

1/24

Computational Intelligence Lecture 17: Fuzzy Control I

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

Fuzzy Control

Nonadaptive Fuzzy Control Trial-and-Error Approach

PID Controller Using Fuzzy Systems Fuzzy System for PID

Comparing Fuzzy Control with Conventional Control

Similarities:

- ► They must address the same issues that are common to any control problem, e.g., stability and performance.
- ▶ The mathematical tools used to analyze the designed control systems are similar, because they are studying the same issues (stability, convergence, etc.) for the same kind of systems.

▶ Difference

- ▶ In conventional control mathematical model of the process and controllers are available. In fuzzy control, the controllers are designed using rules based on heuristics and human expertise
 - Advanced fuzzy controllers may use both heuristics and mathematical models

Fuzzy Control

- ► Fuzzy control is classified into
 - ► Nonadaptive Fuzzy Control
 - the structure and parameters of the fuzzy controller are fixed
 - Adaptive Fuzzy Control
 - The structure or/and parameters of the fuzzy controller change during realtime operation.
- ▶ Nonadaptive fuzzy control is simpler than adaptive fuzzy control
- Nonadaptive fuzzy control requires more knowledge of the process model or heuristic rules.
- Adaptive requires less information and may perform better at the cost of more complexity.

Assumption is Fuzzy Control Design

- ▶ The plant is observable and controllable: state, input, and output variables are usually available for observation and measurement or computation.
- ► There exists a body of knowledge comprised of a set of linguistic rules, engineering common sense, intuition, or a set of inputoutput measurements data from which rules can be extracted
- A solution exists.
- ▶ The control engineer is looking for a good enough solution, not necessarily the optimum one.
- ▶ The controller will be designed within an acceptable range of precision.

The Trial-and-Error Approach

- ▶ By using experience-based knowledge (e.g., an operating manual) and by asking the domain 'experts to answer a carefully organized questionnaire, IF-THEN rules are provided and fuzzy controllers are constructed
- ▶ Then the fuzzy controllers are tested in the real system and if the performance is not satisfactory, the rules are fine-tuned or redesigned in a number of trial-and-error cycles until the desired performance is achieved.

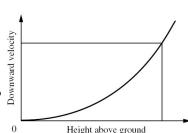
The Trial-and-Error Approach

- 1. Analyze the real system to choose state and control variables and outputs.
 - The state variables:
 - characterize the key features of the system
 - ► The control variables (inputs of the plant):
 - ▶ influence the states of the system.
 - are the outputs of the fuzzy controller.
- 2. Partition the universe of discourse or the interval spanned by each variable into a number of fuzzy subsets, assigning each a linguistic label
 - Assign or determine a membership function for each fuzzy subset.
 - ▶ You may require to choose appropriate scaling factors for the input and output variables in order to normalize the variables to the [0, 1] or the [-1,1] interval.

Farzaneh Abdollahi

The Trial-and-Error Approach

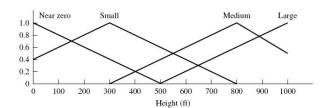
- Derive IF-THEN rules that relate the state variables with the control variables
 - The rules are defined using
 - ► An introspective verbalization of human expertise like operating manual
 - ▶ the information obtained from a filled carefully organized questionnaire
- 4. Design the fuzzy system and test the closed-loop system with this fuzzy system as the controller
 - ▶ If the performance is not satisfactory, fine-tune or redesign the fuzzy controller by trial and error
 - repeat the procedure until achieving the desired performance

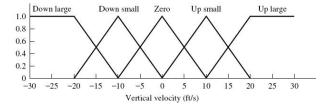


Example: AIRCRAFT LANDING CONTROL

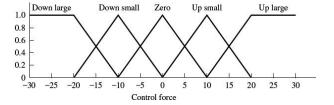
- The desired profile is shown in Fig.
- ▶ The downward velocity is proportional to the square of the height.
 - At higher altitudes, a large downward velocity is desired.
 - As the height (altitude) diminishes, the desired downward velocity gets smaller and smaller.
 - ▶ In the limit, as the height tends to be zero, the downward velocity also goes to zero.

- h:height above ground
- ▶ v: vertical velocity of the aircraft
- ▶ The control signal
 - ▶ f: force




Farzaneh Abdollahi

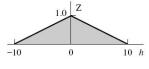
- ▶ Mass m moving with velocity v has momentum p = mv.
- ▶ If a force f is applied over a time interval $\Delta t \leadsto \Delta v = f \Delta t / m$
- $ightharpoonup \Delta t = 1.0(s)$ and $m = 1.0lb \sim \Delta v = f$
- - $ightharpoonup v_{i+1}$: new velocity, v_i : old velocity
 - \blacktriangleright h_{i+1} new height, h_i old height

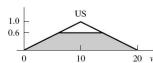


Membership values for control force

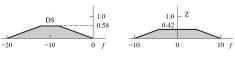
	Output force												
	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
Up large (UL)	0	0	0	0	0	0	0	0	0	0.5	1	1	1
Up small (US)	0	0	0	0	0	0	0	0.5	1	0.5	0	0	0
Zero (Z)	0	0	0	0	0	0.5	1	0.5	0	0	0	0	0
Down small (DS)	0	0	0	0.5	1	0.5	0	0	0	0	0	0	0
Down large (DL)	1	1	1	0.5	0	0	0	0	0	0	0	0	0

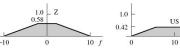
▶ The rules are summarized in the table


Height	Velocity									
	DL	DS	Zero	US	UL					
L	Z	DS	DL	DL	DL					
M	US	Z	DS	DL	DL					
S	UL	US	Z	DS	DL					
NZ	UL	UL	Z	DS	DS					


- Let us use
 - singleton fuzzifier,
 - ▶ min inf. eng.
 - centroid defuzzifier

- ▶ Initial height, h_0 : 1000ft; Initial velocity, v_0 : -20ft/s
- ▶ h = 1 for L and 0.6 for M
- \triangleright v = 1 for DL
- L(1.0) AND $DL(1.0) \Rightarrow Z$ M(0.6) AND $DL(1.0) \Rightarrow US$
- ▶ Using defuzzifier: $f_0 = 5.8$ *lb*



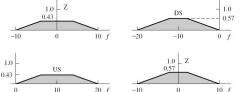


$$h_1 = h_0 + v_0 = 980 ft$$
;

$$v_1 = v_0 + f_0 = -14.2 ft/s$$

- ▶ $h_1 = 0.96$ for L and 0.64 for M
- \triangleright $v_1 = 0.58$ for *DS* and 0.42 for *DL*
- L(0.96) AND $DS(0.58) \Rightarrow DS$ L(0.96) AND $DL(0.42) \Rightarrow Z$ M(0.64) AND $DS(0.58) \Rightarrow Z$ M(0.64) AND $DL(0.42) \Rightarrow US$
- ▶ Using defuzzifier: $f_1 = -0.5$ *lb*

20 f



$$h_2 = h_1 + v_1 = 965.8 ft$$
;

$$v_2 = v_1 + f_1 = -14.7 ft/s$$

▶
$$h = 0.93$$
 for L and 0.67 for M

- \triangleright v = 0.57 for *DS* and 0.43 for *DL*
- L(0.93) AND $DL(0.43) \Rightarrow Z$ L(0.93) AND $DS(0.57) \Rightarrow DS$ M(0.67) AND $DL(0.43) \Rightarrow US$ M(0.67) AND $DS(0.57) \Rightarrow Z$
- ▶ Using defuzzifier: $f_2 = -0.4lb$

Summary of four-cycle simulation results

1	Cycle 0	Cycle 1	Cycle 2	Cycle 3	Cycle 4
Height, ft	1000.0	980.0	965.8	951.1	936.0
Velocity, ft/s	-20	-14.2	-14.7	-15.1	-14.8
Control force	5.8	-0.5	-0.4	0.3	

PID Controller

▶ The transfer function of a PID controller:

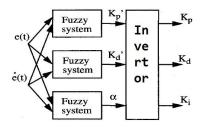
$$G(s) = K_p + K_i/s + K_d s$$

$$T_i = K_p/K_i, \ T_d = K_d/K_p$$

- The PID gains are usually turned by experienced human experts based on some "rule of thumb."
- By using fuzzy systems, we are trying to adjust the PID gains online

19/24

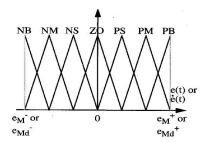
Fuzzy System for PID [1]

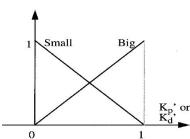

- Assume the range of PID gains:
 - $ightharpoonup K_p \in [K_{pmax}, K_{pmin}] \subset R$
 - $ightharpoonup K_d \in [K_{dmax}, K_{dmin}] \subset R$
- ▶ Normalize K_p and K_d to the range of |0, 1|

$$K_{p'} = \frac{K_p - K_{pmin}}{K_{pmax} - K_{pmin}}$$

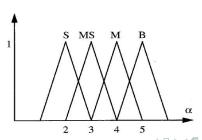
$$K_{d'} = \frac{K_d - K_{dmin}}{K_{dmax} - K_{dmin}}$$

$$ightharpoonup K_{d'} = rac{K_d - K_{dmin}}{K_{dmax} - K_{dmin}}$$

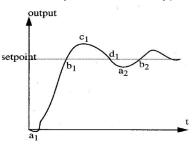

- ► Assume $T_i = \alpha T_d \rightsquigarrow K_i = \frac{K_p}{\alpha T_d} = \frac{K_p^2}{\alpha K_d}$
- ▶ Inputs of fuzzy system: e(t), $\dot{e}(t)$
- ▶ Output of fuzzy system: $K_{p'}$, $K_{d'}$, α


- Domain of interest:

 - ▶ $e(t) \in [e_M^-, e_M^+]$ ▶ $\dot{e}(t) \in [e_{Md}^-, e_{Md}^+]$
- ▶ Mem. fcn for e(t) and $\dot{e}(t)$



▶ Mem. fcn for $K_{p'}$ and $K_{d'}$


 \blacktriangleright Mem. fcn for α

Farzaneh Abdollahi Computational Intelligence Lecture 17 21/24

▶ Derive the rules experimentally based on the typical step response

- \triangleright For e.g., Around b_1 , a small control signal requires to avoid a large overshoot ::
 - ightharpoonup Small $K_{p'}$
 - ▶ Large K_{d'}
 - ▶ Large α
- ▶ IF e(t) is ZO and $\dot{e}(t)$ is NB, THEN $K_{p'}$ is Small, $K_{d'}$ is Big, α is B
- ▶ Find the rules for other points.

Farzaneh Abdollahi Computational Intelligence Lecture 17

					ė(t)	o ^{ld}		
		NB	NM	NS	zo	PS	PM	PB
	NB	В	В	В	В	В	В	В
	NM	S	В	В	В	В	В	S
	NS	S	S	В	В	В	S	S
e(t)	zo	S	S	S	В	S	S	S
	PS	S	S	В	В	В	S	S
	PM	S	В	В	В	В	В	S
	PB	В	В	В	В	В	В	В

▶ Rules for $K_{d'}$

			- 12		ė(t)			
		NB	NM	NS	ZO	PS	PM	PB
	NB	S	S	S	S	S	s	S
	NM	В	В	S	S	S	В	В
	NS	В	В	В	S	В	В	В
e(t)	zo	В	\mathbf{B}	В	В	В	В	В
	PS	В	В	В	S	В	В	В
	PM	В	В	\mathbf{S}	\mathbf{S}	S	В	В
	PB	S	S	S	S	S	\mathbf{S}	\mathbf{S}

 \triangleright Rules for α

		ė(t)									
17		NB	NM	NS	ZO	PS	PM	PB			
	NB	2	2	2	2	2	2	2			
	NM	3	3	2	2	2	3	3			
	NS	4	3	3	2	3	3	4			
e(t)	zo	5	4.	3	3	3	4	5			
	PS	4	3	3	2	3	3	4			
	PM	3	3	2	2	2	3	3			
	PB	2	2	2	2	2	2	2			

- ▶ There are 49 rules for each output
- ► Consider a fuzzy system with product inference engine, singleton

fuzzifier, and center average defuzzifier
$$K_{p'} = \frac{\sum_{l=1}^{49} \bar{y}_p^l \mu_{A^l}(e(t)) \mu_{B^l}(\dot{e}(t))}{\sum_{l=1}^{49} \mu_{A^l}(e(t)) \mu_{B^l}(\dot{e}(t))} \ K_{d'} = \frac{\sum_{l=1}^{49} \bar{y}_d^l \mu_{A^l}(e(t)) \mu_{B^l}(\dot{e}(t))}{\sum_{l=1}^{49} \mu_{A^l}(e(t)) \mu_{B^l}(\dot{e}(t))}$$

$$\alpha(t) = \frac{\sum_{l=1}^{49} \bar{y}_d^l \mu_{A^l}(e(t)) \mu_{B^l}(\dot{e}(t))}{\sum_{l=1}^{49} \mu_{A^l}(e(t)) \mu_{B^l}(\dot{e}(t))}$$

Z.Y. Zhao, M. Tomizuka, and S. Isaka, "Fuzzy gain scheduling of pid controllers," IEEE Trans. on Systems, Man, and Cybernetic vol. 23, no 5, pp. 1392-1398, 1993.

