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I Radial Bases Functions Networks (RBFN) is
firstly proposed by Broomhead and Lowe in 1988

I Main features
I They have two-layer feed-forward networks.
I The hidden nodes implement a set of radial

basis functions (e.g. Gaussian functions).
I The output nodes implement linear summation

functions (similar to MLP).
I The network training is divided into two stages:

1. The weights from the input to hidden layer are
determined

2. Then the weights from the hidden to output
layer are found.

I The training/learning is fairly fast.
I RBF nets have better performance than MLP in

some classification problems and function
interpolation
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I RBFN approximates f (x) by following equation

f (x) =
n∑

i=1

wiφ(r)

where r = ‖x − ci‖
I x ∈ Rn: input vector
I ci vector value parameter centroid (first layer weight)
I wi connection weights in the second layer (from hidden layer to output)
I φ: activation function should be radially symmetric (i.e. if ‖x1‖ = ‖x2‖

then φ(‖x1‖) = φ(‖x2‖))

I Considering φ as Gaussian fcn: φ(r) = −‖x−ci‖
2σ2

i

I σi : pos. valued shaping parameter (width)
I Training RBFN is a process to find appropriate values of wkj , cij and σj
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Commonly Used Radial Basis Functions

1. Linear Function: φ(r) = r

2. Cubic Function: φ(r) = r3

3. Gaussian Function φ(r) = exp(− r2

2σ2 )

4. Multi-Quadratic φ(r) = (r r + σ2)1/2

5. Generalized Multi-Quadratic φ(r) = (r r + σ2)β, 1 > β > 0

6. Inverse Multi-Quadratic φ(r) = (r r + σ2)−1/2

7. Generalized Inverse Multi-Quadratic φ(r) = (r r + σ2)−α, ‘α > 0

8. Thin Plate Spline φ(r) = r2ln(r)

9. Shifted Logarithm log(r2 + σ2)
where r = ‖x − c‖2
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I The Gaussian and Inverse Multi-Quadric Functions are localized in the
sense that φ(r)→ 0 as ‖r‖ → ∞

I For all the other mentioned functions: φ(r)→∞ as ‖r‖ → ∞
I In RBFNN the hidden layer and output layer play very different role.
I ∴ It is appropriate to use different learning alg. for each:

I First the hidden node centers are determined
I Then the output layer weights are trained
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Training RBFN: Basis Function Optimization

I One major advantage of RBFN is possibility of choosing suitable
hidden unit without having perform a full nonlinear optimization of
the whole network

I The methods of doing it are categorized to:
I Unsupervised methods:

are particularly useful in situations where labelled data is in short
supply, but there is plenty of unlabelled data (i.e. inputs without output
targets)

I Supervised methods:
get usually better results

Farzaneh Abdollahi Computational Intelligence Lecture 16 7/18



Outline Introduction Commonly Used Radial Basis Functions Training RBFN RBF Applications Comparison

Unsupervised Methods

1. Fixed center selected at random:
I It is the simplest and quickest approach
I Centers are selected as fixed M points randomly from N data points
I Their widths are equal and fixed at an appropriate size for the

distribution of data points.
I The normalized RBF centered at cj are defined

φj(x) = exp(−M

d2
m

‖x − cj‖2) ci ⊂ xp

where dm is max distance between chosen centers
I The widths are σj = dm√

2M
I It ensures individual RBF’s are neither too peaked nor too flat
I For large training sets, this method provides reasonable results
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Unsupervised Methods

2. K-Mean Clustering
I Using clustering techniques provides an improved approach which more

accurately reflects the distribution of the data points.
I Partitions the data points xp into K disjoint subsets Sj s.t. the sum of

square error is min
I Each subset contains Nj data points based on min distance rule.
I K-Mean Alg:

2.1 Choose a set of centers c1, ..., ck arbitrarily
2.2 Assign N samples to the K subsets using the min Euclidean distance

rule:
xp ∈ ci if ‖xp − ci‖ < ‖xp − cj‖ ∀i 6= j

2.3 After all data points are assigned go to step 2.4
2.4 Compute new subset center (ci ) s.t. min the cost function

Ji =
∑

x∈Si
‖x − ci‖2

2.5 If any subset center is changed, return to step 2.2, otherwise stop.
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Supervised Training Method

I This method is generally giving better results than unsupervised
procedures

I but the computational costs are usually enormous.

I Similar to MLP, this approach performs gradient descent on a sum
squared output error function

I The error function would be

E =
∑
p

∑
k

(yk(xp)− tp
k )2 =

∑
p

∑
k

(
M∑

j=0

wkjφj(x
p, cj , σj)− tp

k )2

where tp
k : kth element of target vector in pth sample data, xp: input

vector of pth sample data, yk is network output
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I The weights/basis function parameters are updated as

4wjk = −ηw
∂E

∂wjk
,4cij = −ηc

∂E

∂cij
,4σj = −ησ

∂E

∂σj

I The learning rates η should be selected carefully to avoid local minima
and acceptable convergence rate and error

I Finding the Output Weights
I The output weights can be obtained by either supervised or

unsupervised methods
1. Unsupervised method:

I After the input to hidden weights are found (centers), they are kept
fixed for the second stage of training during which the hidden to output
weights are learned

I Since the second stage involves just a single layer of weights wjk , they
can easily be found analytically by solving a set of linear equations.

I Usually, this can be done quickly, without the need for a set of iterative
weight updates as in gradient descent learning.
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Training: Finding the Output Weights
1. Unsupervised method cont’d:

I Given the hidden units activation φ(x ,Cij , σj), the below series of
simple linear equations should be found

yk(xp) =
M∑

j=0

wkjφj(x
p) = tp

k

I This can be rewritten as ΦW T = T , where
Wkj = {wkj}, Φpj = {φj(x

p)}, Tpk = {tp
k }.

I Therefore

W T = Φ∗T

where Φ∗ = (ΦT Φ)−1ΦT is pseudo inverse of ΦT

I In practice we tend to use singular value decomposition (SVD) to avoid
possible ill-conditioning of Φ.

2. Supervised method: the weights of second layer can be trained by
supervised learning method like BP alg.
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RBF Applications

I Classification
I Suppose we have a data set that falls into three classes:

I An MLP would separate the classes with hyper-planes in the input
planes

I RBF model the separate class distributions by localized basis functions
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Example: XOR Problem

I Single layer perceptron with step or sigmoidal activation functions can
not form the correct outputs, since they can only generate a single
decision boundary.

I ∴ We had introduced MLP (an extra layer)
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I Using RBFN: The Gaussian activation function is

φj = exp(− M

d2
max

‖x − c2
j ‖)

I There are 4 patterns and 2 classes  Choose M = 2

I Choose µ1 = (0, 0) and µ2 = (1, 1) as center of basis functions  
dmax =

√
2

I So the two basis functions are

φ1 = exp(−‖x − µ1‖), µ1 = (0, 0)

φ2 = exp(−‖x − µ2‖), µ2 = (1, 1)
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I the patterns are now linearly separable

I Now the output weights should be adjusted:
y(x) = w1φ1 + φ2w2 − θ

I Considering the patterns:
0 = 1w1 + 0.1353w2 − 1θ

1 = 0.3678w1 + 0.3678w2 − 1θ

1 = 0.3678w1 + 0.3678w2 − 1θ

0 = 0.1353w1 + 1w2 − 1θ

I Therefore w1 = w2 = −0.2.5018, θ = −2.8404
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I Other applications of RBFN are in
I Model prediction
I speech-hand writing recognition
I control for high dimensional and highly nonlinear systems
I image processing
I time series analysis
I medical diagnosis

I Comparison of RBFN and MLP
I Similarities

1. They are both non-linear feed-forward networks.
2. They are both universal approximators.
3. They are using in similar application areas.

I There always exists an RBFN to accurately mimic a specified MLP, or
vice versa

I Differences

1. An RBFN (in its most basic form) has a single hidden layer. But an
MLP may have one or more hidden layers (AN RBF proposed by
Lapendes (1991) has two hidden layers where the second hidden layer
and output layer are both linear.)
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Differences

2. MLPs construct global approximations to nonlinear I/O mappings  
they are capable of generalization in region of input space that little or
no training data are available. But RBF networks tend to use localized
nonlinearities (Gaussian func.) at the hidden layer to construct local
approximations  they can learn fast.

3. Due to local approximation of RBF, they may require larger number of
hidden nodes to span the input space adequately as compared to MLP

4. In MLP the computation nodes in different layers share a common
neural model (not necessarily the same activation function). But in
RBFN, the hidden nodes (basis funcs) operate very different and have
different purpose to the output nodes.

I In RBFN, the argument of each hidden unit activation func is the
distance between the input and the weights (RBF centers), But in
MLPs it is the inner product of input and the weights
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