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Classical Set

I A classical (crisp) set A in the universe of discourse U: can be defined
by

I List method: listing all of its members
I Rule method: specifying the properties that must be satisfied by the

members of the set

A = {x ∈ U|x meets some conditions}

I Membership method: introduces a zero-one membership function (also
called characteristic function, discrimination function, or indicator
function)

µA =

{
1 ifx ∈ A
0 ifx /∈ A
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Example: cars in Tehran

I The universe of discourse U.

I Set A is the cars with 4 cylinders:

A = {x ∈ U|xhas 4 cylinders} OR

µA =

{
1 ifx ∈ U&x has 4 cylinders
0 ifx ∈ U&x does not have 4 cylinders

I Set D is the car made in Iran
I BUT the distinction between an Iranian car and

a non-Iranian a car is not crisp:(
I Most of them are not completely made in Iran

I So what should we do??!!
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Fuzzy Set
I some sets do not have clear boundaries.

I Fuzzy set: in a universe of discourse U is characterized by a
membership function µA(x) that takes values in the interval [0, 1].

I In classical sets the membership function of a classical set can only
take zero and one

I In fuzzy set the membership function is a continuous function with
range [0, 1].

I A fuzzy set A in U is represented by:
I a set of ordered pairs of a generic element x and its membership value:

A = {(x , µA(x))|x ∈ U}
I for continuous U: A =

∫
U
µA(x)/x .

I for discrete U: µA(x): A =
∑

U µA(x)/x
I
∫

and
∑

do not represent integral and summation.
I They denote collection of all points x ∈ U with the associated

membership function µA(x)
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Example: cars in Tehran (Cont’d)

I D: The set ”Iranian cars in Iran,”
I µD = p(x)

I p(x) is the percentage of the
parts of car x made in the Iran

I it takes values from 0% to 100%.

I F : The set ”non-Iranian cars in
Iran,”

I µF (x) = 1− p(x)
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I Different membership functions can be defined to characterize the
same description.

I The membership functions are not fuzzy, themselves.

I They are precise mathematical functions.

I Fuzzy sets are used to defuzzify the world.
I How to determine the membership functions?

I Formulate human knowledge
I Usually, gives a rough formula of the membership function
I fine-tuning is required.

I Data collected from various sensors
I specify the structures of the membership functions and then fine-tune

the parameters based on the data.

I A fuzzy set has a one-to-one correspondence with its membership
function
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Example: Old and Young [1]

I U is in the interval of [0, 100]

I young =∫ 25
0 1/x +

∫ 100
25 (1 + ( x−25

5 )2)−1/x

I old =
∫ 100

50 (1 + ( x−50
5 )−2)−1/x
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Example: A Digital Thermometer

I T : the set for desirable
temperature

I U ∈ [18, 33]

µT =
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Basic Concepts in Fuzzy Sets
I Support of a fuzzy set A in the universe of

discourse U is a crisp set that contains all the
elements of U that have nonzero membership
values in A: suppA = {x ∈ U|µA > 0}

I In the digital thermometer example:
suppA = [21, 30]

I empty fuzzy set: support is empty
I fuzzy singleton: support is a single point

I Center of a fuzzy set:
I If the mean value of all points at which the

membership function of the fuzzy set achieves
its maximum value is finite, then this mean
value is the center

I If the mean value equals positive (negative)
infinite, then the center is the smallest (largest)
among all points that achieve the maximum
membership value.
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I Crossover point of a fuzzy set: the point in U whose membership
value in A equals 0.5.

I Height of a fuzzy set: the largest membership value attained by any
point.

I Normal fuzzy set: the height of fuzzy set equals to one (digital
thermometer).

I α-cut of a fuzzy set A a crisp set Aα contains all the elements in U
that have membership values in A greater than or equal to α:
Aα = {x ∈ U|µA(x) ≥ α}

I In digital thermometer for α = 0.7, Tα = [23, 27]
I A fuzzy set A is convex iff its α-cut is a convex set for ∀α ∈ (0, 1].
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I Crossover point of a fuzzy set: the point in U whose membership
value in A equals 0.5.

I Height of a fuzzy set: the largest membership value attained by any
point.

I Normal fuzzy set: the height of fuzzy set equals to one (digital
thermometer).

I α-cut of a fuzzy set A a crisp set Aα contains all the elements in U
that have membership values in A greater than or equal to α:
Aα = {x ∈ U|µA(x) ≥ α}

I In digital thermometer for α = 0.7, Tα = [23, 27]
I A fuzzy set A is convex iff its α-cut is a convex set for ∀α ∈ (0, 1].

I In Euclidean space, an object is convex if for every pair of points within
the object, every point on the straight line segment that joins them is
also within the object.
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I Crossover point of a fuzzy set: the point in U whose membership
value in A equals 0.5.

I Height of a fuzzy set: the largest membership value attained by any
point.

I Normal fuzzy set: the height of fuzzy set equals to one (digital
thermometer).

I α-cut of a fuzzy set A a crisp set Aα contains all the elements in U
that have membership values in A greater than or equal to α:
Aα = {x ∈ U|µA(x) ≥ α}

I In digital thermometer for α = 0.7, Tα = [23, 27]
I A fuzzy set A is convex iff its α-cut is a convex set for ∀α ∈ (0, 1].

I Let C be a set in a real or complex vector space. C is convex if,
∀x , y ∈ C and all λ ∈ [0, 1] , λx + (1− λ)y ∈ C
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I Crossover point of a fuzzy set: the point in U whose membership
value in A equals 0.5.

I Height of a fuzzy set: the largest membership value attained by any
point.

I Normal fuzzy set: the height of fuzzy set equals to one (digital
thermometer).

I α-cut of a fuzzy set A a crisp set Aα contains all the elements in U
that have membership values in A greater than or equal to α:
Aα = {x ∈ U|µA(x) ≥ α}

I In digital thermometer for α = 0.7, Tα = [23, 27]
I A fuzzy set A is convex iff its α-cut is a convex set for ∀α ∈ (0, 1].
I Lemma: A fuzzy set A ∈ Rn is convex iff
µA[λx1 + (1− λ)x2] ≥ min[µA(x1), µA(x2)] ∀x1, x2 ∈ Rn, λ ∈ [0, 1].
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Operations on Fuzzy Sets
I Sets F and D are equal iff
µF (x) = µD(x),∀x ∈ U

I Set D contains set F (F ⊂ D), iff
µF (x) ≤ µD(x),∀x ∈ U

I Complement of F is a fuzzy set F̄ ∈ U
whose membership function is
µF̄ (x) = 1− µF (x)

I Union of sets F and D (F ∪ D) is a fuzzy
set in U: µF∪D = max[µF (x), µD(x)]

I F ∪ D is the smallest fuzzy set containing
both F and D.

I Intersection of F and D (F ∩ D) is a fuzzy
set in U:µF∩D = min[µF (x), µD(x)]

I F ∩ D is the smallest fuzzy set contained
by F and D.
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I The De Morgan’s Laws are true for fuzzy sets:

F ∪ D = F̄ ∩ D̄

F ∩ D = F̄ ∪ D̄

I For Iranian Cars example:

I µF∪D =

{
µD if 0 ≤ p(x) ≤ 0.5
µF if 0.5 ≤ p(x) ≤ 1

I µF∩B =

{
µF if 0 ≤ p(x) ≤ 0.5
µD if 0.5 ≤ p(x) ≤ 1
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Further Operations

I An other difference between fuzzy sets and crisp sets:
I for crisp sets only one type of operation is defined for complement,

union, and intersection
I for fuzzy sets, we can define several operations for them based on the

given axioms.

I Why do we need different type of operations?
I Some operations may not be satisfactory in some situations.
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Fuzzy Complement

I Let c : [0, 1]→ [0, 1] be a mapping that transforms the membership
function of fuzzy set A into the membership function of the
complement of A: c[µA(x)] = µĀ(x)

I It was defined: c[µA(x)] = 1− µA

I Let a = µA(x) and b = µB(x)
I the function c is qualified as a complement if:

I Axiom c1: c(0) = 1 and c(1) = 0 (boundary condition)
I Axiom c2: ∀a, b ∈ [0, 1], if a < b, then c(a) ≥ c(b) (nonincreasing

condition)
I an increase in membership value must result in a decrease or no change

in membership value for the complement
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Fuzzy Complement
I Let c : [0, 1]→ [0, 1] be a mapping that transforms the membership

function of fuzzy set A into the membership function of the
complement of A: c[µA(x)] = µĀ(x)

I It was defined: c[µA(x)] = 1− µA

I Let a = µA(x) and b = µB(x)
I the function c is qualified as a complement if:

I Axiom c1: c(0) = 1 and c(1) = 0 (boundary condition)
I Axiom c2: ∀a, b ∈ [0, 1], if a < b, then c(a) ≥ c(b) (nonincreasing

condition)
I an increase in membership value must result in a decrease or no change

in membership value for the complement

I Some types of fuzzy complement:
I Sugeno class: cλ(a) = 1−a

1+λa , λ ∈ (−1,∞)
I λ = 0 basic fuzzy complement

I Yager class: cw (a) = (1− aw )1/w , w ∈ (0,∞)
I w = 1 basic fuzzy complement

Farzaneh Abdollahi Computational Intelligence Lecture 2 15/26



Outline Classical Set Fuzzy Set

Fuzzy set-S Norm

I Let s : [0, 1]× [0, 1]→ [0, 1] be a mapping that transforms the
membership functions of fuzzy sets A and B into the membership
function of the union of A and B, that s[µA(x), µB(x)] = µA

⋃
B .

I the function S to be qualified as an union
I Axiom s1.s(1, 1) = 1, s(0, a) = s(a,O) = a (boundary condition).
I Axiom s2. s(a, b) = s(b, a) (commutative condition).
I Axiom s3. If a ≤ a′ and b ≤ b′, then s(a, b) ≤ s(a′, b′) (nondecreasing

condition).
I Axiom s4. s(s(a, b), c) = s(a, s(b, c)) (associative condition).

I Popular types of s-norm
I Dombi class: sλ(a, b) = 1

1+[( 1
a−1)−λ+( 1

b−1)−λ]−1/λ , λ ∈ (0,∞)

I Dobios-Prade class: sα(a, b) = a+b−ab−min(a,b,1−α)
max(1−a,1−b,α) , α ∈ [0, 1]

I Yager class: sw (a, b) = min[1, (aw + bw )1/w ], w ∈ (0,∞)
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I Other type of s-norm

I Drastic sum: sds(a, b) =

 a if b = 0
b if a = 0

1 otherwise
I Einstein sum: ses(a, b) = a+b

1+ab
I Algebric sum: sas(a, b) = a + b − ab

I Theorem: For any s-norm s, that is for any function
s : [0, 1]× [0, 1]→ [0, 1] that satisfies Axioms s1-s4, the smallest
s-norm is maximum and the largest is drastic s-norm

I Proof:
I Axioms s1 and s3 ⇒s(a, b) ≥ s(a, 0) = a
I Axiom s2 ⇒s(a, b) = s(b, a) ≥ s(b, 0) = b
I ∴s(a, b) ≥ max(a, b)
I If b = 0, Axiom s1 ⇒s(a, b) = s(a, 0) = a s(a, b) = sds(a, b)
I If a = 0, Axiom s2 ⇒s(a, b) = sds(a, b)
I If a 6= 0&b 6= 0, sds(a, b) = 1 ≥ s(a, b)
I ∴s(a, b) ≤ sds(a, b),∀a, b ∈ [0, 1]
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I Example: The Iranian cars
I Using Algebric sum:
µF∪D = p(x) + (1− p(x))−
p(x)(1−p(x)) = 1−p(x)+p(x)2

I Using Yager s-norm, w = 3:
µF∪D =
min[1, (p(x)3 + (1− p(x))3)1/3]

Algebric

Yager

max
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Classical Set

I Lemma 1: For Dombi class s-norm and Drastic class s-norm it can be
defined

lim
λ→∞

sλ(a, b) = max(a, b)

lim
λ→0

sλ(a, b) = sds(a, b)

I Lemma 2: For Yager class s-norm and Drastic class s-norm it can be
defined

lim
w→∞

sw (a, b) = max(a, b)

lim
w→0

sw (a, b) = sds(a, b)
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Fuzzy Intersection- T-Norm

I Let t : [0, 1]× [0, 1]→ [0, 1] be a mapping that transforms the
membership functions of fuzzy sets A and B into the membership
function of the union of A and B, that t[µA(x), µB(x)] = µA∩B .

I the function T to be qualified as an intersection
I Axiom t1.t(0, 0) = 0, t(0, a) = t(a, 0) = a (boundary condition).
I Axiom t2. t(a, b) = t(b, a) (commutative condition).
I Axiom t3. If a ≤ a′ and b ≤ b′, then t(a, b) ≤ t(a′, b′) (nondecreasing

condition).
I Axiom t4. t(t(a, b), c) = t(a, t(b, c)) (associative condition).

I Popular types of t-norm
I Dombi class: tλ(a, b) = 1

1+[( 1
a−1)λ+( 1

b−1)λ]1/λ , λ ∈ (0,∞)

I Dobios-Prade class: tα(a, b) = ab
max(a,b,α) , α ∈ [0, 1]

I Yager class:
tw (a, b) = 1−min[1, ((1− a)w + (1− b)w )1/w ], w ∈ (0,∞)
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I Other type of t-norm

I Drastic product: tds(a, b) =

 a if b = 1
b if a = 1

0 otherwise
I Einstein product: tep(a, b) = ab

2−(a+b−ab)
I Algebric product: tap(a, b) = ab

I Theorem: For any t-norm t, that is for any function
t : [0, 1]× [0, 1]→ [0, 1] that satisfies Axioms t1-t4, the smallest
t-norm is minimum and the largest is drastic t-norm

I prove it.

I Lemma 3: For Dombi class t-norm and Drastic class t-norm it can be
defined

lim
λ→∞

tλ(a, b) = min(a, b)

lim
λ→0

tλ(a, b) = tdp(a, b)
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I Example: One more time, the
Iranian cars

I Using Algebric product:
µF∩D = p(x)(1− p(x))

I Using Yager t-norm, w = 3:
µF∪D =
1−min[1, ((1−p(x))3+p(x)3)1/3]

Algebric

Yager

min
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I If the s-norm s(a, b), t-norm t(a, b) and fuzzy complement c(a)
satisfy the following equation, they form an associated class
(DeMorgan’s Law)

c[s(a, b)] = t[c(a), c(b)]

I Example: Show that the Yager s-norm and t-norm with the basic
complement are associated

I c[sw (a, b)] = 1−min[1, (aw + bw )1/w ]
I tw [c(a), c(b)] = 1−min[1, ((1− 1 + a)w + (1− 1 + b)w )1/w ]
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Averaging Operator

I This operator fills the gap between min(a, b), and max(a, b)
I Some average operators:

I Max-min average: vλ(a, b) = λmax(a, b) + (1− λ) min(a, b), λ ∈ [0, 1]

I Generalized means: vα(a, b) = aα+bα

2

1/α
, α ∈ R, α 6= 0

I Fuzzy and: vp(a, b) = pmin(a, b) + (1−p)(a+b)
2 , p =∈ [0, 1]

I Fuzzy or: vγ(a, b) = γmax(a, b) + (1−γ)(a+b)
2 , γ ∈ [0, 1]
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Full Scope of Fuzzy Operators
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L. A. Zadeh, “Fuzzy sets,” Informat. Control, vol. 8, ,
pp. 338–353, 1965.
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