Computational Intelligence Lecture 18: Fuzzy Control II

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

TSK Fuzzy System Dynamic TSK Fuzzy System

Closed-Loop Dynamics with Fuzzy Controller

Stability Analysis

Stable Fuzzy Controllers

Takagi-Sugeno-Kang Fuzzy System (TSK)[1]

- ▶ A TSK fuzzy system is constructed from the following rules: IF x_1 is C_1^l and ... and x_n is C_n^l THEN $y^l = f(x_1, ..., x_n)$
- \triangleright $y' = f(x_1, ..., x_n)$ is a crisp function, and can be any general fcn.
- Usually two types of TSK fuzzy system is applied
 - 1. Zero-Order Sugeno Model
 - ▶ v^I is const.
 - It is a special case of the product inf., singleton fuzzifier,
 - 2. First-Order Sugeno Model
 - \triangleright y' is a linear fcn. of x_i : $y' = c_0' + c_1'x_1 + \ldots + c_n'x_n$
- ▶ The output of the TSK fuzzy system is computed as the weighted average of the y^{l} 's

$$y^* = \frac{\sum_{l=1}^{M} y^l w^l}{\sum_{l=1}^{M} w^l}$$
where $w^l = \prod_{i=1}^{n} \mu_{C_i^l}(x_i)$

→ 御 → → 三 → → → → へ へ ○

Dynamic TSK Fuzzy System

- ▶ Output of a TSK fuzzy system appears as one of its inputs: IF x(k) is A_1^p and ... and x(k-n+1) is A_n^p and u(k) is B^p THEN $x^p(k+1) = a_1^p x(k) + ... + a_n^p x(k-n+1) + b^p u(k)$
 - \triangleright A^p and B^P are fuzzy sets
 - a^p and b^P are const., p = 1, 2, ..., N,
 - \blacktriangleright u(k):input to the system
 - ▶ $\mathbf{x}(k) = (x(k), x(k-1), ..., x(k-n+1))^T \in \mathbb{R}^n$: the state vector of the system.
- Output of the TSK is

$$x^*(k+1) = \frac{\sum_{p=1}^{N} x^p(k+1)v^p}{\sum_{p=1}^{N} v^p}$$
 where $v^p = \prod_{i=1}^{n} \mu_{A_i^p}[x(k-i+1)]\mu_{B^p}[u(k)]$

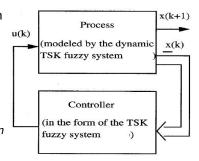
 Dynamic TSK fuzzy system can be applied to model dynamics of a plant

- (ロ) (個) (E) (E) (E) の(O

5/12

Closed-Loop Dynamics of Fuzzy Model with Fuzzy Controller

- Consider a feedback control system
 - The process under control is modeled by the dynamic TSK fuzzy model
 - ► The controller is the TSK fuzzy system with $c_0^I = 0$ and $x_i = x(k-i+1)$ for i = 1, 2, ..., n



The closed-loop fuzzy control system is equivalent to the dynamic TSK fuzzy system by the following rules:

IF
$$x(k)$$
 is $(C_1^l$ and $A_1^p)$ and ... and $x(k-n+1)$ is $(C_n^l$ and $A_n^p)$ THEN $x^{lp}(k+1) = \sum_{i=1}^n (a_i^p + b^p c_i^l) x(k-i+1)$

- \triangleright u(k): the output of the controller,
- I = 1, 2, ..., M, p = 1, 2, ..., N
- fuzzy sets $(C_i^l \text{ and } A_i^p)$ are characterized by the mem. fcn. $\mu_{C!}(x(k-i+1)), \mu_{A!}(x(k-i+1)).$
- ▶ The output of this dynamic TSK fuzzy system:

$$x(k+1) = \frac{\sum_{l=1}^{M} \sum_{p=1}^{N} x^{lp} (k+1) w^{l} v^{p}}{\sum_{l=1}^{M} \sum_{p=1}^{N} w^{l} v^{p}}$$

where

$$w^{I} = \prod_{i=1}^{n} \mu_{C_{i}^{I}}(x(k-i+1))$$

$$V^p = \prod_{i=1}^n \mu_{A_i^p} [x(k-i+1)] \mu_{B^p} [u(k)]$$

Stability Analysis of the Dynamic TSK Fuzzy System

- ▶ Consider System dynamics x(k+1) = Ax(k)
- ▶ Based on Lyapunov theorem, this system is globally asymptotically stable iff $\exists P > 0$ s.t. $A^T PA - P < 0$

Stability Analysis of the Dynamic TSK Fuzzy System

- ▶ Consider System dynamics x(k+1) = Ax(k)
- ▶ Based on Lyapunov theorem, this system is globally asymptotically stable iff $\exists P > 0$ s.t. $A^T PA - P < 0$
- ▶ Now for the TSK dynamical model define:

$$\mathbf{x}(k) = \begin{bmatrix} x(k)...x(k-n_1) \end{bmatrix}^T$$

$$A_p = \begin{bmatrix} a_1^p & a_2^p & \dots & a_n^p \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- $b^p = 0$ (consider no input u(k) for the system)
- ... output of the systems: $x(k+1) = \frac{\sum_{p=1}^{N} A_p x(k) v^p}{\sum_{p=1}^{N} v^p}$
- ► x(k) = 0 equilibrium point is the origin

Stability Analysis of the Dynamic TSK Fuzzy System

- ► Consider System dynamics x(k+1) = Ax(k)
- ▶ Based on Lyapunov theorem, this system is globally asymptotically stable iff $\exists P > 0$ s.t. $A^T PA - P < 0$
- ▶ Now for the TSK dynamical model define:

$$\mathbf{x}(k) = [x(k)...x(k - n_1)]^T$$

$$A_{\rho} = \begin{bmatrix} a_1^{\rho} & a_2^{\rho} & \dots & a_n^{\rho} \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

- $b^p = 0$ (consider no input u(k) for the system)
- ... output of the systems: $x(k+1) = \frac{\sum_{p=1}^{N} A_p x(k) v^p}{\sum_{n=1}^{N} v^p}$
- $x(k) = 0 \rightarrow$ equilibrium point is the origin
- ▶ The TSK system modeled above is stable if ∃ a common matrix

P>0 s.t. $A_p^T P A_p - P<0$ for all $p=1,2,\ldots,N$

Computational Intelligence

Design of Stable Fuzzy Controllers for the Fuzzy Model

 Use The following closed-loop fuzzy control system as a dynamic TSK fuzzy system.

IF
$$x(k)$$
 is $(C_1^I \text{ and } A_1^p)$ and and $x(k-n+1)$ is $(C_n^I \text{ and } A_n^p)$ THEN $x^{Ip}(k+1) = \sum_{i=1}^n (a_i^p + b^p c_i^I) x(k-i+1)$

The output:

$$x(k+1) = \frac{\sum_{l=1}^{M} \sum_{p=1}^{N} x^{lp}(k+1)w^{l}v^{p}}{\sum_{l=1}^{M} \sum_{p=1}^{N} w^{l}v^{p}}$$
where $w^{l} = \prod_{i=1}^{n} \mu_{C_{i}^{l}}(x(k-i+1))$

$$v^{p} = \prod_{i=1}^{n} \mu_{A_{i}^{p}}[x(k-i+1)]\mu_{B_{i}^{p}}[u(k)]$$

$$x^{p} = \sum_{i=1}^{n} \mu_{A_{i}^{p}}[x(k-i+1)]\mu_{B_{i}^{p}}[u(k)]$$

- a_i^p and b^p , and $\mu_{A_i^p}$ are known
- the controller parameters c_i^p , μ_{C_i} should be designed

$$2. \text{ Choose } c_i^I \text{ and } A_{lp} = \begin{bmatrix} a_1^p + b^p c_l^I & a_2^p + b^p c_2^I & \dots & a_n^p + b^p c_n^I \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix} \text{ where } I = 1, \dots, M; p = 1, \dots, N$$

$$2. \ \, \mathsf{Choose} \,\, c_i^I \,\, \mathsf{and} \,\, A_{Ip} = \left[\begin{array}{cccc} a_1^p + b^p c_I^I & a_2^p + b^p c_2^I & \dots & a_n^p + b^p c_n^I \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{array} \right] \,\, \mathsf{where} \,\,$$

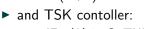
$$I = 1, \dots, M; \, p = 1, \dots, N$$

3. Find a common matrix P > 0 s.t. $A_{lp}^{I} P A_{lp} - P < 0$ for all p = 1, 2, ..., N; l = 1, ..., M. If you could not find such P, back to step 2 and redefine a new set of c_i^l 's

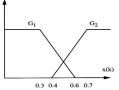
Computational Intelligence Lecture 18

Example

- Consider a TSK dynamical system:
 - ▶ IF x(k) is G_1 THEN $x^{1}(k+1) = 2.18x(k) - 0.59x(k-1) - 0.603u(k)$
 - ▶ IF x(k) is G_2 THEN $x^{2}(k+1) = 2.26x(k) - 0.63x(k-1) - 1.120u(k)$



- ▶ IF x(k) is G_1 THEN $u^{1}(k) = c_{1}^{1}x(k) + c_{2}^{1}x(k-1)$
- ▶ IF x(k) is G_2 THEN $u^{2}(k) = c_{1}^{2}x(k) + c_{2}^{2}x(k-1)$



Example Cont'd

- ▶ Step 1: design a closed loop TSK system
 - ▶ IF x(k) is (G₁, G₁) THEN $x^{11}(k+1) = (2.18 - 0.603c_1^1)x(k) + (-0.59 - 0.603c_2^1)x(k-1)$
 - ▶ IF x(k) is (G_1, G_2) THEN $x^{12}(k+1) = (2.18 - 0.603c_1^2)x(k) + (-0.59 - 0.603c_2^2)x(k-1)$
 - ▶ IF x(k) is (G₂, G₁) THEN $x^{21}(k+1) = (2.26 - 1.120c_1^1)x(k) + (-0.63 - 1.120c_2^1)x(k-1)$
 - ▶ IF x(k) is (G_2, G_2) THEN $x^{22}(k+1) = (2.26 - 1.120c_1^2)x(k) + (-0.63 - 1.120c_2^2)x(k-1)$

▶ Step 2: define matrices A_{lp} :

$$A_{11} = \begin{bmatrix} 2.18 - 0.603c_1^1 & -0.59 - 0.603c_2^1 \\ 1 & 0 \end{bmatrix}; A_{12} = \begin{bmatrix} 2.18 - 0.603c_1^2 & -0.59 - 0.603c_2^2 \\ 1 & 0 \end{bmatrix}; A_{21} = \begin{bmatrix} 2.26 - 1.120c_1^1 & -0.63 - 1.120c_2^1 \\ 1 & 0 \end{bmatrix}; A_{22} = \begin{bmatrix} 2.26 - 1.120c_1^2 & -63 - 1.120c_2^2 \\ 1 & 0 \end{bmatrix}$$

► Step 3: by trail and error proper c_i^l are: $c_1^1 = 1.564$; $c_2^1 = 0.223$; $c_1^2 = 0.912$; $c_2^2 = 0.079$

- 4 ロ ト 4 部 ト 4 差 ト - 差 - 约 Q (C)

M. Sugeno, "An introductory survey of fuzzy control," *Inf. Sci* vol. 36, pp. 59–83, 1985.

