space, an object is convex if for every pair of points within the object, every point on the straight line segment that joins them is also within the object.







- ► Crossover point of a fuzzy set: the point in *U* whose membership value in *A* equals 0.5.
- ► **Height of a fuzzy set**: the largest membership value attained by any point.
  - ► Normal fuzzy set: the height of fuzzy set equals to one (digital thermometer).
- ▶  $\alpha$ -cut of a fuzzy set A a crisp set  $A_{\alpha}$  contains all the elements in U that have membership values in A greater than or equal to  $\alpha$ :  $A_{\alpha} = \{x \in U | \mu_A(x) \ge \alpha\}$ 
  - ▶ In digital thermometer for  $\alpha = 0.7$ ,  $T_{\alpha} = [23, 27]$
  - ▶ A fuzzy set A is convex iff its  $\alpha$ -cut is a convex set for  $\forall \alpha \in (0,1]$ .
    - ▶ Let C be a set in a real or complex vector space. C is convex if,  $\forall x,y \in C$  and all  $\lambda \in [0,1]$   $\longrightarrow$   $\lambda x + (1-\lambda)y \in C$

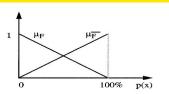


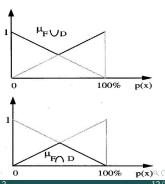
- ► Crossover point of a fuzzy set: the point in *U* whose membership value in *A* equals 0.5.
- ► **Height of a fuzzy set**: the largest membership value attained by any point.
  - ► Normal fuzzy set: the height of fuzzy set equals to one (digital thermometer).
- ▶  $\alpha$ -cut of a fuzzy set A a crisp set  $A_{\alpha}$  contains all the elements in U that have membership values in A greater than or equal to  $\alpha$ :  $A_{\alpha} = \{x \in U | \mu_A(x) \ge \alpha\}$ 
  - ▶ In digital thermometer for  $\alpha = 0.7$ ,  $T_{\alpha} = [23, 27]$
  - ▶ A fuzzy set A is convex iff its  $\alpha$ -cut is a convex set for  $\forall \alpha \in (0,1]$ .
  - ▶ **Lemma:** A fuzzy set  $A \in \mathcal{R}^n$  is convex iff  $\mu_A[\lambda x_1 + (1 \lambda)x_2] \ge \min[\mu_A(x_1), \mu_A(x_2)] \ \forall x_1, x_2 \in \mathcal{R}^n, \lambda \in [0, 1].$



# Operations on Fuzzy Sets

- ► Sets F and D are equal iff  $\mu_F(x) = \mu_D(x), \forall x \in U$
- ► Set D contains set F ( $F \subset D$ ), iff  $\mu_F(x) \le \mu_D(x), \forall x \in U$
- ► Complement of F is a fuzzy set  $\bar{F} \in U$  whose membership function is  $\mu_{\bar{E}}(x) = 1 \mu_{F}(x)$
- ▶ Union of sets F and D ( $F \cup D$ ) is a fuzzy set in U:  $\mu_{F \cup D} = \max[\mu_F(x), \mu_D(x)]$ 
  - ▶  $F \cup D$  is the smallest fuzzy set containing both F and D.
- ▶ Intersection of F and D  $(F \cap D)$  is a fuzzy set in  $U:\mu_{F\cap D} = \min[\mu_F(x), \mu_D(x)]$ 
  - ▶  $F \cap D$  is the smallest fuzzy set contained by F and D.







► The De Morgan's Laws are true for fuzzy sets:

$$\overline{F \cup D} = \overline{F} \cap \overline{D} 
\overline{F \cap D} = \overline{F} \cup \overline{D}$$

► For Iranian Cars example:

$$\mu_{F \cup D} = \begin{cases} \mu_D & \text{if } 0 \le p(x) \le 0.5 \\ \mu_F & \text{if } 0.5 \le p(x) \le 1 \end{cases}$$

$$\mu_{F \cap B} = \begin{cases} \mu_F & \text{if } 0 \le p(x) \le 0.5 \\ \mu_D & \text{if } 0.5 \le p(x) \le 1 \end{cases}$$



## **Further Operations**

- ► An other difference between fuzzy sets and crisp sets:
  - for crisp sets only one type of operation is defined for complement, union, and intersection
  - for fuzzy sets, we can define several operations for them based on the given axioms.
- Why do we need different type of operations?
  - Some operations may not be satisfactory in some situations.





## **Fuzzy Complement**

- ▶ Let  $c:[0,1] \rightarrow [0,1]$  be a mapping that transforms the membership function of fuzzy set A into the membership function of the complement of A:  $c[\mu_A(x)] = \mu_{\bar{A}}(x)$
- ▶ It was defined:  $c[\mu_A(x)] = 1 \mu_A$
- ▶ Let  $a = \mu_A(x)$  and  $b = \mu_B(x)$
- ▶ the function *c* is qualified as a complement if:
  - ▶ Axiom c1: c(0) = 1 and c(1) = 0 (boundary condition)
  - ▶ Axiom c2:  $\forall a, b \in [0,1]$ , if a < b, then  $c(a) \ge c(b)$  (nonincreasing condition)
    - an increase in membership value must result in a decrease or no change in membership value for the complement





#### **Fuzzy Complement**

- ▶ Let  $c:[0,1] \rightarrow [0,1]$  be a mapping that transforms the membership function of fuzzy set A into the membership function of the complement of A:  $c[\mu_A(x)] = \mu_{\bar{A}}(x)$
- ▶ It was defined:  $c[\mu_A(x)] = 1 \mu_A$
- ▶ Let  $a = \mu_A(x)$  and  $b = \mu_B(x)$
- ▶ the function *c* is qualified as a complement if:
  - ▶ Axiom c1: c(0) = 1 and c(1) = 0 (boundary condition)
  - ▶ Axiom c2:  $\forall a, b \in [0, 1]$ , if a < b, then  $c(a) \ge c(b)$  (nonincreasing condition)
    - ▶ an increase in membership value must result in a decrease or no change in membership value for the complement
- ▶ Some types of fuzzy complement:
  - Sugeno class:  $c_{\lambda}(a) = \frac{1-a}{1+\lambda a}, \quad \lambda \in (-1, \infty)$ 
    - ▶  $\lambda = 0$  → basic fuzzy complement
  - ► Yager class:  $c_w(a) = (1 a^w)^{1/w}, \quad w \in (0, \infty)$ 
    - w = 1 → basic fuzzy complement





### Fuzzy set-S Norm

- ▶ Let  $s:[0,1]\times[0,1]\to[0,1]$  be a mapping that transforms the membership functions of fuzzy sets A and B into the membership function of the union of A and B, that  $s[\mu_A(x), \mu_B(x)] = \mu_{A \mid \mid B}$ .
- the function S to be qualified as an union
  - ▶ Axiom s1.s(1,1) = 1, s(0,a) = s(a,O) = a (boundary condition).
  - ▶ Axiom s2. s(a, b) = s(b, a) (commutative condition).
  - **Axiom s3.** If a < a' and b < b', then s(a, b) < s(a', b') (nondecreasing condition).
  - ▶ Axiom s4. s(s(a,b),c) = s(a,s(b,c)) (associative condition).
- ▶ Popular types of *s*-norm
  - ▶ Dombi class:  $s_{\lambda}(a,b) = \frac{1}{1+[(\frac{1}{z}-1)^{-\lambda}+(\frac{1}{z}-1)^{-\lambda}]^{-1/\lambda}}, \ \lambda \in (0,\infty)$
  - ▶ Dobios-Prade class:  $s_{\alpha}(a,b) = \frac{a+b-ab-\min(a,b,1-\alpha)}{\max(1-a.1-b.\alpha)}, \alpha \in [0,1]$
  - ▶ Yager class:  $s_w(a, b) = min[1, (a^w + b^w)^{1/w}], w \in (0, \infty)$





- Other type of s-norm
  - ▶ Drastic sum:  $s_{ds}(a,b) = \begin{cases} a \text{ if } b = 0\\ b \text{ if } a = 0\\ 1 \text{ otherwise} \end{cases}$
  - Einstein sum:  $s_{es}(a,b) = \frac{a+b}{1+ab}$
  - Algebric sum:  $s_{as}(a,b) = a + b ab$
- ▶ Theorem: For any s-norm s, that is for any function  $s:[0,1]\times[0,1]\to[0,1]$  that satisfies Axioms s1-s4, the smallest s-norm is maximum and the largest is drastic s-norm
- ► Proof:
  - Axioms s1 and s3  $\Rightarrow$   $s(a, b) \ge s(a, 0) = a$
  - Axiom  $s2 \Rightarrow s(a, b) = s(b, a) \ge s(b, 0) = b$
  - $ightharpoonup :s(a,b) \geq max(a,b)$
  - ▶ If b = 0, Axiom s1  $\Rightarrow s(a, b) = s(a, 0) = a \rightsquigarrow s(a, b) = s_{ds}(a, b)$
  - ▶ If a = 0, Axiom s2  $\Rightarrow$ s(a, b) = s<sub>ds</sub>(a, b)
  - If  $a \neq 0 \& b \neq 0$ ,  $s_{ds}(a, b) = 1 \geq s(a, b)$
  - ▶  $:s(a,b) \le s_{ds}(a,b), \forall a,b \in [0,1]$





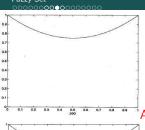
#### ► Example: The Iranian cars

Using Algebric sum:

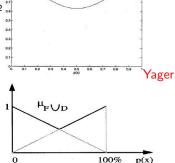
$$\mu_{F \cup D} = p(x) + (1 - p(x)) - p(x)(1 - p(x)) = 1 - p(x) + p(x)^{2}$$

▶ Using Yager s-norm, w = 3:

$$\mu_{F \cup D} = \min[1, (p(x)^3 + (1 - p(x))^3)^{1/3}]$$











#### Classical Set

► Lemma 1: For Dombi class s-norm and Drastic class s-norm it can be defined

$$\lim_{\lambda \to \infty} s_{\lambda}(a, b) = \max(a, b)$$
$$\lim_{\lambda \to 0} s_{\lambda}(a, b) = s_{ds}(a, b)$$

► Lemma 2: For Yager class s-norm and Drastic class s-norm it can be defined

$$\lim_{w \to \infty} s_w(a, b) = max(a, b)$$
$$\lim_{w \to 0} s_w(a, b) = s_{ds}(a, b)$$





#### Fuzzy Intersection- T-Norm

- ▶ Let  $t:[0,1] \times [0,1] \to [0,1]$  be a mapping that transforms the membership functions of fuzzy sets A and B into the membership function of the union of A and B, that  $t[\mu_A(x), \mu_B(x)] = \mu_{A \cap B}$ .
- the function T to be qualified as an intersection
  - ▶ Axiom t1.t(0,0) = 0, t(0,a) = t(a,0) = a (boundary condition).
  - ▶ Axiom t2. t(a,b) = t(b,a) (commutative condition).
  - ▶ Axiom t3. If  $a \le a'$  and  $b \le b'$ , then  $t(a, b) \le t(a', b')$  (nondecreasing condition).
  - ▶ Axiom t4. t(t(a,b),c) = t(a,t(b,c)) (associative condition).
- ▶ Popular types of t-norm
  - ▶ Dombi class:  $t_{\lambda}(a,b) = \frac{1}{1+[(\frac{1}{a}-1)^{\lambda}+(\frac{1}{b}-1)^{\lambda}]^{1/\lambda}}, \ \lambda \in (0,\infty)$
  - ▶ Dobios-Prade class:  $t_{\alpha}(a,b) = \frac{ab}{\max(a,b,\alpha)}, \alpha \in [0,1]$
  - ► Yager class:  $t_w(a,b) = 1 min[1,((1-a)^w + (1-b)^w)^{1/w}], \ w \in (0,\infty)$



Farzaneh Abdollahi Computational Intelligence Lecture 2 20/26



- ▶ Other type of t-norm
  - ▶ Drastic product:  $t_{ds}(a, b) = \begin{cases} a \text{ if } b = 1 \\ b \text{ if } a = 1 \\ 0 \text{ otherwise} \end{cases}$
  - Einstein product:  $t_{ep}(a,b) = \frac{ab}{2-(a+b-ab)}$
  - ▶ Algebric product:  $t_{ap}(a, b) = ab$
- ▶ Theorem: For any t-norm t, that is for any function  $t: [0,1] \times [0,1] \rightarrow [0,1]$  that satisfies Axioms t1-t4, the smallest t-norm is minimum and the largest is drastic t-norm
- prove it.
- Lemma 3: For Dombi class t-norm and Drastic class t-norm it can be defined

$$\lim_{\lambda \to \infty} t_{\lambda}(a,b) = \min(a,b)$$
  
 $\lim_{\lambda \to 0} t_{\lambda}(a,b) = t_{dp}(a,b)$ 

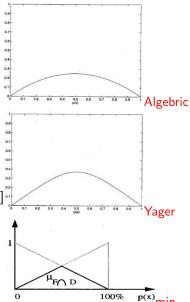


- ► Example: One more time, the Iranian cars
  - ► Using Algebric product:

$$\mu_{F\cap D}=p(x)(1-p(x))$$

• Using Yager t-norm, w = 3:

$$\mu_{F \cup D} = 1 - \min[1, ((1 - p(x))^3 + p(x)^3)^{1/3}]^{\frac{1}{6}}$$





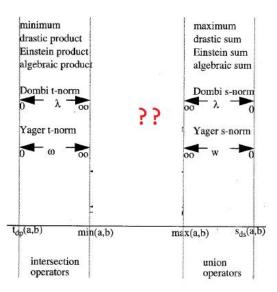
▶ If the s-norm s(a, b), t-norm t(a, b) and fuzzy complement c(a) satisfy the following equation, they form an associated class (DeMorgan's Law)

$$c[s(a,b)] = t[c(a),c(b)]$$

- Example: Show that the Yager s-norm and t-norm with the basic complement are associated
  - $c[s_w(a,b)] = 1 \min[1,(a^w + b^w)^{1/w}]$
  - $t_w[c(a),c(b)] = 1 \min[1,((1-1+a)^w + (1-1+b)^w)^{1/w}]$







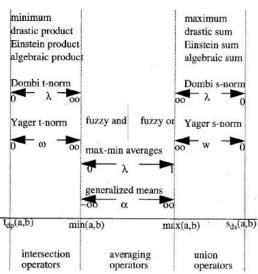


#### **Averaging Operator**

- ▶ This operator fills the gap between min(a, b), and max(a, b)
- ► Some average operators:
  - Max-min average:  $v_{\lambda}(a,b) = \lambda \max(a,b) + (1-\lambda) \min(a,b), \ \lambda \in [0,1]$
  - Generalized means:  $v_{\alpha}(a,b) = \frac{a^{\alpha} + b^{\alpha}}{2}^{1/\alpha}, \quad \alpha \in R, \ \alpha \neq 0$
  - ► Fuzzy and:  $v_p(a,b) = pmin(a,b) + \frac{(1-p)(a+b)}{2}, p = \in [0,1]$
  - Fuzzy or:  $v_{\gamma}(a,b) = \gamma \max(a,b) + \frac{(1-\gamma)(a+b)}{2}, \ \gamma \in [0,1]$







Full Scope of Fuzzy Operators





L. A. Zadeh, "Fuzzy sets," *Informat. Control*, vol. 8, , pp. 338–353, 1965.

