

Computational Intelligence Lecture 17: Fuzzy Control II

Farzaneh Abdollahi

Department of Electrical Engineering

Amirkabir University of Technology

Fall 2011

TSK Fuzzy System Dynamic TSK Fuzzy System

Closed-Loop Dynamics with Fuzzy Controller

Stability Analysis

Stable Fuzzy Controllers

Takagi-Sugeno-Kang Fuzzy System (TSK)[1]

- ► A TSK fuzzy system is constructed from the following rules: IF x_1 is C'_1 and ... and x_n is C'_n THEN $y' = f(x_1, ..., x_n)$
- $y' = f(x_1, ..., x_n)$ is a crisp function, and can be any general fcn.
- Usually two types of TSK fuzzy system is applied
 - 1. Zero-Order Sugeno Model
 - ► y' is const.
 - ▶ It is a special case of the product inf. , singleton fuzzifier,
 - 2. First-Order Sugeno Model
 - y' is a linear fcn. of x_i : $y' = c'_0 + c'_1 x_1 + \ldots + c'_n x_n$
- The output of the TSK fuzzy system is computed as the weighted average of the y¹'s

$$y^* = \frac{\sum_{l=1}^{M} y^l w^l}{\sum_{l=1}^{M} w^l}$$

where $w^l = \prod_{i=1}^{n} \mu_{C_i^l}(x_i)$

(1日) (1日) (日) (日) (日)

Dynamic TSK Fuzzy System

- Output of a TSK fuzzy system appears as one of its inputs: IF x(k) is A_1^p and ... and x(k - n + 1) is A_n^p and u(k) is B^p THEN $x^p(k+1) = a_1^p x(k) + \ldots + a_n^p x(k - n + 1) + b^p u(k)$
 - A^p and B^P are fuzzy sets
 - a^p and b^P are const., p = 1, 2, ..., N,
 - u(k):input to the system
 - ▶ $\mathbf{x}(k) = (x(k), x(k-1), ..., x(k-n+l))^T \in \mathbb{R}^n$: the state vector of the system.
- Output of the TSK is

 $\begin{aligned} x^*(k+1) &= \frac{\sum_{\rho=1}^{N} x^{\rho}(k+1)v^{\rho}}{\sum_{\rho=1}^{N} v^{\rho}} \\ \text{where } v^{\rho} &= \prod_{i=1}^{n} \mu_{A_i^{\rho}}[x(k-i+1)]\mu_{B^{\rho}}[u(k)] \end{aligned}$

 Dynamic TSK fuzzy system can be applied to model dynamics of a plant

(1日) (1日) (日)

5/12

Closed-Loop Dynamics of Fuzzy Model with Fuzzy Controller

通 ト イヨ ト イヨト

- ▶ The closed-loop fuzzy control system is equivalent to the dynamic TSK fuzzy system by the following rules: IF x(k) is $(C_1^l \text{ and } A_1^p)$ and ... and x(k - n + 1) is $(C_n^l \text{ and } A_n^p)$ THEN $x^{lp}(k + 1) = \sum_{i=1}^n (a_i^p + b^p c_i^i) x(k - i + 1)$
 - u(k): the output of the controller,

•
$$I = 1, 2, ..., M, p = 1, 2, ..., N$$

- ► fuzzy sets $(C_i^l and A_i^p)$ are characterized by the mem. fcn. $\mu_{C_i^l}(x(k-i+l)), \mu_{A_i^p}(x(k-i+1)).$
- ► The output of this dynamic TSK fuzzy system: $x(k+1) = \frac{\sum_{l=1}^{M} \sum_{p=1}^{N} x^{lp}(k+1) w^{l} v^{p}}{\sum_{l=1}^{M} \sum_{p=1}^{N} w^{l} v^{p}}$

where

•
$$w^{l} = \prod_{i=1}^{n} \mu_{C_{i}^{l}}(x(k-i+1))$$

• $v^{p} = \prod_{i=1}^{n} \mu_{A_{i}^{p}}[x(k-i+1)]\mu_{B^{p}}[u(k)]$

通 ト イヨ ト イヨト

A E > A E >

- Consider System dynamics x(k+1) = Ax(k)
- ► Based on Lyapunov theorem, this system is globally asymptotically stable iff ∃P > 0 s.t. A^T PA P < 0</p>

Stability Analysis of the Dynamic TSK Fuzzy System

- Consider System dynamics x(k+1) = Ax(k)
- ► Based on Lyapunov theorem, this system is globally asymptotically stable iff $\exists P > 0$ s.t. $A^T P A P < 0$
- Now for the TSK dynamical model define:

★
$$\mathbf{x}(k) = [x(k)...x(k - n_1)]^T$$
★ $A_p = \begin{bmatrix} a_1^p & a_2^p & \dots & a_n^p \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$
★ $b^p = 0$ (consider no input $u(k)$ for the system)
★ \dots output of the systems: $x(k + 1) = \frac{\sum_{p=1}^N A_p x(k) v^p}{\sum_{p=1}^N v^p}$

• $x(k) = 0 \rightarrow$ equilibrium point is the origin

向下 イヨト イヨト

7/12

Stability Analysis of the Dynamic TSK Fuzzy System

- Consider System dynamics x(k+1) = Ax(k)
- Based on Lyapunov theorem, this system is globally asymptotically stable iff $\exists P > 0$ s.t. $A^T P A - P < 0$
- Now for the TSK dynamical model define:

• $\mathbf{x}(k) = [x(k)...x(k - n_1)]^T$

 $\bullet \ A_{p} = \begin{bmatrix} a_{1}^{p} & a_{2}^{p} & \dots & a_{n}^{p} \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$ • $b^p = 0$ (consider no input u(k) for the system) • ... output of the systems: $x(k+1) = \frac{\sum_{p=1}^{N} A_p x(k) v^p}{\sum_{p=1}^{N} v^p}$

• $x(k) = 0 \rightarrow$ equilibrium point is the origin

► The TSK system modeled above is stable if ∃ a common matrix P>0 s.t. $A_p^T P A_p - P < 0$ for all p=1,2, ..., N and N an Computational Intelligence Farzaneh Abdollahi Lecture 17

Design of Stable Fuzzy Controllers for the Fuzzy Model

- 1. Use The following closed-loop fuzzy control system as a dynamic TSK fuzzy system. IF x(k) is $(C_1^l \text{ and } A_1^p)$ and and x(k - n + 1) is $(C_n^l \text{ and } A_n^p)$ THEN $x^{lp}(k + 1) = \sum_{i=1}^n (a_i^p + b^p c_i^l)x(k - i + 1)$
 - ► The output:

$$\begin{aligned} x(k+1) &= \frac{\sum_{i=1}^{M} \sum_{p=1}^{N} x^{i_{p}}(k+1)w^{i}v^{p}}{\sum_{i=1}^{M} \sum_{p=1}^{N} w^{i}v^{p}} \\ \text{where } w^{l} &= \prod_{i=1}^{n} \mu_{C_{i}^{l}}(x(k-i+1)) \\ v^{p} &= \prod_{i=1}^{n} \mu_{A_{i}^{p}}[x(k-i+1)]\mu_{B^{p}}[u(k)] \end{aligned}$$

- a_i^p and b^p , and $\mu_{A_i^p}$ are known
- ► the controller parameters $c_i^p, \mu_{C_i^p}$ should be designed

▲□ ▶ ▲ □ ▶ ▲ □ ▶

2. Choose
$$c'_i$$
 and $A_{lp} = \begin{bmatrix} a_1^p + b^p c'_l & a_2^p + b^p c'_2 & \dots & a_n^p + b^p c'_n \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$ where $l = 1, ..., N$

イロン イロン イヨン イヨン

2

9/12

2. Choose
$$c_i^{l}$$
 and $A_{lp} = \begin{bmatrix} a_1^{p} + b^{p}c_l^{l} & a_2^{p} + b^{p}c_2^{l} & \dots & a_n^{p} + b^{p}c_n^{l} \\ 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & \dots \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$ where $l = 1, ..., M; p = 1, ..., N$

3. Find a common matrix P > 0 s.t. $A_{lp}^T P A_{lp} - P < 0$ for all p = 1, 2, ..., N; l = 1, ..., M. If you could not find such P, back to step 2 and redefine a new set of $c_i^{l'}$'s

Example

- Consider a TSK dynamical system:
 - ► IF x(k) is G_1 THEN $x^1(k+1) = 2.18x(k) - 0.59x(k-1) - 0.603u(k)$
 - ► IF x(k) is G_2 THEN $x^2(k+1) = 2.26x(k) - 0.63x(k-1) - 1.120u(k)$
- ► and TSK contoller:
 - ► IF x(k) is G_1 THEN $u^1(k) = c_1^1 x(k) + c_2^1 x(k-1)$
 - ► IF x(k) is G_2 THEN $u^2(k) = c_1^2 x(k) + c_2^2 x(k-1)$

Amirkabi

11/12

Example Cont'd

Step 1: design a closed loop TSK system

- ► IF x(k) is (G_1, G_1) THEN $x^{11}(k+1) = (2.18 - 0.603c_1^1)x(k) + (-0.59 - 0.603c_2^1)x(k-1)$
- ► IF x(k) is (G_1, G_2) THEN $x^{12}(k+1) = (2.18 - 0.603c_1^2)x(k) + (-0.59 - 0.603c_2^2)x(k-1)$
- ► IF x(k) is (G_2, G_1) THEN $x^{21}(k+1) = (2.26 - 1.120c_1^1)x(k) + (-0.63 - 1.120c_2^1)x(k-1)$

► IF x(k) is (G_2, G_2) THEN $x^{22}(k+1) = (2.26 - 1.120c_1^2)x(k) + (-0.63 - 1.120c_2^2)x(k-1)$

(1日) (日) (日)

• Step 2: define matrices
$$A_{lp}$$
:
 $A_{11} = \begin{bmatrix} 2.18 - 0.603c_1^1 & -0.59 - 0.603c_2^1 \\ 1 & 0 \end{bmatrix}$; $A_{12} = \begin{bmatrix} 2.18 - 0.603c_1^2 & -0.59 - 0.603c_2^2 \\ 1 & 0 \end{bmatrix}$; $A_{21} = \begin{bmatrix} 2.26 - 1.120c_1^1 & -0.63 - 1.120c_2^1 \\ 1 & 0 \end{bmatrix}$; $A_{22} = \begin{bmatrix} 2.26 - 1.120c_1^2 & -63 - 1.120c_2^2 \\ 1 & 0 \end{bmatrix}$; $A_{22} = \begin{bmatrix} 2.26 - 1.120c_1^2 & -63 - 1.120c_2^2 \\ 1 & 0 \end{bmatrix}$
• Step 3: by trail and error proper c_i^l are:
 $c_1^1 = 1.564$; $c_2^1 = 0.223$; $c_1^2 = 0.912$; $c_2^2 = 0.079$

Farzaneh Abdollahi

- 4 同 1 - 4 回 1 - 4 回 1

3

12/12

M. Sugeno, "An introductory survey of fuzzy control," *Inf. Sci* vol. 36, pp. 59–83, 1985.

通 ト イ ヨ ト イ ヨ ト

